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This study introduces a set of fuzzy spherically truncated three-dimensional

(3D) multi-linear descriptors for proteins. These indices codify geometric

structural information from kth spherically truncated spatial-(dis)similarity

two-tuple and three-tuple tensors. The coefficients of these truncated

tensors are calculated by applying a smoothing value to the 3D structural

encoding based on the relationships between two and three amino acids of a

protein embedded into a sphere. At considering, the geometrical center of the

protein matches with center of the sphere, the distance between each amino

acid involved in any specific interaction and the geometrical center of the

protein can be computed. Then, the fuzzy membership degree of each amino

acid from an spherical region of interest is computed by fuzzy membership

functions (FMFs). The truncation value is finally a combination of the

membership degrees from interacting amino acids, by applying the

arithmetic mean as fusion rule. Several fuzzy membership functions with

diverse biases on the calculation of amino acids memberships (e.g.,

Z-shaped (close to the center), PI-shaped (middle region), and A-Gaussian

(far from the center)) were considered as well as traditional truncation functions
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(e.g., Switching). Such truncation functions were comparatively evaluated by

exploring: 1) the frequency of membership degrees, 2) the variability and

orthogonality analyses among them based on the Shannon Entropy’s and

Principal Component’s methods, respectively, and 3) the prediction

performance of alignment-free prediction of protein folding rates and

structural classes. These analyses unraveled the singularity of the proposed

fuzzy spherically truncated MDs with respect to the classical (non-truncated)

ones and respect to the MDs truncated with traditional functions. They also

showed an improved prediction power by attaining an external correlation

coefficient of 95.82% in the folding rate modelling and an accuracy of 100% in

distinguishing structural protein classes. These outcomes are better than the

ones attained by existing approaches, justifying the theoretical contribution of

this report. Thus, the fuzzy spherically truncated-based protein descriptors

from MuLiMs-MCoMPAs (http://tomocomd.com/mulims-mcompas) are

promising alignment-free predictors for modeling protein functions and

properties.

KEYWORDS

3D-protein descriptors, multi-linear algebraic forms, MuLiMs-MCoMPAs, fuzzy
membership functions, fuzzy membership degree, spherical truncation, folding
rate, SCOP structural classes tensor algebra-based fuzzy spherically truncated
descriptors for protein Science

1 Introduction

An accurate treatment of non-bonded interatomic

interactions (or relationships) is a main aspect in molecular

dynamics simulations (Loncharich and Brooks, 1989; Mark

and Nilsson, 2002) and to define molecular descriptors (MDs)

(Todeschini et al., 2009; García-Jacas et al., 2016). Therefore, the

use of functions (or rules) that truncate such interactions at a

determined cutoff distance is a common practice (Sagui and

Darden, 1999; Norberg and Nilsson, 2000; Patra et al., 2003;
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Todeschini et al., 2009). The goal of these rules is to reduce the

amount of interactions, the noise in molecular encodings

(García-Jacas et al., 2016), and consequently, the simulation

time (Sagui and Darden, 1999). A truncation (or cutoff) rule

can be applied both abruptly and smoothly. Additionally,

truncation (or cutoff) rules can be applied both in a whole

range (as a shifting) and in a specific interval (as a switching)

(Saíz-Urra et al., 2005).

The most common truncation approach to define MDs is

the application of abrupt cutoff rules (Giuliani et al., 2009;

Todeschini et al., 2009; Di Paola et al., 2012). In this sense,

topological/geometrical cutoffs are important in the

calculation of contact order-like structural indices for

proteins (Plaxco et al., 1998; Gromiha and Selvaraj, 2001;

Makarov et al., 2002; Ouyang and Liang, 2008). Similarly, in

the calculation of QuBiLS-MIDAS 3D descriptors (García-

Jacas et al., 2020), atom-pair interactions can be truncated

using rules based on topological and/or geometrical distances

(García-Jacas et al., 2016). These atom-pair cutoff rules were

also extended to truncate ternary and quaternary inter-atomic

relationships (García-Jacas et al., 2016) for these QuBiLS-

MIDAS MDs. However, the smoothed cutoff rules have

brought less attention, being one of the first applications

the Markov-Chain-based geometrical descriptors for

proteins (Saíz-Urra et al., 2005; González-Díaz et al., 2005).

These protein descriptors (PDs) truncate amino acid-pair

electrostatic interactions by applying shifting- and

switching-type smoothed functions (Loncharich and

Brooks, 1989), denoted here as “traditional functions” (TFs).

In general, smoothing functions determine a value ranging

between 0 and 1, which acts as a “truncation value” of a

specific interaction. Therefore, if a truncation value tends to 1,

then the analyzed interaction is closer to the lower boundary

(ron) considered, whereas a truncation value with a tendency

to 0, suggests the opposite (roff). Consequently, the truncation

values can be deemed as defined ron-roff intervals

(membership degree). This observation encouraged the

recent development of a smoothing spherical truncation

method based on fuzzy membership functions (FMFs) to

truncate inter-atomic relationships in small- and medium-

sized molecules (García-Jacas et al., 2019). This method

determines a truncation value in the interval [0, 1] by

averaging the fuzzy membership degrees of interacting

atoms, depending on the distance of each atom to the

molecule’s geometrical center. Therefore, the truncation

value weights inter atomic interactions according to the

geometrical location of each atom involved depending on

the chosen FMF. This geometrical location can be near to

molecule’s center or far from it (molecule’s surface).

The utility of the previously-mentioned truncation scheme,

implemented for the calculation of the QuBiLS-MIDAS 3D-

MDs, has been shown through different chemometric studies,

which have improved the modeling ability of extant 3D-MDs for

small- and medium-sized molecules (García-Jacas et al., 2019).

But the relevance of this truncation method has not been

evaluated yet in the structural encoding of macromolecules,

such as proteins.

On the other hand, the necessity of dealing with uncertainty

in real wold problems has been a long-term research challenge

that has originated different methods. Fuzzy Sets Theory,

developed by Zadeh in 1965 (Zadeh, 1965), is a useful and

appropriate approach to deal with imprecise and uncertain

information in ambiguous situations. Fuzzy sets along with

their extensions such as, type-2 fuzzy sets, intuitionistic fuzzy

sets (IFS), intuitionistic fuzzy sets of second type (IFS2),

neutrosophic fuzzy sets (NFS), Pythagorean fuzzy sets (PFS)

as well as spherical fuzzy sets (SFSs, which is an advanced

tool of the fuzzy sets, intuitionistic fuzzy sets and picture

fuzzy sets) have provided a wide range of tools able to deal

with uncertainty in different type of problems (Kutlu Gündoğdu

and Kahraman, 2019; Donyatalab et al., 2020).

Our interest is focused on fuzzy sets theory (Zadeh, 1965),

that allow to manage imprecise and vague information. Such

vagueness is reflected by the membership degree of the objects.

Fuzzy sets theory presents limitations to deal with imprecise and

vague information when different sources of vagueness appear

simultaneously (Donyatalab et al., 2020). Due to this fact and in

order to overcome such limitations, different extensions of fuzzy

sets have been introduced, which allow to simultaneously

consider many types of the (non-)membership degrees. That

is, despite the previous extensions overcome in different ways the

managing of simultaneous sources of vagueness, all the

extensions of ordinary fuzzy sets with three-dimensional

membership functions that aim at defining the judgments of

decision makers/experts with a more detailed description (more

informatively and explicitly) are not necessary/applicable for the

present problem. Here, ordinary fuzzy set (the FMFs considered

were selected from the MATLAB fuzzy logic toolbox) will be use

because we need only one membership grades in the truncation

of interaction of amino acid for the definition of new 3D-PDs.

Geometrical 3D-PDs based on two-linear and three-linear

algebraic forms were recently proposed (termed MuLiMs-

MCoMPAs’ PDs) (Terán et al., 2019; Marrero-Ponce et al.,

2020). To date (Contreras-Torres et al., 2019; Terán et al.,

2019; Marrero-Ponce et al., 2020), these 3D-PDs are the only

ones that use several (dis)similarity metrics and multi-metrics to

codify chemical information from relationships among two and

three amino acids (aas), respectively; as well as different

aggregation operators to obtain global 3D-PDs from amino

acid-level PDs (Terán et al., 2019; Marrero-Ponce et al., 2020).

