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The palladium-catalyzed decarboxylative reactions of phenols and vinyl

ethylene carbonate to produce allylic aryl ethers under mild conditions have

been established. Adopting an inexpensive PdCl2(dppf) catalyst promotes the

efficient conversion of phenols to the corresponding allylic aryl ethers via the

formation of a new C-O bond in good isolated yields with complete

regioselectivities, acceptable functional group tolerance and operational

simplicity. The robust procedure could be completed smoothly by

conducting a scaled-up reaction with comparable efficiency to afford the

target product.
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Introduction

Aryl ethers are common structural elements found in physiologically important

molecules as well as complicated natural substances. (Trost and Toste 1998; Cao et al.,

2002; Tanaka et al., 2003; Trost et al., 2003; Sawayama et al., 2004; Trost 2004; Trost

et al., 2004; Pochetti et al., 2010). Among the many different varieties, allylic aryl

ethers have gotten a lot of interest because of their wide range of uses in academia and

industry (Trost and Tang 2002; Parker and Fokas 2006; Varghese and Hudlicky 2014;

Zhang et al., 2019a; Zhang et al., 2019b), and selective functionalization of the motif

has acted as a foundation for the synthesis of novel bioactive compounds (Figure 1).

The divergent synthesis of allylic aryl ethers from simple substrates, on the other

hand, remains a difficult process that has yet to be fully explored. As a result,

developing effective synthetic techniques and strategies to produce such

therapeutically relevant compounds is of tremendous synthetic and applied

importance (Consiglio and Waymouth 1989; Malkov et al., 1999; Trost et al.,

2002; López et al., 2003; Mbaye et al., 2003; Ashfeld et al., 2004; Miyabe et al.,

2005; Helmchen et al., 2007; Kawatsura et al., 2007; Trost and Brennan 2007; Bandini

and Eichholzer 2009).

Wandless and Trost, respectively, pioneered Pd-catalyzed allylic alkylation of

phenol with π-allyl precursors (Sawayama et al., 2004) and intramolecular

cyclization of phenol allyl carbonates (Trost and Toste 1998), which give
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effective methodologies for the synthesis of allylic C-O

bonds. Nonetheless, the response yield is frequently

inadequate. Trost (Trost et al., 2003) reported a viable

decarboxylative allyl etherification process that employed

vinyl epoxides as allylic donors and 4-methoxybenzyl

alcohol as an interceptor to produce tertiary-alcohol

derivatives in high yields (Figure 2A). For vinyl epoxides,

methyl-substituted vinyl epoxides can be readily prepared by

isoprene oxidation. Other 2-vinyl oxiranes with various 2-

substituents, on the other hand, are difficult to obtain and

rather unstable, limiting the reaction substrate’s extension.

Recently, vinyl ethylene carbonates (VECs) have been

created as adaptable allylic donors with more stable five-

membered ring topologies and easier preparation techniques

(Khan et al., 2017; Khan et al., 2019). The decarboxylative

transformation of vinyl ethylene carbonates catalyzed by

transition metals has shown to be a flexible approach for

the creation of diverse allylic scaffolds (Shang and Liu 2011;

Zhao and Szostak 2019). Kleij’s group reported the

palladium-catalyzed decarboxylative allylation of VEC

with phenol-based nucleophilic reagents (Xie et al., 2017),

which afforded the branched product in high yields in the

strong base condition (Figure 2B). It was shown that Cs2CO3

was critical for the formation of the branched products, and

the presence of metal cations induced nucleophilic attack to

occur at the central carbon of the palladium intermediate,

thus generating the target compounds. This mild protocol is

characterized by a fair scope in reaction partners, overall

good yields and appreciable enantioinduction. In the same

year, Zhang’s group reported the formation of tertiary

alcohols or ethers from the reaction of water or alcohol as

oxygen donors with VECs (Khan et al., 2017). The

experimental process allowed smooth access in high yields,

and the mechanism study indicated that the boron reagent

played a key part in the reaction (Figure 2C). The process

allowed rapid access to valuable tertiary alcohols and ethers

in high yields with complete regioselectivities and high

enantioselectivities. Work done by the Trost group (Trost

and Toste 1999) had established that Pd π-allyl species

undergo nucleophilic attack at the secondary carbon in

preference to the primary carbon to deliver tertiary

centers over secondary ones. This selectivity presumably

arises from the greater carbocation-like character of the

more highly substituted carbon center following ionization

by the Pd (0) metal (Sawayama et al., 2004).

