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Platelets play a crucial role in the recruitment of neutrophils, mediated by

P-selectin, CCL5, and ICAM-2. In this study, we prepared platelet membrane

nanovesicles from activated platelets. Whether activated platelet membrane

nanovesicles can recruit neutrophils has not been reported, nor has their role in

antitumor immunity. The results of SDS-PAGE showed that the platelet

membrane nanovesicles retained almost all the proteins of platelets.

Western blotting showed that both the activated platelets and the platelet

membrane nanovesicles expressed P-selectin, ICAM-2, and CCL5. In vivo

results of a mouse model of breast cancer-transplanted tumor showed that

tumor volume reduced significantly, Ki-67-positive tumor cells decreased, and

TUNEL-positive tumor cells increased in tumors after treatment with activated

platelet membrane nanovesicles (aPNs). After treatment with aPNs, not only the

number of neutrophils, CD8+, CD4+ T cells, and B cells increased, but also IL-12,

TNF-α, and IFN-γ levels elevated significantly in tumor tissues.
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1 Introduction

Neutrophils exhibit significant antitumor effect and can prime anticancer immunity

(Ustyanovska Avtenyuk et al., 2020). Neutrophils control the vital part of the adaptive

immune system, regulating the function of B and T cells (Liew and Kubes, 2019),

stimulating T-cell-mediated antitumor response (Eruslanov et al., 2014). One study

showed that CD8+, CD4+ T cells, and B cells are positively correlated with the reduction of

tumor volume (Cunha et al., 2012). There is evidence that neutrophils can cross-present

neoantigens to T lymphocytes via major histocompatibility complex (MHC), leading to

the initiation of antitumor T-cell response (Singhal et al., 2016), and stimulating T-cell

proliferation and activation (Eruslanov et al., 2014). In addition, neutrophils recruit and

activate T cells by secreting cytokines, such as TNF-α, cathepsin G, and neutrophils

elastase (Mishalian et al., 2014).

Platelets perform a vital part in recruiting neutrophils through self-expressed

P-selectin (Nagao et al., 2007). In addition, they also express intercellular adhesion
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molecule-2 (ICAM-2) and CCL5, and recruit neutrophils

mediated by P-selectin glycoprotein ligand 1 (PSGL-1), CCL

receptor 1/CCL receptor 5 (CCR1/CCR5), and lymphocyte

function-associated antigen 1 (LFA1) (Weber and Springer,

1997; Kuijper et al., 1998; von Hundelshausen et al., 2007).

Although biodegradable and clearable inorganic

nanomaterials show progress in cancer theranostics (Wang

et al., 2021), bionics and targeted nanotechnology still play an

irreplaceable role. It has been reported that activated platelet

membrane nanovesicles camouflaging black phosphorus

quantum dots can target tumor tissue (Shang et al., 2019).

Whether activated platelet membrane nanovesicles alone can

target tumor sites and whether targeting tumor sites is

beneficial for recruiting neutrophils to the tumor site has

not been reported. In this study, we applied the tumor-

transplanted mouse model and intravenously injected

activated platelet membrane nanovesicles to investigate the

mechanism of enhancing antitumor immunity by recruiting

neutrophils, thus exploring a new perspective for tumor

treatment.

2 Materials and methods

2.1 Materials

Thermo Fisher Technology Co., Ltd. provided the fetal

bovine serum (FBS). Solarbio Biotechnology Co., Ltd.

provided RPMI-1640, phosphate buffer saline (PBS), trypsin,

Cy5, and non-pre-stained protein marker. Bovine serum albumin

(BSA) was procured from Yeasen Biological Technology Co., Ltd.

BCA Protein Quantitation Kit and Coomassie Blue Fast Staining

Solution were from Beyotime Biology Co., Ltd. Polyvinylidene

fluoride (PVDF) membrane was produced by Cell Signaling

Technology, Co., Ltd. P-selectin rabbit primary antibody was

provided by Shanghai Lianshuo Biological Technology Co., Ltd.