Thus, the goal of this study is to analyze the feasibility of applying

FMFs in the truncation of inter-amino acid relationships for the

definition of new 3D-PDs. The addition of this operation would

incorporate novel and orthogonal information compared to the

previous 3D-PDs for a variety of current and new applications on

the protein science calculation field.
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2 Mathematical definition of the
traditional (non-truncated)
geometrical multi-linear protein
descriptors

The non-truncated MuLiMs-MCoMPAs 3D-PDs are

computed from a protein’s conformation by codifying

relationships among two (N = 2) and three (N = 3) amino

acids (aas) via (dis)similarity coefficients. This allows the

calculation of N-linear (two- and three-linear) algebraic maps

in RN, on a canonical basis. These algebraic maps are first

computed for each amino acid (aa) in a protein according to

the following mathematical definition (see also SI1-Section 4 in

Contreras-Torres et al. (2019)):

DL
aa,k
(G) � blaa,k(G) (�x, �y) � DZ

aa,k
ij(G)x

iyj (1)
TL

aa,k
(G) � traa,k(G) (�x, �y, �p) � TZ

aa,k
ijl(G)x

iyjpl (2)

where, i, j and l constitute the entries of the Zmatrices and the �p,
�x and �y property vectors. These property vectors are comprised

of the p1,. . .,pn, x1,. . .,xn and y1,. . .,yn coefficients (n is the total

number of amino acids in a protein) whose values can be

calculated from 16 different aa-level properties, including

both physicochemical and folding properties, such as

electronic charge (Collantes and Dunn, 1995), molecular

volume (Zamyatnin, 1972), Hopp-Woods hydropathy scale

(Hopp and Woods, 1981), among others (see also SI1-Section

2 in Contreras-Torres et al. (2019)) for more details). Moreover,

the DZ
aa,k
(G) and TZ

aa,k
(G) terms represent the kth total [or group-

based – (G)] two-tuple (D) and three-tuple (T) spatial (dis)

similarity matrices (tensors) that are calculated for each aa in a

protein, respectively (Terán et al., 2019; Marrero-Ponce et al.,

2020). These aa-level matrices are calculated from the DZ
k
ij(G)

and TZ
k
(G) total matrices as explained elsewhere (Terán et al.,

2019; Marrero-Ponce et al., 2020). The k superscript denotes the

exponent to which the two-tuple and three-tuple total matrices

for the application of the Hadamard product. The values of k

represent different non-covalent interactions, for instance, for

k = −1, k = −2, the matrices reflect Gravitational- and Coulombic-

like interactions, respectively (see SI1-Section 3.2 in Contreras-

Torres et al. (2019)). The DZ
k
(G) and TZ

k
(G) total matrices of order

k (k> 1) are determined from the DZ
1
(G) and TZ

1
(G) total matrices

of order 1, which hold the chemical information codified for the

geometrical relationships between two and three aas, respectively

(Terán et al., 2019; Marrero-Ponce et al., 2020). That chemical

information between aas is calculated via several metrics (e.g.,

Minkowski-type, Tanimoto, etc) for two-tuple tensors [DZ1
(G)],

as well as via several multi-metrics (e.g., Bond Angle, Area, etc)

for three-tuple tensors [TZ1
(G)] (see SI1-Section 3.1 in Contreras-

Torres et al. (2019)).

From the DZ
aa,k
(G) and TZ

aa,k
(G) aa-level matrices, the

corresponding two-tuple (DLaa,k(G) ) and three-tuple (TLaa,k(G) ) aa-
level descriptors (hereafter named as Local Amino acid

Invariants, LAIs) are calculated from Eqs 1, 2, respectively, for

each aa in a protein, and they constitute the entries of the two-

tuple [D�L(G)] and three-tuple [T�L(G)] LAI vectors. From these

LAI vectors, the global kth total (or group-based) two-tuple and

three-tuple MuLiMs-MCoMPAs 3D-PDs can be obtained by

applying different aggregation operators (e.g., geometric mean,

skewness, etc) on the components of D
�L(G) and T

�L(G),
respectively. The concept of aggregation operators is based on

the assumption that the best definition of a system is not

necessarily additive (see SI1-Section 7 in Contreras-Torres

et al. (2019)). Thus, diversity of global kth total (or group-

based) two-linear and three-linear MuLiMs-MCoMPAs PDs

can be obtained from a same LAI vector by using those

mathematical operators. The calculation of the MuLiMs-

MCoMPAs 3D-PDs can be performed through the MuLiMs-

MCoMPAs software, which is freely available at http://

tomocomd.com/mulims-mcompas (Contreras-Torres et al.,

2019).

3 Mathematical definition of the
truncated geometrical multi-linear
protein descriptors based on fuzzy
membership functions

Let A be a fuzzy set on a universe of discourse U (A ⊆ U).
This set is characterized by a fuzzy membership function, μA(a),
which associates to each element (a ∈ A) a real value in the

interval [0, 1]. This real value represents the “membership

degree” of a in A (Zadeh, 1965). If A is a classical set, then

μA(a) is a classic characteristic function [μA(a) � 1A], that is, it
takes a value equal to 1 [μA(a) � 1 (membership)] or equal to

0 [μA(a) � 0 (non-membership)] when a does belong or does not

belong to the A set, respectively (Zadeh, 1965). So, fuzzy

membership functions (FMFs) are generalizations of the

classic characteristic function (Zadeh, 1965), so that μA(a) � 1

indicates full membership, μA(a) � 0 indicates non-

membership, and μA(a) → (0, 1) indicates partial membership

that can be interpreted according to its nearness to 0 or 1.

Therefore, let r be the value of a relationship between aas of a

protein, then the mathematical definition of the fuzzy

membership function-based spherical truncation method

[SfuzzyN (r)] for the MuLiMs-MCoMPAs 3D-PDs is as shown

below:

SfuzzyN (r) � r × F(W) (3)
wpo � μA(dpo) (4)

where, N is the set of interacting aas (i.e., aas involved into an

inter-aa relationship), r is the value calculated for a relationship

between two (r � Dz
1
ij(G) ∀Dz

1
ij(G) ∈ Dz

1
(G) and i, j ∈ N) or

among three (r � Tz
1
ijl(G) ∀Tz

1
ijl(G) ∈ Tz

1
(G) and i, j, l ∈ N) aas;

W is a vector whose coefficients (wpo) represent the fuzzy
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TABLE 1 Description, mathematical and parameters definitions of the fuzzy membership functions (FMFs) considered in this study.

Function Definition Parameters

S-shapeds

μA(x) �

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 x≤ a

2 × (x − a

b − a
)2 a≤x≤

a + b

2

1 − 2 × (x − b

b − a
)2

a + b

2
≤x≤ b

0 x≥ b

x = dio

• Parameter a defines the foot of the function, b defines its shoulder a = don

• It is related to the Z-shaped and PI-shaped FMFs b = doff

Z-shapedc

μA(x) �

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 x≤ a

1 − 2 × (x − a

b − a
)2 a≤x≤

a + b

2

2 × (x − b

b − a
)2

a + b

2
≤x≤ b

0 x≥ b

x = dio

• Parameter a defines the shoulder of the function, b defines its foot a = don

• It is related to the S-shaped and PI-shaped FMFs b = doff

PI-shapedm

μA(x) �

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 x≤ a

2 × (x − a

b − a
)2 a≤x≤

a + b

2

1 − 2 × (x − b

b − a
)2

a + b

2
≤x≤ b

1 b≥x≤ c

1 − 2 × (x − c

d − c
)2 c≤x≤

c + d

2

2 × (x − d

d − c
)2

c + d

2
≤ x≤d

0 x≥d

x = dio

• Parameters a and d define the feet of the function, b and c define its shoulders a = don

• It is a product of a S-shaped function and a Z-shaped FMFs b= (don + doff)×0.45

c= (don + doff)×0.55

d = doff

Triangularm

μA(x) �

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 x≤ a
x − a

b − a
a≤x≤ b

c − x

c − b
b≤x≤ c

0 x≥ c

x = dio

• Parameters a and c define the feet of the function, b define its peak a = don

b= (don + doff) ×0.5

c = doff

Trapezoidalm

μA(x) �

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 x≤ a
x − a

b − a
a≤x≤ b

1 b≤ x≤ c

d − x

d − c
c≤ x≤ d

0 x≥d

x = dio

• Parameters a and d define the feet of the function, b and c define its shoulders a = don

b= (don + doff)×0.45

(Continued on following page)
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membership degree corresponding to the distance (dpo) between
each aa [(p � i, j, l) ∈ N] involved in a relationship and the

geometric center (o) of the protein under study; and F(W) is the
truncation value calculated via a fusion rule F (e.g., minimum,

maximum, and arithmetic mean) on the W vector. As it can be

noted, each coefficient wpo ∈ W is calculated from an FMF,

denoted as μA. It is important to remark that the arithmetic

mean was the fusion (F) rule used in all the studies performed in

this report.

Henceforth, A is a fuzzy set on the universe of discourse U, so

that U is defined on the interval [0, R], where R is the spherical

radius of each protein under study. The spherical radius (R) is

defined as the Euclidean distance between the outermost aa and

the geometrical center of a protein. A � [don, doff]|don ≥ 0,

doff ≤R and don < doff, being don and doff the lower and

upper boundaries, respectively, of the distance-to-center

interval to be considered during truncation. In this way,

μA(dpo) �����→yields [0, 1]|dpo ∈ U is a FMF for the A fuzzy set.

TABLE 1 (Continued) Description, mathematical and parameters definitions of the fuzzy membership functions (FMFs) considered in this study.