Inspired by the above research results, we envisioned that,

in the presence of an appropriate transition-metal catalyst,

allylic aryl ethers could be constructed through

decarboxylative etherification of VEC with activated

phenolic nucleophilic reagents. As illustrated in Figure 2D,

we hypothesized that the palladium-catalyzed

decarboxylation of VEC could afford reactive amphiphilic

π-allyl palladium intermediate, which subsequently forms

the desired allylic ethers upon nucleophilic attack by

phenols. Herein, we report the palladium-catalyzed

conversion of VEC with phenols to construct

functionalized allylic aryl ethers in high yields with

excellent efficiencies and complete regioselectivities.

FIGURE 1
Representative important molecules containing aryl ether fragments.
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Results and discussion

We commenced our studies by examining the

decarboxylative etherification of an easily accessible 1-

naphthol 1aa and VEC 2 as standard reaction partners with

using palladium catalysis. The results are summarized in Table 1.

Initially, a mixture of 1aa, 2, PdCl2(dppf) as the catalyst, and

Cs2CO3 as the additive was heated in acetonitrile solvent at 80°C.

We were pleased to isolate the desired product, 3aa, in 72% yield

after 15 h (Table 1, entry 1). Subsequently, different palladium

sources such as PdCl2(dppf)·CH2Cl2, Pd2 (dba)3, and

PdCl2·(bipy) were screened for the reaction under similar

conditions, respectively, but most of them obtained no target

compound (Table 1, entries 2–4). In addition, no reaction was

observed in the absence of palladium catalyst (Table 1, entry 5).

With the efficient PdCl2(dppf) catalysis in hand, we then tested

various additives to evaluate their effects on the reaction

outcome. Fortunately, with the help of additives, the reaction

efficiency could be promoted to different degrees. Cs2CO3

achieved the most excellent results in facilitating the reaction,

while other additives, including CsOAc, DBU, K2CO3, and KOH,

led to lower isolated yields (Table 1, entries 6–9). Note that the

inferior result would be obtained without the help of additives

(Table 1, entry 10). Furthermore, solvents such as DMF, DMSO,

PhMe, 1,4-dioxane, DCM, DCE, and THF were screened based

on the established catalytic system, andMeCNwas determined to

be the optimal solvent (Table 1, entries 11–17). To our delight,

reducing the reaction temperature to 70°C increased the yield of

3aa from 72 to 81% (Table 1, entry 18). However, turning the

temperature down continuously resulted in the remaining

unreacted substrates, which was detrimental to the reaction

yield (Table 1, entries 19–20). Therefore, the established

optimized reaction conditions were 1aa (0.20 mmol) and 2

(0.30 mmol) as the substrates, PdCl2(dppf) (5 mol%) as the

catalyst, and Cs2CO3 as the additive in acetonitrile (2 ml) for

15 h at 70°C.

As depicted in Figure 3, we investigated the substrate scope of

the allylic etherifications under the optimal conditions. The

reaction exhibited good functional group tolerance and was a

generalized method to construct aryl allyl ether fragments

facilely. First, we explored the effect of diverse

monosubstituted phenol derivatives as substrates on the

FIGURE 2
Strategy for Pd-catalyzed decarboxylative reactions of VEC with phenols.

