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The development of cancers is often linked to the alteration of essential redox

processes, and therefore, oxidoreductases involved in suchmechanisms can be

considered as attractive molecular targets for the development of new

therapeutic strategies. On the other hand, for more than two decades,

transition metals derivatives have been leading the research on drugs as

alternatives to platinum-based treatments. The success of such compounds

is particularly due to their attractive redox kinetics properties, favorable

oxidation states, as well as routes of action different to interactions with

DNA, in which redox interactions are crucial. For instance, the activity of

oxidoreductases such as PHD2 (prolyl hydroxylase domain-containing

protein) which can regulate angiogenesis in tumors, LDH (lactate

dehydrogenase) related to glycolysis, and enzymes, such as catalases, SOD

(superoxide dismutase), TRX (thioredoxin) or GSH (glutathione) involved in

controlling oxidative stress, can be altered by metal effectors. In this review,

we wish to discuss recent results on how transition metal complexes have been

rationally designed to impact on redox processes, in search for effective and

more specific cancer treatments.
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Introduction

Reduction-oxidation (redox) processes are at the center of many functions in

chemistry and biology and have become one of the leading research topics in

biochemistry and biophysics. (Monteiro and Stern, 1996; Nakamura et al., 1997;

Berglund et al., 2002; Guiseppi-Elie et al., 2002; Finkel, 2003; Della et al., 2011).

Redox proteins and enzymes can also conduct reactions of industrial and

pharmaceutical importance. (Truppo, 2017; Prier and Kosjek, 2019). The fundamental

structure of such proteins consists of catalytic sites connected by redox chains, which can

be described as multielectron redox centers or clusters of single electron redox centers that
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interact with substrates and function as sources or sinks of

electrons. Most transition metals can display multiple

oxidation states and can be found as active sites of many

proteins and, as such, playing essential roles in oxidoreduction

functions (Sheldon and Woodley, 2018; Turner and Kumar,

2018). Oxidoreductases are considered catalysts for important

biological processes that require electron transfers, including

photosynthesis, respiration, metabolism, and signaling

processes governing gene regulation and expression (Allen

et al., 1995). Between 30 and 50 percent of all proteins are

considered oxidation/reduction enzymes or metalloproteins.

As such, studies aimed at elucidating the molecular and

electrochemical properties linked with the chemical and

biological electron transport systems displayed by redox

proteins have been extensively developed (Prabhulkar et al.,

2012).

Redox homeostasis is maintained by the net physiologic

balance between reducing and oxidizing equivalents within

subcellular compartments, in particular through components

like reactive oxygen species (ROS) and antioxidant enzymes

(Berglund et al., 2002). Studying and understanding such

processes is fundamental for cancer treatment (Narayanan

et al., 2020). Traditionally, the free-radical theory of cancer

considered that oxidative stress due to reactive oxygen/

nitrogen species (ROS/RNS) could generate DNA damage and

promote genetic instability (Hussain et al., 2003). However, ROS/

RNS are now thought to be involved in not only in direct DNA

damage but also in modulations of redox-regulated signaling

pathways, which may be both beneficial or detrimental in

cancers.

Unlike normal differentiated cells, which rely primarily on

mitochondrial oxidative phosphorylation to generate the

necessary energy in the form of ATP for cellular processes,

most cancer cells rely on aerobic glycolysis. After tumor

growth, there are fewer blood vessels, which leads to less

oxygen (hypoxia), and cancer cells develop a hypoxic response

through the hypoxia-responsive transcription factor HIF1A. This

transcription factor plays a key role by inducing the expression of

VEGF, a growth factor that stimulates vascularization and the

expression of glucose transporters such as GLUT1 and redox

enzymes (for instance LDH). This allows the reprogramming of

metabolism towards glycolytic metabolism, which does not

require as much oxygen. This process is called the Warburg

effect (Vaupel and Multhoff, 2021). Cancer cells also exhibit

increased ATP production and important levels of ROS, which

permits to maintain high cell proliferation through the metabolic

resetting. Antioxidant therapy can protect normal cells by

activating cell survival signaling cascades, such as the nuclear

factor erythroid 2-related factor Nrf2 pathway (Irwin et al.,

2013). Nrf2 is a crucial regulator that protects cells from

oxidative stress. Adaptations resulting from Nrf2 activation

may have beneficial effects under stress conditions through

modulation of antioxidant pathways but may also participate

in the development of resistance to cancer therapy (Zhang, 2010).