ICAM-2 (F-5) mouse primary antibody was purchased from

Santa Cruz Biotechnology Co., Ltd. CCL5 rabbit primary

antibody was provided by Solarbio Biotechnology Co., Ltd. β-
Actin (60008-1-Ig) mouse primary antibody was provided by

Proteintech Group, Inc. Servicebio Biological Technology Co.,

Ltd. provided hematoxylin and eosin (HE), Ki-67

immunofluorescence detection kit, and terminal

deoxynucleotidyl transferase-mediated dUTP nick-end labeling

(TUNEL) immunofluorescence detection kit. Mouse IFN-γ
ELISA kit (E-EL-M0048c) and IL-12 ELISA Kit (E-EL-

M0726c) were provided by Elabscience Biological Technology

Co., Ltd. Mouse TNF-α ELISA kit (ab208348) was purchased

from Abcam Trading Co., Ltd. Ly6G (1900–02) mouse primary

antibody was provided by SouthernBiotech Co., Ltd. CD4

(CL647-65104) and CD8 (CL488-65069) fluorescent

antibodies were produced by Proteintech Group, Inc. CD19

(ab245235) mouse primary antibody and CD11b (ab24874)

mouse primary antibody were produced by Abcam Trading

Co., Ltd.

2.2 Cell line and mice

4T1 cells were provided by the Cancer Institute of Central

South University and cultured in RPMI-I640 medium containing

10% FBS under the condition of 37°C and 5% CO2. The Hunan

Slake Jingda Laboratory Animal Co., Ltd. provided the female

ICR mice of 6-week-old.

2.3 Isolation of PLTs and preparation of
PLTm nanovesicles

A sample of whole blood from female ICRmice was collected

in tubes containing heparin anticoagulant. The whole blood was

centrifuged and washed to obtain platelets. The platelets were

repeatedly frozen and thawed to obtain PLTm, and then PLTm

nanovesicles were generated by ultrasonic treatment (2 min,

42 kHz, 100 W).

2.4 Identification of proteins of PLTs and
PLTm nanovesicles

SDS-PAGE was applied to display the protein expression

profile of PLTs and PLTm nanovesicles. Western blotting was

used for the detection of the expression of specific proteins

(P-selectin, ICAM-2, and CCL5) on PLTs and PLTm

nanovesicles. RIPA lysis buffer containing protease

inhibitor cocktail was used to lyse PLTs and PLTm

nanovesicles. After that, the lysates were centrifuged at 4°C

(13000g, 5 min) and the total protein in the supernatant was

measured using the BCA protein detection kit. SDS loading

buffer was added to the supernatant, and the total protein was

degenerated by heating them at 100°C for 5 min. A quantity of

40 μg total protein was loaded into each gelatin well, and

electrophoresis was performed. The gelatin was quickly dyed

with Coomassie blue staining solution and photographed. The

proteins were transferred to polyvinylidene fluoride (PVDF)

membranes and sealed with 5% skimmed milk in TBST at

room temperature for 1 h. After that, these blots were

incubated with P-selectin, ICAM-2, CCL5, and β-actin
primary antibody for 2 h; washed with TBST; incubated

with corresponding horseradish peroxidase-linked

secondary antibody; washed with TBST; and added with

chemiluminescent solution for development with Gel

imaging system (ChemiDoc MP, Bio-Rad Laboratories,

United States).
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2.5 Evaluation of in vivo targeting of PLTm
nanovesicles

Female ICR mice were subcutaneously inoculated with

4T1 cells (1.0×106/100 μl). When the tumor volume exceeded

100mm3, dilute solution of Cy5 in PBS and Cy5 (red

fluorescence)-labeled PLTm nanovesicles were

intravenously injected, respectively. After 48 h, we gleaned

the vital organs, including the hearts, livers, spleens, lungs,

kidneys, brains, and tumors of the mice, and evaluated the

fluorescence intensity by animal imaging (IVIS Spectrum,

PerkinElmer, United States). Tumor tissue sections were

photographed by using a confocal laser scanning

microscope (CLSM) (TCS SP8, Leica, Germany).