Function Definition Parameters

c= (don + doff)×0.55

d = doff

Sigmoid-based μA(x) � 1
1+e−ap(x−c) x = dio

• To open this FMF to the left or right, specify a negative or positive value for a, respectively c= (don + doff) ×0.5

• The magnitude of a defines the width of the transition area, and c defines the center of the transition
area

Descending Sigmoid

• This function can be used in two modes: descendingc and ascendings a = -1

Ascending Sigmoid

a = 1

Gaussian-based μA(x) � e
−(x−c)2
2×a2

Descending
Gaussian

• Parameter a is a measure of the width of the curve, and c defines the center of the curve a=(doff -don) ×0.5

• This function can be employed in three ways: descendingc, centralizedm and ascendings c = don

Centralized
Gaussian

a=(doff -don) ×0.25

c=(don + doff) ×0.5

Ascending Gaussian

a=(doff -don) ×0.5

c = doff

Generalized Bell-based μA(x) � 1
1+|x−ca |2b b = 2

• Parameter a defines the width of the curve, b controls the slope of the curve, and c is the center of the
curve

Descending Bell

• This function can be employed in three modes: descendingc, centralizedm and ascendings a=(doff -don) ×0.5

c = don

Centralized Bell

a=(doff -don) ×0.25

c=(don + doff) ×0.5

Ascending Bell

a=(doff -don) ×0.5

c = doff

Note: The superscripts c,m and s denote that the truncation function assigns more importance to amino acids close to the lower boundary (e.g., the center of the protein), middle region and

upper boundary (e.g., surface of the protein) of the analyzed interval, respectively.
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Because different proteins will have different radiuses (R), then

the don and doff parameters will be calculated from percent

values regarding R, hereafter indicated as ron and roff
(ron < roff). Hence, don � R × (ron /

100) and

doff � R × (roff /

100). The FMFs and the values of their

parameters are described in Table 1. These FMFs were

extracted from the MATLAB fuzzy logic toolbox. Three

traditional functions (denoted here as Shifting1, Shifting2 and

Switching), which were taken from molecular dynamics studies

(Loncharich and Brooks, 1989), were additionally used to

compute membership degrees (see SI1-Section 1).

The FMFs listed on Table 1 allow the truncation of inter-

amino acid interactions according to the proximity of aas with

respect to a lower boundary (don), to an upper boundary (don),
or to a middle region of the interval defined for the A fuzzy set.

Thus, depending on the chosen FMF, the aas within a

relationship will have different membership degrees in the

truncation. Scheme 1 shows the workflow for the calculation

of spherically truncated (dis)similarity matrices by using FMFs.

In addition, Figure 1 shows three sets of color maps illustrating

(Loncharich and Brooks, 1989): the biases of the S-shaped, PI-

shaped and Z-shaped FMFs in the calculation of the

membership degrees for the aas belonging to the 5WRX

(PDB ID) sub-peptide (first five residues) (see Figure 1A);

(Mark and Nilsson, 2002) the effect of the three FMFs

aforementioned in the truncation of a (dis)similarity two-

way matrix, whose coefficients were calculated with the

Euclidean metric (see Figure 1B); and (Todeschini et al.,

2009) the effect of the method proposed in the truncation of

different (dis)similarity two-tuple matrices by considering a

same FMF (see Figure 1C). The A fuzzy set used both in Figure 1

and Scheme 1 is defined on the spherical radius of the 5WRX

peptide: A = [0, 4.056]. The o geometric center of the peptide

(xo, yo, zo) is equal to (3.139, −0.960, 2.148).

On the one hand, it can be noted from Figure 1A and

Scheme 1 that the S-shaped FMF assigns more importance to

aas far from the geometrical center of the 5WRX peptide [e.g.,

μA(dVAL1,O) � μA(4.06) � 1; μA(dTRP5,O) � μA(2.83) � 0.816].

Consequently, it can be noted from Figure 1B that the color

map of the non-truncated matrix (No-ST) is quite like the one

obtained from the S-shaped FMF because, at least for the

interval and peptide considered, the S-shaped FMF generates

membership values with tendency to 1. Thus, this FMF does not

almost have effect in the truncation of the original matrix (No-

SCHEME 1
Tensor entry-level calculation corresponding to the ARG3-TRP5 interaction. The values of the obtained tensor entries (z35, z53) are in bold. The
molecule employed consist of the first five-amino acid fragment of the peptide (PDB ID 5WRX) that is represented by its Cβ-atoms.
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ST). On the other hand, it can also be observed in Figure 1A and

Scheme 1 that the Z-shaped FMF gives more importance to aas

near to the center [e.g., μA(dVAL1,O) � μA(4.06) � 0;

μA(dTRP5,O) � μA(2.83) � 0.184], whereas the PI-shaped FMF

assigns the highest membership values to aas within the middle

region of the interval analyzed [e.g.,

μA(dVAL1,O) � μA(4.06) � 0; μA(dTRP5,O) � μA(2.83) � 0.787].

Thus, the color maps of the matrices truncated with the PI-

shaped and Z-shaped FMFs (see Figure 1B) are rather different

from the color map of the non-truncated matrix. It can also be

noted in Figure 1B, the similarity between the color maps

corresponding to the PI-shaped and Z-shaped FMFs, which

confirms that the aas in the peptide considered are distant from

its geometrical center. Lastly, it can be observed from Figure 1C

the color maps obtained when several metrics are used to

compute the (dis)similarity matrices.

The truncation method explained above is only applied on the

two-tuple (DZ1
(G)) and three-tuple (TZ1

(G)) spatial-(dis) similarity

matrices of order 1, in order to obtain the fuzzy spherically truncated

two-tuple (DST − Z1
(G)) and three-tuple (TST − Z1

(G)) spatial-(dis)

similarity tensors of order 1. Then, on the DST − Z1
(G) and

TST − Z1
(G) matrices, all the theoretical generalizations defined for

the original spatial-(dis) similarity tensors (Terán et al., 2019;

Marrero-Ponce et al., 2020) can also be applied to compute the

kth (k≥ 1) fuzzy spherically truncated two-tuple (DST − Zk
(G)) and

three-tuple (TST − Zk
(G)) spatial-(dis) similarity matrices (see

Schemes 2, 3). In this way, the kth fuzzy spherically truncated

two-tuple (DST − Zaa,k
(G) ) and three-tuple (TST − Zaa,k

(G) ) spatial-

(dis) similarity aa-level matrices can be derived for each aa into a

protein, with the purpose of calculating the kth fuzzy spherically

truncated two-linear (DST − Laa,k(G) ) and three-linear (TST − Laa,k(G) )
aa-levelMuLiMs-MCoMPAs PDs in a similar way to Eqs 1, 2. Each

aa-levelMuLiMs-MCoMPAs 3D-PD is an entry in the corresponding

LAI vector, on which one or several aggregation operators can be

applied to compute the kth global fuzzy spherically truncated two-

linear (or three-linear) MuLiMs-MCoMPAs 3D-PDs. These fuzzy

spherically truncated 3D-PDs for proteins will encode biochemical

information corresponding to geometrical relationships among aas in

a protein, by considering the closeness of aas either to the geometrical

center, or to a middle region, or to the surface of a protein.

FIGURE 1
Color maps derived from the application of the S-shaped, PI-shaped and Z-shaped FMFs in the construction of two-tuple (5 × 5) spatial (dis)
similarity tensors of order 1 to encode first five residues of the peptide (PDB ID 5WRX). The entries for the outermost (VAL1) and the innermost (TRP5)
amino acids with respect to the geometrical center are bordered. All the FMFs consider an interval [0, R] = [0, 4.056], where R is the radius of the
peptide. (A) Color maps of the truncation values derived from the application of the S-shaped, PI-shaped and Z-shaped FMFs in the
construction of two-tuple spatial (dis)similarity tensors. (B) Color maps based on the coefficients of the mutual probability (MP) two-tuple non-
truncated tensors (upper color maps), as well as MP two-tuple tensors truncated with different FMFs (the below ones). The tensors corresponding to
Figures (A,B) were computed from the Euclidean metric; (C) Color maps based on the coefficients of the MP two-tuple tensors built from different
(dis)similarity metrics and truncated with the PI-shaped FMF.
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4 Exploratory analysis

4.1 Spherical radius-based amino acid
distribution analysis

This section analyzes the aas’ distribution considering their

distances respect to the protein’s geometrical center. The

evaluated set considered 152 heterogeneous and representative

proteins, which contain between 50 and 753 aas (Fleming and

Richards, 2000). These proteins were represented by using the

four spatial protein representation available in the MuLiMs-

MCoMPAs software: alpha (CA), beta (CB), amide-bond (AB)

carbon atoms, and average of the spatial coordinates of all the

heavy atoms (AVG). For each studied protein, 10 intervals

(bins) were defined, where each interval represents a 10% of

the length of the spherical radius of the proteins considered,

being 0 the geometric center. The intervals were defined as

follows [0,10), [10,20), [20,30), [30,40), [40,50), [50,60),

[60,70), [70,80), [80,90) and [90,100].

Figure 2 shows the aas’ frequency distributions that fall into

the 10 intervals analyzed for each representation. Notably, the

four spatial representations’ frequency distributions are very

similar, suggesting that these frequency distribution remains

invariant regardless of the representation employed. The

maximum frequencies are placed between 30% and 80% of

the R values, pointing out that the majority of aas belongs to

the middle region of the “artificial” sphere where each protein is

embedded. The second largest amount of aas was located

between 80% and 100% of the R values (surface region of the

sphere), whereas the remaining aas are near to the geometric

center. These results are in correspondence with the ones

obtained elsewhere (García-Jacas et al., 2019).