Due to their implications in cancer pathogenesis, redox

homeostasis and the metabolic switch from glycolysis to

oxidative phosphorylation appear as promising targets for

cancer therapy (Gaiddon et al., 2021). These pathways include

HIF1/2 and NRF2 mechanisms that contribute to the

modification of the expression of transporters (e.g. glucose

transporters), redox enzymes (e.g. LDH, PDK2), chaperone

proteins and antioxidant enzymes (e.g. GSH) (Figure 1).

Transition metal-based derivatives have been intensively

studied for their attractive anticancer properties (Raymond

et al., 1998; Garbutcheon et al., 2011; Ndagi et al., 2017;

Parveen, 2020). Platinum-based drugs, mainly cisplatin and its

analogs carboplatin and oxaliplatin (Figure 2), have been used

worldwide in cancer treatment (Dilruba and Kalayda, 2016).

Other platinum-based molecules, such as miriplatin, nedaplatin,

lobaplatin, and heptaplatin have also been approved regionally.

The mode of action of these compounds is mostly through direct

interactions with DNA, inducing DNA damage, which activates

series of molecular mechanisms, including induction of the

p53 tumor suppressor gene. Consequently, alterations in the

p53 pathway, such as mutations in p53, lower the response

toward platinum-based drugs (Blanchet et al., 2021).

Additionally, the low selectivity of platinum drugs for cancer

cells generates serious side effects on various tissues, including

the nervous system and the muscles (Benosman et al., 2007;

Benosman et al., 2011; Oun et al., 2018; Voisinet et al., 2021).

In order to limit such severe side-effects caused by platinum

compounds, the use of other metals have been extensively

explored. Both the redox properties of the metal and of the

ligands in transition metal complexes can generate new routes of

action that can bypass resistance mechanisms toward platinum

or other DNA damaging drugs. Ruthenium derivatives have

often been shown to exhibit a lower toxicity, linked with a

higher selectivity towards cancer cells, than platinum-based

FIGURE 1
Metabolic pathways involved in tumor adaptation to its
stressful environment (Gaiddon et al., 2021).
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drugs (Oun et al., 2018). In particular, four ruthenium derivatives

have been evaluated clinical trials. NAMI-A was successfully

studied in phase I, but poor efficacy was obtained in phase II,

while the low solubility of related compound KP1019 limited

further development (Figure 3). (Alessio and Messori, 2019;

Bergamo and Sava, 20072007; Baier et al., 2022; a; Monro

et al., 2019)

Ruthenium(III) KP-1339 is currently undergoing clinical

trials, delivering promising Ib phase data for anticancer

activity. Ruthenium(II) complex TLD-1433 acts as a

photosensitizer, and is currently being evaluated in phase II

for photodynamic therapy (PDT) against human non-muscle

invasive bladder cancer. 1) Furthermore, many other transition

metal complexes have been studied for their cytotoxic properties

and potential use as anticancer drugs (Meier-Menches et al.,

2018; Zamora et al., 2018; McFarland et al., 2019; Anthony et al.,

2020). Notably, palladium-based compound Padeliporfin

(commercially known as Tookad, Figure 3) has recently been

approved by the European Medicines Agency in the European

Union for PDT in patients with low-risk prostate cancer

(Coleman et al., 2021).

