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Photocatalysis is a potential strategy to solve energy and environmental problems. The
development of new sustainable photocatalysts is a current topic in the field of
photocatalysis. ZnIn2S4, a visible light-responsive photocatalyst, has attracted
extensive research interest in recent years. Due to its suitable band gap, strong
chemical stability, durability, and easy synthesis, it is expected to become a new hot
spot in the field of photocatalysis in the near future. This mini-review presents a
comprehensive summary of the modulation strategies to effectively improve the
photocatalytic activity of ZnIn2S4 such as morphology and structural engineering,
defects engineering, doping engineering, and heterojunction engineering. This review
aims to provide reference to the proof-of-concept design of highly active ZnIn2S4-based
photocatalysts for the enhanced hydrogen evolution reaction.
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INTRODUCTION

Since 1972, when Fujishima and Honda demonstrated that hydrogen can be produced from water by
the photoelectrochemical reaction using a TiO2 photoelectrode, photocatalytic technology has
provided a feasible strategy for hydrogen generation. The key to catalytic hydrogen evolution
lies in the development and utilization of catalysts (Zou et al., 2019; Wu et al., 2021; Zhitong Wang
et al., 2021; Bhavani et al., 2022). For photocatalytic catalysts, hydrogen is produced by reducing
hydrogen ions using electrons and protons generated in sunlight. So far, researchers have developed a
variety of types of semiconductor photocatalysts, such as oxide-type semiconductor photocatalysts
(Zhang et al., 2017; Zhao Zhang et al., 2018; Idris et al., 2020), nitrogen (oxygen) compound-type
semiconductor photocatalysts (Shuqu Zhang et al., 2018; Zhu et al., 2022), and sulfide-type
semiconductor photocatalysts (Kuang et al., 2016; Ruijie Yang et al., 2021). Metal sulfide has
become one of the most important semiconductor materials due to its excellent visible light response,
suitable band gap structure, and low cost (Song et al., 2021; Zhitong Wang et al., 2021; Zhou et al.,
2022). However, CdS and CdIn2S4 still have some obstacles, such as rapid recombination of
photogenic electrons and holes, low specific surface area, and photocorrosion. Therefore, it is
necessary to determine an effective method to improve the activity and stability of sulfide
semiconductors.

Among the semiconductor photocatalysts currently studied, ZnIn2S4 as one of the ternary metal
sulfides has attracted extensive attention due to its narrow band gap, good chemical stability, and

Edited by:
Yue Li,

Henan Institute of Engineering, China

Reviewed by:
Haopeng Feng,

Hunan University, China
Shiyan Wang,

Southeast University, China

*Correspondence:
Xia Liu

liux918@163.com
Longlu Wang

wanglonglu@njupt.edu.cn

Specialty section:
This article was submitted to

Nanoscience,
a section of the journal
Frontiers in Chemistry

Received: 10 June 2022
Accepted: 14 June 2022
Published: 12 July 2022

Citation:
Tang M, Yin W, Zhang F, Liu X and

Wang L (2022) The Potential Strategies
of ZnIn2S4-Based Photocatalysts for

the Enhanced Hydrogen
Evolution Reaction.

Front. Chem. 10:959414.
doi: 10.3389/fchem.2022.959414

Frontiers in Chemistry | www.frontiersin.org July 2022 | Volume 10 | Article 9594141

MINI REVIEW
published: 12 July 2022

doi: 10.3389/fchem.2022.959414

http://crossmark.crossref.org/dialog/?doi=10.3389/fchem.2022.959414&domain=pdf&date_stamp=2022-07-12
https://www.frontiersin.org/articles/10.3389/fchem.2022.959414/full
https://www.frontiersin.org/articles/10.3389/fchem.2022.959414/full
https://www.frontiersin.org/articles/10.3389/fchem.2022.959414/full
https://www.frontiersin.org/articles/10.3389/fchem.2022.959414/full
https://www.frontiersin.org/articles/10.3389/fchem.2022.959414/full
https://www.frontiersin.org/articles/10.3389/fchem.2022.959414/full
http://creativecommons.org/licenses/by/4.0/
mailto:liux918@163.com
mailto:wanglonglu@njupt.edu.cn
https://doi.org/10.3389/fchem.2022.959414
https://www.frontiersin.org/journals/chemistry
www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles
https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org/journals/chemistry#editorial-board
https://doi.org/10.3389/fchem.2022.959414