2.6 Evaluation of the antitumor activity of
PLTm nanovesicles in vivo

Female ICR mouse were subcutaneously inoculated with

4T1 cells (1.0×106/100 μl). When the tumor volume exceeded

100 mm3, PBS and aPNs were injected into the tail vein,

respectively, once a day for four times. The length and width

of the tumors were measured every 4 days to calculate tumor

volume and assess antitumor activity. Tumor volume was

calculated as: length × width2/2. At day 20, the mice were

killed, and the collected tumor samples were stored in 4%

paraformaldehyde and then made into tissue sections.

2.7 Ki-67 and TUNEL immunofluorescence
assays in tumor tissues

Paraffin sections of the tumor tissue were dewaxed, and

antigen repair was performed. The tissue sections were

covered with membrane-breaking working solution for 20 min

and washed with PBS.

2.7.1 Ki-67 immunofluorescence assay
An appropriate sealing solution was added to the slides and

incubated in a wet box for 60 min. Anti-Ki-67 rabbit antibody

was added to each sample and incubated overnight at 4°C. Then,

the slides were removed from the refrigerator at 4°C and washed

with PBS for three times, 5 min each time. A quantity of 50 μl of

Cy3-conjugated Goat anti-Rabbit IgG was added to each slide,

which was incubated away from light for 60 min, washed with

PBS, and then, redyed with DAPI.

2.7.2 TUNEL immunofluorescence detection
Reagent 1 (TdT) and Reagent 2 (dUTP) were added, and the

sections were incubated at 37°C for 2 h and washed with PBS.

Following this, the PBS was removed and DAPI was added, and

the slides were incubated for 10 min to avoid light. The slides

were sealed with anti-fluorescence quencher and observed, and

its images were collected by using a confocal laser scanning

microscope (CLSM) (TCS SP8, Leica, Germany).

2.8 Immunofluorescence detection of
immune cells in tumor tissues

After fixation, embedding, and sectioning, tumor tissue

sections were stained with CD8+ T lymphocytes (CD8),

neutrophils (CD11b, Ly6G), B lymphocytes (CD19), and

CD4+ T lymphocytes (CD4) primary immunofluorescence

antibody for 1 h in dark, washed with PBST, incubated with

secondary antibody, washed with PBST for 3 times, and re-dyed

with DAPI. The cells were observed, and images were obtained

under CLSM.

2.9 The level of cytokines in tumor tissues
detected with ELISA kits

A standard and sample diluent was added to the tissue

samples according to the instruction. The wells were sealed

and incubated at 37°C for 90 min, and the plate was washed.

Biotinylated antibody diluent or biotinylated antibody working

solution was added, the wells were sealed and incubated at 37°C

for 60 min and then washed. An enzyme-conjugated diluent or

enzyme-conjugated working solution was added, and the wells

were sealed and incubated at 37°C for 30 min, and washed. A

color substrate was added and the wells were incubated at 37°C

for 15 min. A reaction-stopping solution was added, and

OD450 was measured immediately. The best fitting curve was

drawn, and the concentration of the samples was calculated.