Since every aa was assigned a “membership degree”

according to the proximity to a protein’s “spherical region” of

interest, we can justify the use of FMFs to truncate inter amino

acid relationships as a tool to extract information from the

protein’s spatial arrangement.

4.2 Exploratory analysis of the truncation
functions based on descriptive statistics
and cluster analysis

An exploratory analysis of the traditional functions and FMFs

chosen in this study is performed using the previous dataset

(152 proteins) (Fleming and Richards, 2000). The proteins were

represented only using the CB representation. For every aa that

belonged to each of the 152 proteins, 16 “membership degrees”

SCHEME 2
Workflow followed in the calculation of different fuzzy spherically truncated two-tuple non-stochastic tensors and their corresponding two-
linear (quadratic) PDs by using the for the five-amino acid fragment of the peptide 5WRX. (1) The global two-tuple (dis) similarity tensor (DZ) is
computed from the Euclideanmetric. (2) The classical quadratic PD is computed from DZ by using the electronic charge (ECI) as a weighting scheme.
(3,4 and 5) Fuzzy spherically truncated two-tuple tensors (ST-DZ) obtained from DZ by using the S-shaped, PI-shaped and Z-shaped FMFs,
respectively. (6,7 and 8) The fuzzy spherically truncated quadratic PDs are calculated from ST-DZ.
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(one per truncation function) were computed using the interval [0,

R] as the fuzzy set A. The computed membership values were

arranged into a matrix of 34,584 rows (total number of aas

analyzed) and 16 columns (fuzzy and traditional functions).

For the membership values obtained from each truncation

function, the minimum (Min), maximum (Max), arithmetic

mean (Ave), and standard deviation (Std) statistical parameters

were calculated. These statistics are listed in Table 2.

The first observation relates to the Switching traditional

function, which is a notable outlier, since it yields low values

compared to the other functions (Max = 0.007). Another

outcome shown in Table 2 suggests that the PI-shaped,

C-Gaussian, C-Bell, and Trapezoidal FMFs yield high

membership values since they present arithmetic mean values

greater than 0.7. This behavior relates to the type of FMFs

associated to these functions. These FMFs tend to assign the

highest membership degrees to aas in the middle region, which

mostly approximates to a spherical region. The D-Sigmoid and

A-Sigmoid FMFs present the most scattered membership values

(both with standard deviation greater than 0.40), whereas the

A-Gaussian, Shifting2, and Switching functions have the least

scattered membership values (standard deviation less than 0.2).

Moreover, diversity relationships between the fuzzy and

traditional functions were explored using hierarchical

clustering with the Ward agglomeration method (Jain and

Dubes, 1988; Rivera-Borroto et al., 2011). To perform this

analysis, a 16 × 16 matrix was built, where each matrix-entry

is the Euclidean distance between the membership degrees

corresponding to each pair of truncation functions (see SI1-

Table 1). The dendrogram obtained is shown in Figure 3, where

at a cutoff distance equal to 100 (20% of the linkage distance),

four clusters can be identified. These clusters explain the

grouping of the 16 truncation functions according to their

biases in the calculation of membership degrees. Considering

the first two clusters (from top-to-down), they represent

functions with a tendency to assign the largest membership

degrees to aas close to the geometrical center (e.g., Z-shaped,

Shifting2). The third cluster represents functions with bias

toward the amino acids placed far from the geometrical center

(e.g., S-shaped, A-Gaussian, A-Sigmoid, and so on), while the

SCHEME 3
Illustration calculation of different group-based fuzzy spherically truncated two-tuple non-stochastic tensors and their corresponding
descriptors by using the for the five-amino acid fragment of the peptide 5WRX. (1) The group-based (dis)similarity two-tuple tensor (DZG) is
computed with the Euclidean distance and the beta-sheet favoring (FBS) group. (2) The classical group-based two-linear (quadratic) PDs is
determined from DZG and the property electronic charge (ECI). (3, 4 and 5) Spherically truncated group-based two-tuple tensors (ST- DZG)
obtained from ZG by applying the S-Shaped, PI-Shaped and Z-Shaped FMFs, respectively. (3a, 4a and 5a) Spherically truncated quadratic PDs
obtained from ST- DZG. (6, 7 and 8) Group-based spherically-truncated at topological lag [p] = [2] (LG[p]-ST-ZG) two-order tensors computed from
the ST-DZG tensors. (9, 10 and 11) Spherically-truncated quadratic PDs at topological lag [p] = [2] obtained from LG[p]-ST- DZG.
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fourth cluster represents functions with the propensity to give

more importance to aas in the middle region (e.g., PI-shaped,

Triangular, C-Gaussian and so on). These results evidence that

the studied traditional and fuzzy functions are diverse, and

therefore they should provide orthogonal chemical

information regarding the one codified by other reported

3D-PDs.

5 Variability and linear independence
analyses of the fuzzy spherically
truncated mulims-mcompas
descriptors

The sensitivity of an PD to structural or conformational

changes, also known as variability, is one of their desirable

features when calculating them (Randić, 1995). This variability

has been evaluated through the Shannon’s entropy (SE)

calculation. According to this theory, a high-entropy PDs

provide higher variability and therefore these PDs are relevant

for modeling studies.

Another desirable feature for a novel PDs refers to

orthogonality with respect to other PDs (Randić, 1995). A

mean to measure this relies on the Principal Components

Analysis (PCA) technique (Bro and Smilde, 2014; Lever et al.,

2017). PCA is probably the most popular multivariate statistical

technique, and it is used by almost all scientific disciplines. PCA

is an unsupervised learning approach and is like clustering (it

FIGURE 2
Frequency distributions of the number of amino acids that fall into the 10 intervals defined on the spherical radius for the 152 heterogeneous
proteins. The proteins were represented according to the coordinates of: alfa (CA), beta (CB), amide-bond (AB) carbon atoms, as well as the average
of the spatial coordinates all heavy atoms (AVG).

TABLE 2 Descriptive statistics for the “membership values” derived
from the 16 truncation functions for the dataset of 152 non-
homologous proteins.

Truncation function Min Max Am Std

Shifting1 0 0.999 0.473 0.251

Shifting2 0 0.954 0.231 0.172

Switching 0 0.007 0.001 0.0007

S-shaped 0.001 1 0.581 0.267

Z-shaped 0 0.999 0.419 0.267

PI-shaped 0 1 0.788 0.275

Triangular 0 1 0.682 0.226

Trapezoidal 0 1 0.746 0.239

D-Sigmoid 0 1 0.388 0.423

A-Sigmoid 0 1 0.612 0.423

D-Gaussian 0.135 0.999 0.543 0.202

C-Gaussian 0.135 1 0.781 0.219

A-Gaussian 0.148 1 0.665 0.198

D-Bell 0.059 1 0.447 0.269

C-Bell 0.059 1 0.763 0.287

A-Bell 0.064 1 0.609 0.278
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FIGURE 4
Shannon Entropy distributions corresponding to the 64 classical 2-linear 3D-PDs (denoted as No-ST), the 640 2-linear 3D-MDs truncated
Shifiting1 and Shifting2 (traditional functions, TFs), the 960 3D-MDs truncated with the Switching (traditional function, TFs) and the 960 3D-PDs
based on each fuzzy membership functions (FMFs).

FIGURE 3
Hierarchical cluster analysis of the 16 truncation functions using Ward’s method.
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finds patterns). This method analyzes a data table representing

observations described by several dependent variables (here

PDs), which are, in general, inter-correlated. The PCA goal is

to extract the important information from the data and to express

this information as a set of summary indices called principal

components. That is, this analysis transforms the original

variables in orthogonal variables (principal components) from

each other (Somorjai and John, 2010). The main applications of

factor analysis techniques are: 1) to reduce the number of

variables, and 2) to detect structure in the relationships

between variables, that is to classify variables. Thus, these

factors capture most of the “essence” of these PDs because

they are a linear combination of the original items. Because

each consecutive factor is defined to maximize the variability that

is not captured by the preceding factor, consecutive factors are

independent of each other. Put another way, consecutive factors

are uncorrelated or orthogonal to each other. The first factor

obtained is generally more highly correlated with the variables

than the other factors. This is to be expected because these factors

are extracted successively and will account for less and less

variance overall. Finally, some of the most important

conclusions that can be drawn from a factor analysis that will

be of great usefulness in the present report are the following: 1)

variables with a high loading in the same factor are interrelated

and will be the more so the higher the loadings, and 2) no

correlation exists between variables having nonzero loadings

only in different factors (Bro and Smilde, 2014; Lever et al.,

2017). These are the principal ideas that permit interpreting the

factor structure obtained using the factor analysis as a

classification method. Specifically, after mean-centering and

scaling to unit variance, the data set is ready for computation

of the first principal component (PC1). The correlation between a

component and a variable (here PDs) estimates the information

they share. In the PCA framework, this correlation is called a

loading. The variables (PDs) can be plotted as points in the

component space using their loadings as coordinates. This

representation differs from the plot of the observations: The

observations are represented by their projections, but the

variables are represented by their correlations. Variables with

high loading values for a principal component means a high

contribution to this component and vice versa, so, variables with

low PC loadings are less important for this component. Some

variables have a positive sign (a positive important contributions

to this component), and other depict negative loading, show a

negative important contribution to the same component. The

sign only indicates that variable has a negative correlation to that

FIGURE 5
Shannon Entropy distributions corresponding to the 64 top-ranked classical 2-linear 3D-PDs (denoted as No-ST), the 64 top-ranked 2-linear
3D-MDs truncated with traditional functions (Traditional-ST), and the 64 top-ranked 2-linear 3D-MDs truncated with fuzzy membership functions
(Fuzzy-ST), respectively.
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component. Really, what matters is the magnitude of the value,

and the larger it is, the greater the contribution to that

component. Variables contributing similar information are

grouped together, for instance, with high loading (high

correlation) to same component. When they are positively

correlated with principal component (when the numerical

value of one variable increase or decreases, the numerical

value of the other variable tends to change in the same way).