strong photoelectric conversion ability. Compared with single
metal sulfides (CdS and ZnS etc.), ZnIn2S4 has more excellent
photoelectric characteristics, physical and chemical stability, and
environmental friendliness and has greater durability in
photocatalytic reactions.

Compared with other ternary metal sulfides, ZnIn2S4 is the
only AB2X4 series compound with a layered structure, non-toxic,
and has a convenient synthesis process; the unique cone structure
has a huge surface area for the photocatalytic reaction and also
provides plenty of active sites, which makes ZnIn2S4 have greater
application value in the field of energy conversion (JieWang et al.,
2021; Man Wang et al., 2021). However, the high photoexcited
charge recombination ratio makes ZnIn2S4 unable to effectively
utilize solar energy, and the photocatalytic efficiency is
significantly limited (Tu et al., 2018; Chao et al., 2021a; Yijin
Wang et al., 2021; Yu et al., 2022). Some potential strategies such
as ion doping, morphology regulation, design defects,
heterojunction structure design, and loading cocatalyst have
been explored (Figure 1).

OPTIMIZATION OF PHOTOCATALYTIC
HYDROGEN EVOLUTION PERFORMANCE
OF ZNIN2S4

Morphology and Structural Engineering
1. It is well known that precise control of the morphology of
semiconductor photocatalysts plays an important role in
improving their physical and chemical properties and the
performance of photocatalytic systems (Xie et al., 2021;

Xuehua Wang et al., 2021; Cheng et al., 2022; Mingming Liu
et al., 2022; Wang et al., 2022; Xia Liu et al., 2022). The
photocatalytic performance of ZnIn2S4 photocatalyst can be
significantly improved by morphological adjustment, which
can be attributed to the following four factors: 1) the specific
surface area of ZnIn2S4 can be increased; 2) it promotes mass
transfer and light capture; 3) it is beneficial to expose more active
sites on the surface that can participate in redox reactions; 4) it
shortens the migration distance and accelerates the migration
speed of photogenerated carriers. Therefore, researchers have
explored different morphologies of ZnIn2S4 as a photocatalyst to
improve its photocatalytic performance, including nanosheets,
nanoflowers, nanowires, nanorods, nanorings, and nanotubes
(Guan et al., 2018; Xu et al., 2021).

Doping Engineering
Element doping can extend the scope of light absorption, add
catalytic sites of a photocatalyst, and adjust the hydrogen
adsorption and desorption characteristics (Ida et al., 2018;
Quan Zhang et al., 2021; Hou et al., 2022). By introducing
donor/acceptor energy levels into the doped ions in
semiconductors, the concentration and energy distribution of
carriers near the conduction band/valence band edge can be
adjusted to improve the electron transition behavior. Therefore,
with the rapid development of research on photocatalyst
modification of ZnIn2S4, many researchers are committed to
introducing cations or anions into ZnIn2S4.

Cationic doping caused Fermi levels to pass through the
conduction band, giving the material metallic properties, thus
improving the conductivity and photocarrier migration ability.