3 Results and discussion

3.1 Characteristics of PLTm nanovesicles

Observed under transmission electron microscope (TEM)

(Tecnai G2 Spirit, Thermo Fisher, United States), the diameter

of activated PLTm nanovesicles was about 150 nm (Figures

1A,B), which was similar to the result of dynamic light

scattering (DLS) (Figure 1C). Data from Zetasizer Nano ZS

(Malvern Nano series, Malvern, United Kingdom) showed

that Zeta potential of activated PLTm nanovesicles was about

–21.7 mV (Figure 1D). SDS-PAGE protein analysis showed

that PLTs expressed more proteins than aPNs, and aPNs

retained most of the PLTs’ proteins (Figure 1E). Western

blotting showed that P-selectin, ICAM-2, and CCL5 were

expressed both in PLTs and aPNs (Figure 1F). Expression

of these proteins provided the basis for targeting tumor tissues

and recruiting neutrophils.
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FIGURE 1
Characteristics of PLTm nanovesicles. (A) PLTm nanovesicles observed under TEM, scale bar: 100 nm. (B) TEM size distribution of PLTm
nanovesicles. (C) DLS of PLTm nanovesicles. (D) Zeta potential of PLTm nanovesicles. (E) SDS-PAGE protein analysis of PLTs and activated PLTm
nanovesicles. M: Marker, P: PLTs, aPNs: activated PLTm nanovesicles. (F) The expression of proteins (P-selectin, ICAM-2 and CCL5) in PLTs and
activated PLTm nanovesicles were analyzed by Western blot. aPNs: activated PLTm nanovesicles.

FIGURE 2
In vivo targeting of aPNs. (A) Fluorescence images of internal organs and tumor tissues after treatment with Cy5 and aPNs-Cy5. (B) Semi-
quantitative analysis of organ fluorescent signal, compared with Cy5 group: pp < 0.05. (C) Fluorescent images of tumors from ICR mice at 48 h after
injection of Cy5-conjugated aPNs and Cy5, scale bar: 100 μm.
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3.2 In vivo targeting of activated PLTm
nanovesicles

To verify the tumor-targeting properties of activated PLTm

nanovesicles, we labeled activated PLTm nanovesicles with

Cy5 and assessed their distribution in vivo. PBS-diluted

Cy5 solution served as control. At 48 h after intravenous

injection, retention of aPNs-Cy5 (red fluorescence) in tumor

was more obvious than that of Cy5 alone. Moreover, there was no

significant accumulation in the two groups in visceral tissues,

including heart, spleen, lung, and kidney, except for a small

amount of fluorescence in the liver (Figures 2A,B). In addition,

the bright red fluorescence in tumor tissues after injection of

aPNs-Cy5 was more obvious than that after the injection of

Cy5 alone (Figure 2C), indicating that aPNs possess good tumor-

targeting property.

3.3 In vivo antitumor activity

After treatment with aPNs, the tumor volume dramatically

shrank (Figures 3A,B), indicating that aPNs can significantly

inhibit tumor growth. The tumor tissue sections stained by HE

(Figure 3C) showed that 4T1 cells in the control group grew well,

but necrosis of 4T1 cells increased significantly after the

treatment of aPNs, indicating that aPNs could significantly

inhibit the growth of 4T1 cells.

3.4 Ki-67 and TUNEL
immunofluorescence in tumor tissue

After treatment with aPNs, Ki-67-positive tumor cells

decreased (Figures 3D,F), indicating that aPNs could inhibit

the proliferation of tumor cells. TUNEL-positive tumor cells

in the aPN group were more than that in the control group

(Figures 3E,F), suggesting that aPNs promote the apoptosis of

tumor cells.

3.5 Immunofluorescence detection of
immune cells in tumor tissues

Platelets can recruit neutrophils through P-selectin, ICAM-2,

and CCL5 (Weber and Springer, 1997; Kuijper et al., 1998; Nagao

et al., 2007; von Hundelshausen et al., 2007). Activated PLTm

FIGURE 3
In vivo antitumor activity. Ctl: control; aPNs: activated PLTm nanovesicles. (A) Representative image of tumor tissues. (B) The changes of tumor
volume. Data are represented as mean ± SD (n = 3), compared with control: pp < 0.05. (C) Histological images of tumor sections, scale bar: 100 μm.
(D) Histological images of tumor sections after Ki-67 immunofluorescence staining, scale bar: 100 μm. (E) Images of tumor tissue after TUNEL
immunofluorescence staining, scale bar: 100 μm. (F) Statistical analysis of Ki-67-positive and TUNEL-positive cells, respectively, comparedwith
control: ppp < 0.01 and pppp < 0.001.
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nanovesicles express P-selectin, ICAM-2, and CCL5.