When variables are negatively (“inversely”) correlated with same

principal factor, meaning that when these variable increases, the

other with positive loading decreases, and vice versa. In

conclusion, the modulus loading value of each variable it is

the rally important because it indicates the strength of relation

of variable with component (principal component loadings is the

correlation of a component and a variable, and geometrically

express the orientation of the model plane in the K-dimensional

variable space (Bro and Smilde, 2014; Lever et al., 2017).

The factor analysis was performed with the STATISTICA

software, and “varimax normalized” was used as a rotational

strategy to obtain the factor loadings from the PCA. The goal of

this rotational procedure is to obtain a clear pattern of loadings,

that is, factors that are somehow clearly marked by high loadings

for some variables and low loadings for others. The “varimax

normalized” is the method that is most commonly used as

“varimax” rotation. This rotation strategy is aimed at

maximizing the variances of the squared normalized factor

loadings (row factor loadings divided by squared roots of the

respective communalities) across variable for each factor. This

strategy makes the structure of factors pattern as simple as

possible, permitting a clearer interpretation of the factors

without loss of orthogonality between them.

Consequently, this section aims to evaluate the variability

and orthogonality of the fuzzy spherically truncated MuLiMs-

MCoMPAs PDs using the previously presented set of

152 proteins (Fleming and Richards, 2000). These evaluations

were performed using the IMMAN (Urias et al., 2015) and

STATISTICA software (v8.0), respectively.

5.1 Shannon Entropy-based variability of
the two-linear MuLiMs-MCoMPAs 3D-
MDs based on fuzzy membership
functions

The SE-based variability analysis was performed by

creating a project comprised of 64 traditional two-linear

MuLiMs-MCoMPAs 3D-PDs (See Reference 20 for more

details about projects). From this starting project,

16 additional projects (one per truncation function) were

created to compute the corresponding truncated MuLiMs-

MCoMPAs PDs. Each out of 16 projects corresponds to the

use of a single traditional function (TF) or a FMF. For each

traditional function or FMF, various intervals (ron-roff) were

examined. For the Shifting1 and Shifting2 functions

10 intervals were analyzed (see SI2_A), whereas for the

Switching function and FMFs 15 intervals were evaluated.

The 3D-PDs defined in these projects were computed using

the MuLiMs-MCoMPAs software (Contreras-Torres et al.,

2019). The truncated 3D-PDs calculated with the same

function (different intervals) were merged into a single

dataset. Then, the merged 16 datasets were analyzed

performing a SE-based variability study through the

IMMAN software (see SI2_B) (Urias et al., 2015). The SE

values computation considered that the number of proteins

in the analyzed dataset (152) was used as binning scheme.

So, the maximum SE for each PD is equal to log2(152) =

7.24 bits.

Figure 4 shows the SE distributions corresponding to the

64 non-truncated 3D-PDs, the 640 3D-PDs truncated with the

Shifting1 and Shifting2 TFs, the 960 3D-PDs truncated with the

Switching TF, and the 960 3D-PDs computed with each FMF (see

SI2_B). It can be observed that the best SE distributions

correspond to the PDs truncated with the D-Sigmoid,

Z-Shaped, Switching, D-Gaussian and D-Bell functions. These

obtained PDs yielded SE values greater than 79% of the

maximum SE. Note that the truncation functions mentioned

above tend to compute the highest membership values for the aas

near to the geometrical center of the protein.

Intermediate SE distributions are obtained by the 3D-PDs

based on the C-Gaussian, Trapezoidal, C-Bell, PI-shaped,

Triangular, Shifting2 and Shifting1 functions, which yielded

average SE values between 77% and 79% of the maximum SE.

This set of functions, excepting for the Shifting2 and

Shifting1 functions, tend to assign the highest weights to aas

located in middle regions. The lowest performances are attained

by the 3D-MDs based on the A-Gaussian, A-Bell, A-Sigmoidal

and S-shaped FMFs, considering their average SE values lower

than 77% of the maximum SE. It is remarkedly that these

truncation functions tend to assign more importance to

distanced aas from the geometrical center. These outcomes

confirm that the application of FMFs to truncate inter-amino

acid relationships while encoding 3D-PDs can enrich their

information content, evidencing the feasibility of the

truncation approach.

The previous assertion is also demonstrated in Figure 5.

This figure shows the SE distribution of the 64 non-truncated

3D-PDs (termed No-ST), and of their truncated counterparts

(64 best-ranked PDs truncated with the TFs (termed

Traditional-ST)) and FMFs (termed Fuzzy-ST), respectively

(see also SI2_B). It can be observed that the 3D-PDs truncated

with FMFs display the best SE distribution since all their

respective values are beyond 6.17 bits, 85.22% of the

maximum SE. These SE values are higher than the ones

obtained by the non-truncated 3D-PDs and 3D-PDs

truncated with the TFs. In summary, it can be stated that

all the sets of truncated 3D-MDs contain high variability,
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suggesting that the truncation-based calculations encode

relevant information, mainly by using FMFs.

5.2 Linear independence of the two-linear
MuLiMs-MCoMPAs 3D-MDs based on
fuzzy membership functions

This section assesses linear independence between the non-

truncated and truncated 3D-PDs. To this end, the 20 best-ranked

non-truncated and truncated PDs, according to their SE values, were

extracted from each TF and FMF files; and then they were merged

into a single dataset. The resulting dataset contains 340 PDs, which

were used as input for the PCAmethod (see SI-3.1). By applying the

PCA method, 15 principal components that collectively explain

87.90% of the cumulative variance were obtained (see SI-3.2). Those

PDs strongly loaded (Loading value≥ 0.7) in a same component are

linearly dependent, whereas PDs strongly loaded in different

components are linearly independent. The inspection of these

components reveals that the truncated 3D-PDs are exclusively

loaded in 11 principal components (i.e., PC1, PC2, PC4-PC8,

PC10-PC13; 74.14% of the cumulative variance), indicating that

FIGURE 6
External correlation coefficient attained, on the folding rate set, by the reference model developed with classical 3D-PDs (indicated as No-ST),
by the best model developed from each set of truncated 3D-PDs combined with the classical 3D-PDs (Q2

ext
) and by the best model based only on truncated 3D-

MDs (Q2
ext

-ST). Each set of truncated 3D-PDs employs a traditional function or a fuzzy membership function. All the models were built using the MLR technique.

TABLE 3 Statistical parameters of the best models built in this study for the prediction of protein folding rates from truncated and classical MuLiMs-
MCoMPAs 2-linear PDs.

Model ID Number
of MDs
(based
on FMFs-TFs)

R2 Q2
loo Q2

boot SDEP Q2
ext a(Q2) SDEPext Q2

extw/o SDEPext w/o

M1 4(1–0) 77.94 74.78 74.25 2.16 85.27 −0.126 1.147 — —

M2 4(1–1) 79.02 76.02 75.52 2.11 83.99 −0.128 1.195 — —

M3 4(1–1) 78.04 74.89 74.07 2.16 86.45 −0.145 1.1 — —

M4 4(1–1) 77.26 74.57 73.78 2.17 83.80 −0.131 1.2 — —

M5 4(3–1) 80.21 77.28 76.59 2.06 75.05 −0.119 1.49 95.82 0.61
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the new truncation method contributes to codifying linearly

independent information with respect to non-truncated 3D-PDs.

Out of 11 PCs corresponding to the truncated 3D-PDs, three

are exclusively populated of the 3D-PDs truncated with FMFs,

which support the novelty of the proposed truncation approach

presented in this study. In PC5, the 3D-PDs truncated with the

C-Bell, C-Gaussian, PI-shaped, Trapezoidal and Triangular

FMFs are loaded while PC12 contains 3D-PDs truncated with

the A-Bell, A-Gaussian, C-Bell, C-Gaussian, D-Bell, D-Gaussian,

D-Sigmoid, PI-shaped, Trapezoidal and Triangular FMFs; and

PC13 presents loadings for the 3D-PDs truncated with the

A-Gaussian, A-Sigmoid and S-shaped FMFs. Focusing the

attention on PC5, the truncated 3D-PDs strongly loaded on it,

are those giving more importance to aas belonging to the middle

region (e.g., PI-shaped), whereas the PDs truncated with FMFs

assigning high weights to aas far from the geometric center

(e.g., S-shaped) are loaded in PC13. These findings evidence

that the FMFs are suitable smoothing functions to truncate

inter-amino acid relationships, at allowing to codify

orthogonal structural information regarding the one

encoded by the TFs (see SI-3.2).