FIGURE 1 | Potential strategies of ZnIn2S4-based photocatalysts for the enhanced hydrogen evolution reaction.
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For example, Qiu et al. (Pan et al., 2021; Qiu et al., 2021; Shi et al.,
2022) introduced nickel ions into the ZnIn2S4 lattice by the
solvothermal method and prepared Ni-doped ZnIn2S4
nanosheets with few layers. The photocatalytic activity of
ZnIn2S4 nanosheets was about seven times higher than that of
pure ZnIn2S4 nanosheets. Theoretical calculations show that Ni
ions are preferentially embedded in the zinc rather than indium
sites in tetrahedrons, which induced a narrower band gap, higher
electronic conductivity, and more charge carriers that can
participate in the hydrogen evolution process. More
importantly, Ni dopants can subtly change the electronic
structure of the S site and achieve the optimal free energy of
hydrogen adsorption on Ni by fine-tuning the S−H bond energy.
Therefore, the Ni doping in ZnIn2S4 nanoparticles can prolong
the lifetime of the photoexcited charge and then enhance the
activity of photocatalytic hydrogen evolution. Therefore, the
doping of metal cations in the photocatalyst can improve the
light absorption range and contribute to the enhancement of
photocatalytic activity. On the contrary, anion (O, N, and P, etc.)
doping can regulate the valence band to promote the migration of
holes and adjust the conduction band to enhance the reduction
ability of photogenerated electrons (Goswami et al., 2021; Shuqu
Zhang et al., 2021).

Defects Engineering
Defects engineering is applied to photocatalysts to improve the
separation efficiency of photocarriers. The introduced defects can
be used as a center to capture photocarriers and prevent their
recombination, thus improving charge separation and exposing
more active sites. Vacancies in photocatalysts are typical point
defects, which play an important role in improving photocatalytic
performance due to their regulation of physicochemical and
photoelectrochemical properties such as photocarrier
migration, light absorption, surface acidity and alkalinity,
surface active sites, adsorption properties, solubility properties,
and electronic structure. In recent years, with the increasing
interest in ZnIn2S4 photocatalysts, the studies on vacancy
engineering based on ZnIn2S4 (sulfur, zinc, and indium
vacancies) are also increasing (Lee et al., 2019; Pengfei Wang
et al., 2019).

Yu Liu et al. (2022) proposed preparing ZnIn2S4 microspheres
with S vacancy defects through solvothermal and low-
temperature hydrogenation reduction strategies. Due to the
formation of S vacancy defects on the surface, the band gap of
ZnIn2S4 microspheres was reduced to 2.38 eV, which has good
visible light response activity. Experimental results and density
functional theory calculations showed that the surface S vacancy
caused by the surface field potential difference promotes the
spatial separation of electrons and holes, thus improving the
performance of the photocatalyst and greatly deepening the
surface defects engineering understanding of how to affect the
separation of light raw charge and to find other efficient and
stable metal sulfide photocatalysts which provides a new train of
thought. Tai and Zhou, (2021) used reactive ion etching to
generate Zn vacancies in ZnIn2S4 particles. With the increase
of Zn vacancy concentration, the band gap of ZnIn2S4 decreases
from 2.17 to 2.06 eV. Under the optimum Zn vacancy

concentration, the photocatalytic hydrogen evolution rate of
ZnIn2S4 is 2.7 times higher than that of pure ZnIn2S4, and the
photocatalytic process of ZnIn2S4 is stable without any
degradation through cyclic experiments, showing good
stability. The existence of Zn vacancies reduces the charge
carrier transfer resistance, improves the charge separation rate,
and prolongs the emission decay life (He et al., 2019).

In the sandwich ZnIn2S4 stacking structure, Zn or S atoms
exposed to the surface are easily desorbed, resulting in Zn or S
defects. However, due to steric hindrance, the atoms located in
the middle layer of a sandwich structure are difficult to be
removed, so it is difficult to form in-layer defects. Zn or S
defects promote the directional migration of photogenerated
electrons but have little effect on hole regulation. Luan et al,
(2022) successfully prepared ultra-thin ZnIn2S4 nanosheets with
an abundant [InS]6 intermediate layer and perfect [InS]4 and
[ZnS]4 surface layer by controlling the crystal growth of ZnIn2S4
with the rapid heating and hydrothermal method. The in vacancy
induces the redistribution of orbitals near the maximum value of
the valence band, separates the oxidation and reduction sites on
both sides of the ultra-thin ZnIn2S4 nanosheet with in vacancy,
and increases the density of states between the valence band and
the conduction band. The electrons around indium vacancy are
delocalized, which is conducive to the interlayer charge transfer
and improves the conductivity of the ZnIn2S4 nanosheet.