Frontiers in Chemistry frontiersin.org03

Lin et al. 10.3389/fchem.2022.962355

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://doi.org/10.3389/fchem.2022.962355


reaction. Halogens such as fluoro-, chloro-, and bromo-

substituted phenols were well tolerated under identical

conditions, affording the corresponding products in good to

moderate yield (3b-3f). Further exploration found that the

substitution position of halogen groups on the benzene ring

greatly influences the reaction. For instance, halogen

substitutions at the ortho-position of the phenyl ring (3b, 3c)

generated much higher yields than did substitutions at the para

and meta-positions (3d-3f). Notably, 2-Br substitution on the

benzene ring afforded the target compound with an excellent

yield of 90% (3b). Besides halogen groups, monosubstituted

functional groups bearing electron-donating groups (-Me, -Et,

-Ph) and electron-withdrawing groups (-CN, -NO2, -CF3,

-COMe) on the phenol ring underwent the reaction smoothly

to transform into designed products in moderate yields (3ab,

3g–3o). The reaction was also available to achieve phenols with

multiple substituents, giving the etherified derivatives satisfyingly

(3p–3t). Unfortunately, pyridyl ethers could not be prepared

from hydroxy pyridine through the standard reaction conditions.

Subsequently, we were prompted to check the feasibility of allylic

etherification of quinolinol and isoquinolinol, which were

demonstrated to be appropriate substrates, affording the

desired product in 62 and 71% yields, respectively (3u, 3v). In

addition, differently substituted naphthol and dibenzofuranol

substrates performed high reactivity, and the corresponding

naphthol allyl ethers were satisfyingly prepared (3w–3z).

When both ortho-positions of the phenol ring are occupied,

the reaction will not take place owing to the presence of higher

magnitude of steric hindrance.

The synthetic utility of the transformation was explored by

conducting a gram-scale reaction of 1-naphthol 1aa and VEC

2 under the ideal condition, which provided the target

compound 3aa with an isolated yield of 52%. Furthermore,

competition experiments between differently substituted

phenols revealed the preferential conversion of electron-

deficient arenes (Figure 4).

TABLE 1 Optimization of the reaction conditionsa.

Entry Catalyst Additive Solvent Temp (°C) yieldb (%)

1 PdCl2(dppf) Cs2CO3 MeCN 80 72

2 PdCl2(dppf)·CH2Cl2 Cs2CO3 MeCN 80 39

3 Pd2 (dba)3 Cs2CO3 MeCN 80 0

4 PdCl2(bipy) Cs2CO3 MeCN 80 0

5 -- Cs2CO3 MeCN 80 0

6 PdCl2(dppf) CsOAc MeCN 80 17

7 PdCl2(dppf) DBU MeCN 80 54

8 PdCl2(dppf) K2CO3 MeCN 80 14

9 PdCl2(dppf) KOH MeCN 80 27

10 PdCl2(dppf) -- MeCN 80 0

11 PdCl2(dppf) Cs2CO3 DMF 80 61

12 PdCl2(dppf) Cs2CO3 DMSO 80 54

13 PdCl2(dppf) Cs2CO3 PhMe 80 10

14 PdCl2(dppf) Cs2CO3 1,4-dioxane 80 13

15 PdCl2(dppf) Cs2CO3 THF 80 11

16 PdCl2(dppf) Cs2CO3 DCE 80 9

17 PdCl2(dppf) Cs2CO3 DCM 80 trace

18 PdCl2(dppf) Cs2CO3 MeCN 70 81

19 PdCl2(dppf) Cs2CO3 MeCN 60 72

20 PdCl2(dppf) Cs2CO3 MeCN 50 37

aReaction conditions: 1aa (0.20 mmol), 2 (1.5 equiv, 0.30 mmol), catalyst (5 mol%), additive (0.3 equiv, 0.06 mmol), solvent (2.0 ml), 15 h, open to air.
bIsolated yield of 3aa.
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FIGURE 3
Substrate Scope of phenols. Reaction conditions: Phenol 1 (0.20 mmol), 2 (0.30 mmol), PdCl2(dppf) (5 mol%), Cs2CO3 (0.06 mmol), MeCN
(2 ml), 70°C, 15 h. Isolated yields are reported.
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Conclusion

In summary, we have disclosed a general strategy for the

synthesis of allylic aryl ethers through palladium-catalyzed O-H

activation followed by decarboxylative reactions of aryl phenols and

vinyl ethylene carbonate. Under mild conditions, allylic aryl ethers

tolerating a broad scope of substitution types and functional groups

could be obtained efficiently in good to excellent yield with complete

regioselectivities. Notably, a scaled-up reaction could be conducted

smoothly via this protocol.
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