Accordingly, we inferred that activated PLTm nanovesicles

can also recruit neutrophils. As can be seen from Figures

4A,B, neutrophils (green immunofluorescence) in tumor tissue

were dramatically increased after treatment with activated PLTm

nanovesicles. It is suggested that tumor-targeted activated PLTm

nanovesicles could recruit neutrophils to tumor site.

Neutrophils play an anticancer role by inducing apoptosis of

tumor cells, producing antitumor cytokines or cytotoxic

reactions. Neutrophils engulfed dead tumor cells and present

neoantigens to promote T cells-based adaptive immune response

(Huang et al., 2016; Marzagalli et al., 2019). After treatment with

aPNs, neutrophils, CD4+, and CD8+ T cells in the tumor tissues

increased significantly (Figures 4A,B), indicating that the

presentation of tumor antigen and antitumor immunity were

reinforced, thus enhancing antitumor effect.

CD4+ T cells play a key role in driving both the antibody

response and the cytotoxic CD8+ T-cell response by producing

IFN-γ, thereby contributing to the formation of an inflammatory

environment conducive to antitumor immunity. Moreover,

CD4+ T cells are important in mediating cytotoxicity. In fact,

tumors that express MHC class II molecules, exposed to IFN-γ,
may be direct targets of cytotoxic CD4+ T cells (Chen and

Mellman, 2017). As shown in Figures 4A,B, after treatment

with aPNs, CD4+ and CD8+ T cells obviously increased, and

the level of IFN-γ was elevated, indicating enhanced cytotoxicity

and antitumor immunity.

IFN-γ stimulates the polarization of neutrophils into

anticancer phenotype characterized by cytotoxicity against

FIGURE 4
Immunofluorescence images of immune cells. Ctl: control; aPNs: aPLTm nanovesicles. (A) Immunofluorescence images of neutrophils, CD4+

T cells, CD8+ T cells, and B cells, scale bar: 100 μm. (B) Statistical analysis of immune cells, compared with control: pp < 0.05, pppp < 0.001, and ppppp <
0.0001.

FIGURE 5
Cytokines ELISA detection in tumor tissues. Ctl: control;
aPNs: aPLTm nanovesicles. Data are represented as mean ± SD
(n = 3), compared with the control group: ppp < 0.01.
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tumor cells and the acquisition of antigen-presenting cell

characteristics (Eruslanov et al., 2014; Singhal et al., 2016),

and promotes antitumor adaptive immunity (Governa et al.,

2017). Neutrophils and IFN-γ in the tumor tissue were

significantly increased after aPN treatment (Figures 4A, 5),

indicating enhanced antitumor immunity and cytotoxic activity.

B cells are positively correlated with the reduction of tumor

volume (Cunha et al., 2012). Compared with cases with visceral

metastases, there were more B cells in inflammatory infiltrations

of non-metastatic melanoma or tumors that only invaded lymph

nodes, indicating that higher B-cell count was correlated with

better prognosis (Ladanyi et al., 2011). Figure 4A showed that

B cells in the tumor tissue were significantly increased after aPN

treatment, compared with the control group, indicating

enhanced antitumor effect and a better prognosis.

CD4+ T helper cells promote B-cell-mediated immune

response (Mitsdoerffer et al., 2010), facilitate the migration

and activation of neutrophils (Pelletier et al., 2010), and

control the activation and proliferation of CD8+ T cells

(Martin-Orozco et al., 2009; Ankathatti Munegowda et al.,

2011). IFN-γ and TNF-α produced by CD4+ T cells (Kryczek

et al., 2009) play direct cytotoxic role on cancer cells, which are

related to the activation of innate and adaptive immunocyte, thus

motivating antitumor immune response (Alizadeh et al., 2013).