Heterojunction Engineering
In order to overcome the inherent shortcomings of the high
electron–hole recombination rate and low utilization rate of a
single unmodified semiconductor photocatalyst, the construction
of heterojunction by coupling two semiconductor materials is
generally considered to be an effective strategy (Yang et al., 2020;
Liu et al., 2021; Xu et al., 2022). The construction of
heterojunction with a suitable band position will form a
potential gradient between the heterogeneous interfaces to
promote the separation and transfer of photocarriers and can
also enhance the optical capture performance (Zhao et al., 2019;
Mu et al., 2020; Zhang et al., 2020; Zuo et al., 2020). According to
the band orientation and carrier transfer path, the structure of
heterojunction photocatalyst can be divided into many types,
including Type−I (transboundary state photocatalyst), Type−II
(alternate state photocatalyst), Z-scheme (alternate state
photocatalyst), and Mott−Schottky type (Yang et al., 2018; Li
et al., 2019; Hu et al., 2020). In recent years, various
heterostructures based on ZnIn2S4 have been successfully
constructed, and their photocatalytic properties in energy and
environmental applications have been studied (Zhenfei Yang
et al., 2021; Chen et al., 2022).

The Type 1 heterojunction is a kind of semiconductor
heterojunction in which the valence band and conduction
band of one semiconductor are located between the valence
band and conduction band of the other one. Under the
irradiation of incident light, the conduction band to the
electronic from high to low conduction band direction and the
hole from low to high with direction, in the process of a
photocatalytic oxidation–reduction reaction, will be two
semiconductor materials to bring to the lower conduction
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band and a high price (Chao et al., 2021b; Longlu Wang et al.,
2021). Different from Type−I heterojunction, Type−II
heterojunction is formed by a staggered conduction band and
valence band of two semiconductor materials (Jiang et al., 2019;
Yan et al., 2019). The movement direction of charge carriers and
redox reaction sites of Type−I heterojunction is the same as that
of Type−I heterojunction. Due to structural differences, Type−II
heterojunction can effectively promote the separation of
photogenerated carriers and inhibit their recombination, and
the energy conversion efficiency is significantly improved
(Zizhong Zhang et al., 2018; Zhao et al., 2021). Although
Type−II heterojunction photocatalysts exhibit good
photocatalytic performance, such high photocatalytic
performance sacrifices the redox ability of charge carriers, so
the reduced driving force may not smoothly drive the specific
photocatalytic reaction. Due to the well matching of the electronic
band structure of the two semiconductor materials, the Z-scheme
heterojunction keeps the electrons at a more negative potential
and the holes at a corrected potential, resulting in a strong redox
ability (Sabbah et al., 2022; Su et al., 2022).

PERSPECTIVES

This review presents a comprehensive summary of the modulation
strategies to effectively improve the photocatalytic activity of ZnIn2S4
such as morphology and structural engineering, defects engineering,
doping engineering, and heterojunction engineering. Although a
large number of promising results have been achieved in
photocatalytic HER for ZnIn2S4, there are still many untapped
areas to be investigated to realize their full potential. Branched
flower-like nanostructures with atomically thin petals are usually
obtained by liquid-phase synthesis. This morphology is very

favorable for catalysis because it maximizes exposure of active
sites, rather than planar stacking like 2D nanosheets. The next
key challenge lies in understanding the nucleation stage in the
liquid phase so that the platelet topography can be controlled
reliably. Further work should be able to develop more precise
crystal growth methods and gain full control of defects/doping
elements/functional groups to identify, quantify, and ultimately
develop active sites. At the same time, complementary advanced
characterization techniques, such as nanoscale STM, XAFS,
HAADF-STEM, positron annihilation spectroscopy, and ultrafast
transient absorption spectroscopy, also need to be developed in
parallel to probe the reaction kinetics at the atomic or molecular
scale.With the synergistic development of robust and novel ultrathin
2D materials, catalytic hydrogen evolution technology is expected to
achieve greater breakthroughs (Hu et al., 2013; BingqingWang et al.,
2019).
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