The PCA method also revealed redundancy in the

information encoded by some of 3D-PDs truncated with

FMFs and TFs. This redundancy can be because some FMFs

give more importance to aas closer to the geometric center of the

protein (e.g., Z-shaped) in a similar way to the TFs. For instance,

PC2 presents 3D-PDs truncated with the D-Bell, D-Gaussian,

D-Sigmoid, Z-shaped, Shifting1 and Shifting2 functions.

This suggests that any of the previous functions can be

applied without distinction. Moreover, PC10 is exclusive for

3D-PDs based on the Switching TF, whereas that PC3 and

PC9 hold loadings of non-truncated and truncated 3D-MDs;

the last ones mainly based on functions that assign more weight

to aas far from the geometrical center (e.g., S-shaped). From this

analysis, models with better predictive ability can be expected

from 3D-PDs truncated with TFs and/or FMFs biased to the

center (and middle region) of the protein.

6 Application of the spherically
truncated MuLiMs-MCoMPAs
descriptors to the prediction of
protein folding rate and SCOP
structural classes

6.1 Biochemical datasets

Protein folding is the one of most relevant problems in

molecular biology and modern biophysics. It emerged more

than 5 decades ago when Anfinsen showed that proteins

spontaneously reach their native structures in vitro (Anfinsen,

1973). With the advent of computers, the prediction of the

FIGURE 7
External accuracy attained, by the reference model developed only from classical 3D-PDs (indicated as No-ST), the best model built from each
set of truncated 3D-PDs along with the classical 3D-PDs for the prediction of SCOP structural classes (ACCext), as well as the one attained by the best
models developed only from truncated 3D-PDs (ACCext-ST). Each set of truncated 3D-PDs employs a traditional function or a fuzzy membership
function. All the models were developed with the SVM technique.
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proteins’ folding rate became something attainable (Plaxco et al.,

1998; Makarov et al., 2002; Gromiha, 2003; Ruiz-Blanco et al.,

2015). There are several proteins sets available for testing the

predicting ability of new descriptors (Ouyang and Liang, 2008;

Ruiz-Blanco et al., 2015). In this study for the regression section,

we chose a training set comprised of 80 proteins (PDB ID 2BLM

was omitted due to low resolution, only contains the trace of

alpha carbon atoms), while the test set is comprised of

16 proteins.

When considering protein related classification problems,

the knowledge of protein structural classes plays a significant role

in understanding protein folding process and function (Chou,

2005). In this study, we chose a well know protein structural

discrimination set which includes 204 cases that are grouped

according to the major SCOP classes (52 all-α, 61 all-β, 45 α/β
and 46 α+β). This set was divided into training and test sets, (see

Section 3.1 in Marrero-Ponce et al. (2020)). The training set

contains 149 proteins (38 all-α, 48 all-β, 29 α/β and 34 α+β),
whereas the test set collects 55 proteins (14 all-α, 13 all-β, 16 α/β
and 12 α+β). It is important to indicate that these datasets (both

folding rate and SCOP structural) were previously used to assess

the No-ST (traditional) MuLiMs-MCoMPAs PDs (Terán et al.,

2019; Marrero-Ponce et al., 2020), so comparability of results is

guaranteed.

6.2 Truncation functions to enhance the
predictive ability of traditional 3D-MDs in
the protein folding rate modeling

The truncation method proposed was applied on the two-

linear traditional 3D-PDs included in a previously developed

model to predict protein folding rate (see Eq. 13 and Table 3 in

Marrero-Ponce et al. (2020)). This model, hereafter reference

model, was built with four two-linear traditional 3D-PDs by

using the Multiple Linear Regression (MLR) method. From these

four traditional 3D-PDs, their corresponding truncated versions

based on FMFs and TFs were computed, to build the predictive

models The 3D-PDs truncated with each smoothing function

were merged with the non-truncated 3D-PDs into a single

dataset. So, 16 datasets of 3D-PDs (one per smoothing

function) were obtained, containing a total of 44 types of 3D-

PDs (4 traditional 3D-PDs and 40 truncated PDs). These

descriptor datasets were employed as input to develop the

MLR models to predict folding rate. MLR models based only

on truncated 3D-PDs were also built. The MLR models were

developed using the Genetic Algorithm (GA) – MLR wrapper

through the MobyDigs software (Todeschini et al., 2003).

The GA was set up with the default parameters. The allowed

variables were limited up to four to ensure comparability with the

reference model. The built model yielded external correlation

coefficients Q2ext = 72.77% and Q2extw/o = 87.5% at including

and removing outliers, respectively. This comparison took as

reference the correlation value attained by the previously

reported model (No-ST) without omitting outliers (Q2ext =

72.77%), otherwise it will be explicitly indicated.

Figure 6 shows the external correlation coefficients of the best

models developed using the non-truncated (traditional) and

truncated 3D-PDs (Q2ext) for each respective function, as

well as the ones obtained by the best models built up only

from truncated 3D-PDs (Q2ext-ST). The models that include

mixtures of non-truncated and truncated 3D-MDs yielded Q2ext

values between 73% and 86%. All these values are higher than the

one obtained by the reference model (indicated as No-ST). In

particular, the best results correspond to the Z-shaped (Q2ext =

85.27%), Switching (Q2ext = 83.07%), D-Sigmoid (Q2ext =

82.5%), Shifting2 (Q2ext = 82.37), PI-shaped (Q2ext = 80.4%),

Shifting1 (Q2ext = 80.04%), A-Gaussian (Q2ext = 79.46),

A-Sigmoid (Q2ext = 77.16) and S-shaped (Q2ext = 77.01%)

functions, yielding improvements of 12.5%, 10.3%, 9.7%, 9.6%,

7.6%, 7.27%, 6.69%, 4.39% and 4.24% with regard to the

performance obtained by the reference model, respectively.

Among the functions mentioned above, there are FMFs biased

to the center (e.g., Z-shaped), middle region (e.g., PI-shaped) and

surface (e.g., A-Gaussian) of the protein, supporting its

application to the truncation of inter-amino acid interactions.

Regarding the models uniquely built with the truncated 3D-

PDs, the best results correspond to the S-shaped (Q2ext-ST =

80.94%), A-Sigmoidal (Q2ext-ST = 78.68%), Z-shaped (Q2ext-

ST = 76.68%) and D-Sigmoid (Q2ext-ST = 75.13%) FMFs. These

models outperform the reference model. It should also be pointed

out that the result attained by the model based on the S-shaped

FMF is even better than its analog built by mixing the non-

truncated and truncated 3D-PDs. The models created with the

remaining FMFs showed poor performance.

In general, the best models including 3D-PDs truncated with

FMFs except the A-Gaussian type, provided acceptable

predictions when non-truncated 3D-PDs were excluded. By

contrast, the models based on the 3D-PDs truncated with TFs

(i.e., Shifting1, Shifting2 and Switching) were highly sensitive

when the non-truncated 3D-MDs were omitted, yielding poor

correlations (30.18%, 26.89% and 14.61%).

So far, it has been demonstrated that the use of truncated

3D-PDs increases the predictive power of the reference model

for folding rate prediction. It was demonstrated that the

combination of non-truncated 3D-PDs and their

corresponding truncated versions with either one of the FMF

or TF classes yield better correlations than the exclusive use of

non-truncated 3D-PDs. However, further improvements in

protein rate folding modeling could be achieved by

combining 3D-PDs truncated from different FMFs or TFs?

In this sense, both non-truncated 3D-PDs and truncated 3D-

PDs corresponding to the best smoothing functions

(i.e., Shifting1, Shifting2, Switching, Z-shaped, D-Sigmoid,

A-Sigmoid, PI-shaped and A-Gaussian) were merged into a

single set. Then, MLR “hybrid models” were built by employing
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the same GA configuration. The statistical parameters of the

best “hybrid models” and their corresponding MLR equations

are listed in Table 3 (ID: M2, M3 andM4) and SI-4, respectively.

These models displayed external correlations beyond 83%,

surpassing the one obtained by the reference model. Notably,

the highest external correlation attained (Q2ext = 86.45%, see

Table 3, ID: M2), not only overcome the one attained by the

models including a single truncation function class, but also it is

comparable to the one attained by the reference model after

outlier exclusion (Q2extw/o = 87.5%). This outcome indicates

that higher robustness and predictive abilities can be achieved

when PDs truncated with diverse smoothing functions are

included in the model. In detail, the smoothing function-

pairs used in the “hybrid models” are Switching/D-Sigmoid,

Switching/Z-shaped and Shifting2/PI-shaped, being the

Switching/Z-shaped the one that allowed the best

performance. These findings suggest that the combinations

of different 3D-PD classes (non-truncated and truncated by

different functions) can enhance 3D protein structure

characterization and consequently structure/function

prediction models.