Tumor tissue infiltration of neutrophils, CD8+ T, CD4+ T, and

B cells significantly increased after the treatment of aPNs (Figures

4A,B), suggesting enhanced antitumor immune activity. In

addition, as shown in Figure 5, TNF-α and IFN-γ levels

increase, indicating increased anticancer activity.

Activated CD8+ cytotoxic T lymphocytes (CTLs) induce

apoptosis of tumor cells directly by secreting granzyme B and

perforin; or act on tumor cells indirectly by releasing cytokines,

such as IFN-γ and TNF, resulting in consecutive appearance of

antigens and the proliferation of T cells (thor Straten et al., 1999;

Durgeau et al., 2018; Marzagalli et al., 2019). Compared with the

control group, CD8+ CTL in tumor tissues increased significantly

in the aPN group (Figure 4), suggesting enhanced antitumor

effect.

3.6 Cytokine ELISA detection of tumor
tissues

IFN-γ, produced by adaptive and innate immunocytes,

including T cells and NK cells, serves as a potent

immunomodulatory cytokine (Gattoni et al., 2006). IFN-γ
modulates a variety of effects, including antiproliferative,

anticancer, and adaptive immunity, and has been reported to

induce apoptosis and inhibit cell proliferation (Stark et al., 1998;

Gattoni et al., 2006). In the aPN group, the IFN-γ level elevated

Scheme 1
Schematic diagram of aPNs enhancing antitumor immunity.
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(Figure 5), Ki-67-positive cancer cells decreased (Figures 3D,F),

and TUNEL-positive cancer cells increased (Figures 3E,F),

indicating enhanced antitumor immunity and anticancer effect.

TNF-α secreted by tumor cells promotes cell apoptosis and

inhibits survival in cancer (Szlosarek et al., 2006; Balkwill, 2009)

and controls cancer (Shankaran et al., 2001; Willimsky et al.,

2008). These identified effects agreed with our finding that the

level of TNF-α in tumor was significantly increased after

treatment with aPNs (Figure 5), accompanied by a significant

decrease in tumor volume.

IL-12, secreted from various immunocytes, such as

neutrophils and B cells, stimulates the production of IFN-γ
by T cells (Conlon et al., 2019), playing a remarkable antitumor

effect (Engel and Neurath, 2010). IL-12 stimulates the activity

of cytotoxic T cells and promotes B-cell survival (Conlon et al.,

2019), acts as a central coordinator of immune responses, and

bridges innate to adaptive immunity in humans (Langrish et al.,

2004). Moreover, IL-12 mainly acts on T cells, promoting

cytotoxic activity of CTLs and inducing the production of

cytokines, including IFN-γ and TNF-α (Gao et al., 2019).

The number of B cells increased significantly after aPN

treatment (Figure 4), suggesting B-cell-mediated antitumor

immune enhancement. In addition, the levels of IL-12, TNF-

α, and IFN-γ increased in tumor tissues in the aPN group

(Figure 5), indicating enhanced antitumor immunity and

anticancer effect.

4 Conclusion

Activated platelet membrane nanovesicles, which retain

almost all of the platelet-proteins, target tumor tissues through

P-selectin and CD44, andmediate neutrophil recruitment through

P-selectin, ICAM-2, and CCL5. Subsequently, neutrophils increase

the number of CD8+, CD4+T cells, and B cells in the tumor and

promote the release of IFN-γ, TNF-α, and IL-12; thus, the

antitumor immunity and anticancer effect was enhanced

(Scheme 1). Based on our study, platelet membrane

nanovesicles are expected to provide a new tool for tumor

treatment and open up new ideas for cancer therapy.
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