The mechanisms of action for metal complexes can be varied,

and in particular can be driven by redox reactions. In 2011,

Heffeter et al. reviewed how metal complexes could carry out

their cytotoxic activity in cancer cells through interactions with

the cellular redox homeostasis (Jungwirth et al., 2011). A review

by Sadler et al. in 2013 discusses multiple targets of metal

complexes that are able to interfere with the cellular redox

state (Romero-Canelón and Sadler, 2013). Redox-based

mechanisms have also been successfully exploited, particularly

with Ru(III) and Pt(IV) derivatives, in processes where the

complexes act as prodrugs that are activated by the reducing

environment of cancer cells, as highlighted in a 2012 review by

Lippard et al. and in another review by Sadler et al. in 2017 (Graf

and Lippard, 2012; Zhang and Sadler, 2017). Catalytic action has

also been discussed for ruthenium and iridium compounds

(Dougan et al., 2008; Liu and Sadler, 2014). More recently,

one review focused on how metal-based drugs could induce

anticancer immune responses, and another on transition metal

complexes for photodynamic therapy (PDT) and photoactivated

chemotherapy (PACT). (Englinger et al., 2019; Imberti et al.,

2020).

Within this context and because of the high number of

studies published every year on the anticancer activity of

transition metal complexes, in this review, we wish to present

updated information that highlight the importance of redox

processes in cancer metabolic pathways, and how tumor

development may be hindered by redox interactions with

metal complexes. In addition to platinum and ruthenium

compounds, we will discuss representative and recent

examples of iron, osmium, iridium, rhodium, copper, silver

and gold complexes that show redox-mediated anticancer

activity.

The redox landscape in cancer

The redox balance is efficiently regulated in living organisms.

For instance, ROS and RNS are generated during normal

physiological metabolism and in response to stress, including

exposure to xenobiotics, cytokines, growth factors, hormones,

and invasion of bacteria (Roy et al., 2017). Although the

generation of ROS and RNS is involved in crucial cell

signaling functions, excessive amounts can generate

malfunctions to proteins, lipids, carbohydrates, and nucleic

acids, and disorders such as aging, hypertension,

atherosclerosis, ischemia/reperfusion, renal diseases, diabetic

neuropathies, Alzheimer’s disease and cancer (Sharifi-Rad

FIGURE 2
Platinum complexes used as anticancer drugs.
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et al., 2020; Boy et al., 2021). It is why pharmaceutical exploration

aimed at modulating the oxidative response in therapies is a very

active field of research (Purohit et al., 2019). Cells in tumors are

particularly sensitive to oxidative stress as they commonly

present higher levels of ROS due to the dysregulation of the

redox balance, and excess of ROS potentially contributes to

oncogenesis by oxidative DNA damage (Montero and Jassem,

2011).

The majority of ROS/RNS are hydrogen peroxide (H2O2),

hydroxyl radicals (OH•), superoxide radicals (O2_
−), nitric oxide

(NO_), and peroxynitrite (ONOO−). ROS or RNS are able to

activate or inactivate proteins by reacting with sulfhydryl

(sulfenylation), glutathione (GSH, glutanylation), and cysteine

(oxidation) groups (Jones et al., 2004; Defelipe et al., 2015).

Antioxidant proteins are important tools for the control of ROS/

RNS levels and conduct target-specific transduction of redox

signals. The major enzymatic antioxidants include superoxide

dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx),

glutathione S transferase (GST), and glutaredoxin (Grx), and

operate in cooperation with thiol-redox couples to regulate ROS/

RNS levels. It is worth noting that all these enzymes are

ubiquitous. Six major redox couples are usually present in a

cell: NADH/NAD, NADPH/NADP, cysteine (Cys)/cystine

(CySS), GSH/glutathione disulfide (GSSG), peroxiredoxin

(Prx)-sulfiredoxin (Srx), and thioredoxin (Trx)/thioredoxin

disulfide (TrxSS). For instance, thiol systems can adjust the

production of H2O2 by limiting its diffusibility and stability in

each subcellular compartment, while the pKa of specific residues

on proteins determines how sensitive these residues are to the

available H2O2 (Thamsen and Jakob, 2011; Jacob et al., 2012).