6.3 Truncation method to enhance the
accuracy of structural class prediction

This section analyzes the effect of the smoothing functions

on the predictive ability of the truncated two-linear MuLiMs-

MCoMPAs 3D-PDs in the modeling of SCOP structural classes.

To this purpose, QSAR models including 3D-PDs truncated

with FMFs and TFs were developed. In detail, the effect of the

truncated 3D-PDs on the prediction ability of a reported model

for this application (see Table 6 in Marrero-Ponce et al. (2020))

was evaluated. Likewise, to the previous section, the non-

truncated 3D-PDs belonging to the previously reported

model, hereafter reference model, were used as starting point

to compute the corresponding non-truncated versions. In

particular, the reference model for the SCOP structural

discrimination was determined from the Support Vector

Machine (SVM) technique using five non-truncated

(traditional) 3D-PDs. This model showed an external

accuracy (i.e., the percentage of correct classifications on the

test set) equal to 98.2% (Marrero-Ponce et al., 2020).

Similarly, to the regression models, the classification

models were trained (see previous Section) from 16 sets of

3D-PDs corresponding to each truncation function but also

contained the traditional non-truncated versions. In

summary, 55 3D-PDs (5 non-truncated 3D-PDs and

50 truncated 3D-PDs) conformed each one of the 16 sets.

To perform the comparison, models only considering

truncated 3D-PDs were built. For each set of 3D-PDs, the

Greedy Stepwise search method was coupled with the SVM

learner to retain relevant 3D-PDs for the SCOP structural

discrimination. This wrapper is implemented in the WEKA

software (version 3.8.2) (Witten and Frank, 2005). All the

models created were assessed by their accuracies on the test set

(Baldi et al., 2000).

Figure 7 shows the external accuracy obtained by the

reference model (indicated as No-ST), the accuracies

achieved by the models built with non-truncated and

truncated 3D-PDs (ACCext), as well as the ones yielded by

the models only built with only truncated 3D-PDs (ACCext-

ST). It is important to mention that the described wrapper did

not retain any non-truncated 3D-PD in the models

TABLE 4 Performances of several existing models versus the presented approach, in the prediction of protein folding rates.

Descriptors Descriptor dimension Q2 (%)
(training)

SDEP (training) Q2 (%)
(test)

SDEP (test)

Previous Studies

Folding degree (Ruiz-Blanco et al., 2015) 3D 73.96 2.20 54.76 2.03

Long Range Order (Gromiha and Selvaraj, 2001) 3D 72.25 2.28 — —

Contact order (Plaxco et al., 1998) 3D 73.96 2.19 — —

Total Contact Distance (Zhou et al., 2002) 3D 73.96 2.21 — —

FoldRate web server (Chou and Shen, 2009) 1D 77.44 2.03 — —

Generalized two-linear PDs (Marrero-Ponce et al., 2020) 3D 75.30 2.15 87.50 2.05

Generalized three-linear PDs (Terán et al., 2019) 3D 74.80 2.17 85.75 2.78

This study

Two-linear MDs truncated with FMFs and TFs (M5) 3D 77.28 2.06 95.82 0.61
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corresponding to the Switching, Z-shaped, Trapezoidal,

D-Gaussian, D-Bell, C-Bell and A-Bell functions. The best

results (ACCext) correspond to the models that include 3D-

PDs truncated with the Shifting1, Shifting2, Z-shaped,

D-Sigmoid, D-Gaussian, C-Gaussian, A-Gaussian and

D-Bell functions, because they attained the maximum

accuracy (ACCext = 100%), surpassing the one attained by

the reference model. Notably, five out of these six models

built with 3D-PDs based on FMFs employ a lower number of

3D-PDs than the used ones by the reference model. Such

model complexity reduction by using truncated 3D-PDs

based on FMFs suggests that they encode relevant

information. However, the models trained with 3D-PDs

truncated with TFs were supported with more 3D-PDs

than the reference model. Among the best truncation

functions mentioned above, the A-Gaussian and

C-Gaussian FMFs tend to assign the largest membership

values to aas far from the center and in the middle region

of the protein, respectively. These findings reinforce the

utility of these functions in the truncation of inter-amino

acid interactions.

Moreover, the best performance of the models only built with

truncated 3D-PDs (ACCext-ST = 100%) was achieved using 3D-

PDs based on the Shifting1, Z-shaped, PI-shaped, D-Sigmoid,

D-Gaussian, C-Gaussian, A-Gaussian, C-Bell and D-Bell

functions. The other models based showed stable accuracies.

In general, the best models including 3D-PDs truncated with

FMFs show robust predictions, even considering the non-

truncated 3D-PDs.

Additionally, non-truncated 3D-PDs and the truncated

derived from the best smoothing functions (i.e., Shifting1,

Shifting2, Z-shaped, PI-shaped, D-Sigmoid, D-Gaussian,

C-Gaussian, A-Gaussian, D-Bell and C-Bell) were combined

into a single dataset, in order to build new models but now

considering different types of truncated 3D-PDs. The best model

developed carried four 3D-PDs, that showed good performances

in both 10-fold cross-validation (ACC10cv = 99.3%) and test

dataset (ACCext = 100%) (see ID: M10, Table 5). The

corresponding training/test MCC values were higher than

0.99, suggesting absence of casual correlations. This

performance is better than the one achieved by the reference

model, as well as the one achieved by each model based on PDs

TABLE 5 Best models built up for the structural discrimination of 204 proteins using truncated and classical MuLiMs-MCoMPAs 2-linear PDs.

Model ID Method Number of
MDs (based
on FMFs-TFs)

ACC (%)
training (149)*

MCC training ACC (%)
test (55)

MCC test

M10 SVM 4(2–1) 99.33 0.99 100 1

M11 SVM 6(5–1) 99.33 0.99 100 1

M12 LDA 3(2–1) 99.33 0.99 100 1

*Results obtained from a 10-fold cross-validation test.

TABLE 6 Comparison of existing SCOP structural predictors versus this approach.

Protein Descriptors Accuracy (%) Training Accuracy (%) Test

Previous Studies

AA composition (Cai et al., 2006) 83.80 —

Pseudo AA composition (Zhang et al., 2008) 91.20 —

Pair coupled AA composition (Cai et al., 2002) 74.50 —

PSI-BLAST (Chen et al., 2008) 94.10 —

Bilinear descriptors (Marrero Ponce et al., 2015) 92.60 92.70

Generalized two-linear 3D-PDs (Marrero-Ponce et al., 2020) 98 98.20

Generalized two-linear and three-linear 3D-PDs (Terán et al., 2019) 99.33 98.20

This study

Two-linear 3D-MDs truncated with FMFs (SVM) (M10) 99.33 100

Two-linear 3D-MDs truncated with FMFs and TFs (LDA) (M12) 99.33 100
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truncated with a same function. Regarding the 3D-PDs entering

in the best model, 3 out of 4 are truncated types, which support

the hypothesis that an improved description of the 3D protein

structure is achieved by combining non-truncated and truncated

3D-PDs, and consequently more accurate prediction models.

The C-Gaussian and Shifting1 functions determined the

truncated 3D-PDs used in the model above. The C-Gaussian

FMF gives more importance to aas placed at the middle of

spherical region, suggesting the relevance of this type of

functions for protein structural encoding.

According to the outcomes obtained in the two modeling

studies previously described, the best smoothing functions are:

Z-shaped, D-Sigmoid, Switching, Shifting2, PI-shaped,

Shifting1 and A-Gaussian (see SI-4.1). Among them, there are

FMFs that tend to assign the highest membership degrees to aas

belonging to the three “spherical regions” [i.e., close (e.g.,

Z-shaped) and distant (e.g., A-Gaussian) from the geometrical

center, and belonging to the middle region (e.g., PI-shaped) of

the protein]. These results support the application of FMFs in the

truncation of inter-amino acid relationships, at contributing to

determine 3D-PDs with better predictive ability. Lastly, it is

important to indicate the different ron-roff intervals that should

be considered in further studies. To this end, the 10-top ranked

intervals according to the SE-based frequency analysis for each

function were analyzed (see SI-5, SI-6 for xml projects). If two

3D-PDs based on different intervals are linearly dependent, then

the best-ranked one is preferred. On this basis, the intervals that

should be considered are 0–0.4, 0–0.2, 0.2–1, 0.8-1 and

0.4–0.8 for the Z-shaped FMF; 0.2–0.4, 0–0.2, 0–1, 0.8-1 and

0–0.6 for the D-Sigmoid FMF; 0–1, 0–0.6, 0.2–0.4, 0.4–0.6 and

0–0.4 for the PI-shaped FMF; 0–0.6, 0.2–0.4, 0.2–0.6, 0.8-1and

0–0.8 for the A-Gaussian FMF; 0.2–1, 0.2–0.8, 0.6–1, 0.6–0.8 and

0.8-1 for the Switching TF; and 0–0.3, 0–0.4, 0–0.5, 0–0.6 and

0–0.7 for the Shifting2 TF.

