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Editorial on the Research Topic

Metal-Free Oxidative Transformations in Organic Synthesis

Introduction

The tools of synthetic approachesmust be continuously expanded and enriched to facilitate

the sustainable production of chemicals. The development of processes with considerably

superior environmental and industry-relevant credentials is one of the prime objectives for

organic chemists. Most of the organic transformations, including C-C and C-X bond-forming

cross-coupling reactions, and cross dehydrogenative-coupling reactions generally rely on the

prerequisite of transition-metal catalysts and harmful organic solvents. Hence, there is a dire

need of developing green synthetic strategies by avoiding the use of transition-metal catalysts

and hazardous organic solvents. Metal-free oxidative transformations have emerged as an

important alternative to metal catalysis in the past few decades. Even, in some cases, metal-free

catalysis hasmore advantages overmetal-catalyzed reactions, such as exceptional performance,

better selectivity, recyclability, and higher substrate tolerance. This thematic issue includes

research papers covering key aspects of metal-free transformations.

Furfural and its derivatives are an important class of biomass platform compounds and,

have been widely used in industries. Reported synthetic methods for these compounds

involve the use of inorganic acid catalysts (Zhou et al., 2021), such as sulfuric acid,

hydrochloric acid, phosphoric acid (Yemis and Mazza, 2011), and also the solid acid

[Nb2O5-MCM-41] (Garcia-Sancho et al., 2013). However, these methods suffer many

disadvantages. In the case of sulfuric acid, hydrochloric acid, and phosphoric acid, the

yield of the furfural derivatives was only upto 37.5% while the synthetic method using

[Nb2O5-MCM-41] was suffering from less selectivity and high cost. These limitations were

overcome by the use of ionic liquids (ILs), in particular, the ionic liquids bearing diimidazole

rings (Ni et al., 2017; Liu et al., 2019) that give superior results because of their better
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hydrophobic character and good thermal stability. Xiong and

coworkers explored the catalytic utilization of various

diimidazole hexafluorophosphates, with varying carbon chain

lengths, under microwave irradiation for the conversion of

xylose into furfural. Salient features of the developed protocol

are the shorter reaction time, 1/40th of the reaction time

required for the conventional method, with a slight increase in

the yield. Further, the catalytic activity of these catalysts was

available after being recycled five times.

Hypervalent iodine compounds were discovered a long time ago

and, in 1886 a German chemist, C. Willgerodt synthesized

(dichloroiodo)benzene as the first stable polyvalent organic iodine

compound (Willgerodt, 1886). This achievement was quickly

followed by the preparation of many other iodine compounds,

including the most common reagents (diacetoxyiodo)benzene

and iodosylbenzene (Willgerodt, 1892), 2-iodoxybenzoic acid

(IBX) (Hartmann and Meyer, 1893), and the first examples of

diaryliodonium salts reported by Hartmann and Meyer (1894).

Over the last few decades, hypervalent iodine chemistry has

evolved from being a mere curiosity to a most prosperous field

in organic synthesis (Wirth, 2016; Yoshimura and Zhdankin, 2016;

Parra, 2019; Dohi, Han and Kumar, 2021; Singh and Wirth, 2021;

Kumar et al., 2022; Rimi et al., 2022). The most important

representative of pentavalent iodine compounds is IBX, apart

from Dess-Martin Periodinane (DMP) (Hartmann and Meyer,

1893). Despite having shortcomings such as explosive nature and

insolubility in common organic solvents, IBX is widely applied for

organic oxidative reactions. Nageswar et al. presented the recent

developments related to the IBX-mediated organic transformations

in heterocyclic chemistry, in particular, from 2010 onwards.

With progress in active pharmaceutical ingredients (API) and

functional materials, the demand for manufacturing processes

utilizing resource-recyclable reagents and highly atom-economical

synthetic methods has enhanced substantially (Horvάth and

Anastas, 2007; Sheldon, 2012; Hayashi, 2016; Horvάth, 2018).

Yamamoto et al. developed a metal-free organocatalytic practical

approach for the synthesis of diverse nitrogen heterocycles. Salicyclic

acid and its derivatives were efficiently used as organocatalysts under

atmospheric oxygen. Synthesis of the quinazolines was successfully

achieved by the group with excellent atom economy, an

environmental factor (E-factor) of 2.7, and reaction mass

efficiency (RME) of 73%. In addition, the synthesis of

quinazolines was scaled up to 10 mmol.

Indole, as well as quinoline, is widely present in natural

products and medicines and, their functionalization gives a wide

array of essential targets. However, the C-3 modification of these

rings is quite challenging and, has been the field of extensive

research. A one-step metal-free C-3 functionalization of the

quinoline ring leading to C-C bond formation is recently

reported in the literature (Sangher et al., 2020). Taking into

consideration the concepts of green chemistry, a mild C-H

functionalization approach for the construction of diverse

indole-containing heterocyclic frameworks was established by

Chen et al. The one-pot three-component coupling of α-Amino

aryl ketones, indoles, and perbromomethane afforded

biologically significant 2-(1-bromo-1H-indol-3-yl)-2-imino-

carbonyls involving the simultaneous construction of three

different new bonds (C=N, C–C, and N-Br). Salient features

of the methodology involve mild reaction conditions, atom

economy, and transition metal-as well as oxidant-free approach.

Perspectives

This Research Topic of articles showcases different aspects of

metal-free approaches toward achieving various valuable organic

transformations. Irrespective of the fact that there are continuous

expansions in this field, there are still many areas yet to be explored.

Refereeing the advantages of metal-free oxidative transformations,

it seems certain that these reactions will be further utilized in the

development of sustainable synthetic methods.
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