6.4 Spherically truncated two-linear 3D-
PDs for protein folding rate prediction.
Comparison with other methods

The modeling ability of the spherically truncated 3D-PDs

was shown by building models based on two-linear 3D-PDs

truncated with FMFs and TFs for the prediction of protein

folding rate. In order to generate the truncated 3D-MDs,

5 out of the 15 previously designed projects (Marrero-Ponce

et al., 2020), that define sets of two-linear non-truncated

(traditional) 3D-MDs, were selected as baselines to

incorporate the truncation method. Particularly, the best

truncation functions according to variability, orthogonality

and modeling analyses (i.e., Z-shaped, D-Sigmoid, PI-shaped,

A-Gaussian, Switching and Shifing2), were jointly inserted with

the intervals suggested, were inserted into these projects. These

five projects encompass a space of 4330 MDs. These 3D-MDs

were computed for each function to build the models using the

MuLiMs-MCoMPAs software (Contreras-Torres et al., 2019).

Given the number of 3D-PDs computed, the following

procedure was adopted to reduce the dimensionality: the 3D-

MDs computed from each truncation function class were merged

into a dataset (one per truncation function, see SI-7); the 2000 top-

ranked 3D-PDs were selected from the previous dataset, according

to their SE values, by using the IMMAN software (Urias et al.,

2015); the 3D-MDs showing pairwise correlation greater than

0.95 were deleted; relevant 3D-MDs were selected by applying the

Correlation Feature Selection (CFS) filter implemented on the

WEKA package (version 3.8.2) (Hall, 1999). The resulting datasets

were merged into a single dataset, which was used to build the

regression models by using the GA-MLR wrapper available in the

MobyDigs software. The GA was set up as follows: the maximum

number of descriptors was 4; the leave-one-out cross-validation

method (Q2loo) was used as fitness function; the crossover/

mutation rate was spanned from 0 to 1 starting at 0.5; and the

selection methods considered were random, roulette and

tournament. The MLR models obtained were internally

validated through the bootstrapping (Q2boot) (Leger et al.,

1992) and Y-scrambling (a(Q2)) (Tropsha, 2010) procedures.

Moreover, the external correlation coefficient (Q2ext) was

employed to estimate the prediction ability of the models on

the test set.

The MLR equation and their statistical parameters

corresponding to the best model obtained are indicated in Eq.

8 and Table 3 (ID: M5), respectively. Based on prediction errors

on the test set, the following proteins: pdb1a6n, pdb1psf, pdb1ris

and pdb1spr_A were considered as outliers (see also SI-8).

ln(kf) � 4.57055(± 0.8215) × A − 0.50604(± 0.15212)× B

− 0.05873(± 0.00649) × C − 3.16702(± 1.839833)
× D + 14.63633

(5)
where, A = AB_Q1_F_M32_SS-1_o_T_LGP[+12.0]_LGL[4–5.9]

_LGST(AGAUSSIAN)[0–0.8]_KDS; B = AB_S_F_M7_MP-

1_T_LGP[+12.0]_LGL[4–5.9]_LGST(SWITCHING)[0.6–1]_PBS;

C = AVG_N1_Q_M24_SS-6_o_T_LGP[1–3]_LGL[8.1–11]_

LGST(Z)[0.2–1]_PAH; D = AVG_I50_Q_M8_NS-3_o_RPU_

LGST(Z)[0.8–1]_PBS

Concerning the training results, it can be noted that this

model presents a good result of fitting (R2 = 80.21), correlation

(Q2loo = 77.28) and robustness (Q2boot = 76.69). Moreover, the

Y-scrambling index (a(Q2)) is less than -0.12, indicating training

results were not obtained by chance. On the other hand, the

results on the external set (Q2ext) were greater than 95%

suggesting the high predictive power of this model, which

reached an improvement of 8.3% respect the reference model

(see Section 6.2). The analyze statistical parameters evidence

that the truncated 3D-MDs encode relevant structural

information.

Frontiers in Chemistry frontiersin.org20

Contreras-Torres et al. 10.3389/fchem.2022.959143

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://doi.org/10.3389/fchem.2022.959143


Regarding the PDs entering this model, the presence of the

A-Gaussian, the Switching and Z-shaped truncation functions

(with a higher occurrence of Z-shaped) called the attention

because the combination of 3D-MDs based on the Z-shaped

and the Switching functions improved predictions in a

previous subsection. Table 4 lists the statistical parameters

corresponding to the proposed model (denoted as M5) and to

the previously reported ones. This table shows that the

correlation coefficient attained by the best model built

surpasses those from the existing approaches, which

confirm that the truncation methodology proposed

constitutes a promising tool to encode relevant and

singular structural features.

6.5 Alignment-free prediction of SCOP
structural classes using spherically
truncated 3D-MDs. Comparison with
other methods

The modeling ability of the spherically truncated 3D-MDs is

illustrated by building alignment-freemodels based on 2-linear 3D-

MDs truncated with FMFs and TFs for the prediction of the SCOP

structural classes. In order to calculate the truncated 3D-MDs, the

same 5 out of 15 previously designed projects (Marrero-Ponce et al.,

2020) to compute two-linear non-truncated 3D-MDs were selected

as baselines to introduce the truncation method. In particular, the

best truncation functions, according to variability, orthogonality

and modeling analyses, together with their corresponding best

intervals were incorporated into these projects. The total

number of 3D-MDs defined from these projects is equal to

4330, which were computed for each truncation function using

the MuLiMs-MCoMPAs software (Contreras-Torres et al., 2019).

Given the high number of 3D-MDs, the following strategy was

performed for each function: the 3D-MDs computed from each

project were merged into a single dataset; the best-ranked 1000 3D-

MDs, according to SE values, were selected from the

aforementioned datasets; relevant 3D-MDs were selected

through the Correlation Feature Selection (CFS) (Hall, 1999)

filter implemented in the WEKA package (Witten and Frank,

2005); and the resulting datasets were fused into a single one

that was subsequently used to determine the prediction models.

Subsequently, the Greedy Stepwise search method was jointly

used with the SVM and Linear Discriminant Analysis (LDA)

methods, respectively, in order to retain relevant 3D-MDs for the

structural class classification. The Pearson universal kernel “PUK”

was used in the SVMmodel. This wrapper was applied through the

WEKA software (Witten and Frank, 2005). Table 5 lists the

statistical parameters of the models developed, as well as the best

model only built with the non-truncated 3D-MDs (model M10).

Here, the created SVM (M10 and M11) and LDA (M12)-based

models achieved accuracies of 99.3% and 100% on cross-validation

and external set tests. Thus, they outperformed the classification

measures attained by the reference model. Of the three models, the

LDA model is the least complex at employing only three 3D-MDs.

Regarding the truncated 3D-MDs included in the SVMmodel, it

is important to remark that these were obtained with the Switching,

Z-shaped, D-Sigmoid and A-Gaussian truncation functions; whereas

the truncated 3D-MDs included in the LDA model were calculated

with the Switching, Z-shaped and A-Gaussian truncation functions.

The recurrence of Switching-Z-shaped-A-Gaussian triplet, similarly

in theMLRmodel development shown in the previous subsection, as

well as the reappearance of Switching-Z-shaped pair, suggest these

functions provide complementary MDs in terms of structural space

for modeling purposes (see also SI-8).

A comparison between the bestmodel developed regarding several

methods reported in the literature to predict protein structural classes is

shown in Table 6. From this Table, it can be observed that the LDA

model performance was superior to the ones attained by several

existing models. All in all, it can be stated that the spherical

truncation method based on FMFs is a valuable tool to increase the

structural information codified by non-truncated 3D-MDs.

7 Conclusion

The introduction of fuzzy spherical truncation functions for the

definition of 3D multi-linear PDs has shown to encode orthogonal

information to the one obtained from the traditional (non-truncated)

3D-PDs. These functions also enhanced the information

discrimination capacity of the MuLiMs-MCoMPAs 3D-PDs.

The evaluation of sixteen “membership functions” allowed to

find a set of six functions that ranked the highest in terms of the

exploratory, variability, orthogonality and modeling analyses:

Z-shaped, Shitting1, D-Sigmoid, PI-shaped, Switching and

A-Gaussian. These selected functions favor the inter amino

acids’ interactions near to center, the middle and outer

regions from the protein’s geometrical center.

The modeling studies carried out illustrated the usefulness of

the truncated 3D-PDs. These novel indices yielded more robust

and accurate predictions than the ones achieved by several

existing models. Particularly, combinations of 3D-PDs based

on the A-Gaussian, Switching and Z-shaped truncation

functions show high modeling power in the prediction of

protein folding rate and SCOP structural classes.

Based on variability, collinearity, and prediction capability

analyses of every theoretical component of the indices, 26 and

14 projects were generated for the two-linear and three-linear

indices, respectively. The complete configuration for the two-and

three-linear indices is shown in Table SI1-1, SI1-2, respectively.

These 40 projects allow users to retrieve more informative 3D-

PDs, save time at performing separate analyses and to focus on

evaluating the intended protein function or property.

Future study includes the development of a version of the

MuLiMs-MCoMPAs module to compute truncated 3D-PDs by

using some extensions of fuzzy sets that employ three-
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dimensional membership functions (like SFS) with a more

detailed description, informatively and explicitly (Kutlu

Gündoğdu and Kahraman, 2019; Donyatalab et al., 2020),

which could give better 3D-PDs.
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