Additionally, thiol groups can in turn be modified (e.g.,

nitrosylation, sulfhydration, metal ion binding) allowing to act

as signaling molecules to control cell function (Marino and

Gladyshev, 2011).

FIGURE 3
Ruthenium complexes studied in clinical trials as candidates for anticancer treatments and palladium compound approved for clinical use.
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Metabolic abnormalities and ROS
generation in cancer cells

A critical point in the metabolic–redox mechanisms in

cancer is the “hypermetabolism” required for growth and

proliferation of tumor cells which results in intracellular ROS

production in the mitochondria, NADPH oxidases (NOXs),

peroxisomes, and endoplasmic reticulum (ER) (Batinic-

Haberle et al., 2011; Barrera, 2012). These mechanisms are

ubiquitous, such as NOX originally described in leukocytes,

but found throughout the body. NOX has seven different

isoforms, NOX1-5, DUOX1 and DUOX2, each isoform

characterized by the specific catalytic subunit, the interacting

proteins and the localization in the different cells of the body

(Rastogi et al., 2017). Mitochondrial ROS are byproducts of

metabolic processes during which electrons escape from the

mitochondrial electron transport chain (Mito-ETC) and react

with molecular oxygen to generate superoxide anions (O2
−)

(Batinic-Haberle et al., 2012). In addition, metabolic enzymes,

such as 2-oxoglutarate dehydrogenase (OGDH), pyruvate

dehydrogenase (PDH), glycerol-3-phosphate dehydrogenase

(GPDH), and flavoprotein-ubiquinone oxidoreductase (FQR),

also contribute to O2
− production (Antunes and Cadenas, 2000;

Baud and Karin, 2009; Becuwe et al., 2014). Along with Mito-

ETC, oncogenic activation triggers the production of ROS

through NOX-mediated NADPH oxidation (Figure 4)

(Yoboue et al., 2018)

Another fundamental process for the intracellular

production of ROS is the cooperation between mitochondria,

the endoplasmic reticulum (ER), and peroxisomes (Wang et al.,

2019).

NADPH oxidases

NADPH oxidases (NOXs) play a fundamental role in a wide

range of physiological processes, such as gene expression

regulation, cell signaling and differentiation, but are also

involved in many pathological processes, including cancer.

Several studies have demonstrated that cancer cells often

display mutations which can increase ROS generation from

NOX enzymes, which in turn can lead to tumorigenesis

(Jaramillo et al., 2012; Jaramillo et al., 2015). A particular type

of mutation involves the GTPase KRAS, a member of the RAS

oncogene family. KRAS mutations induce NOX1-mediated ROS

formation and metastasis.63-

Catalases

The CAT enzymes are present in most of cells exposed to

oxygen and are involved in lowering high concentrations of H2O2

(Nakabeppu et al., 2006; Munro and Treberg, 2017). CAT can

also react with peroxynitrite, a strong oxidizing agent produced

by the reaction between nitric oxide (NO_) and O2
−, associated

with pathological events (ONOO−/ONOOH). In cancer cells,

CAT can be found in high concentrations in the plasma

membrane and occasionally released in the extracellular

matrix, and can act as a tumor suppressor and as a survival

FIGURE 4
Relationship between metabolism and redox signaling in
cancer cells (Wang et al., 2019).

FIGURE 5
Relationship between redox state of glutathione and
regulation of cell function and cell detoxification (Montero and
Jassem, 2011).
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agent during tumor progression (Naranjo-Suarez et al., 2013;

Narayanan et al., 2020). However, higher catalase levels have

been associated with more aggressive cancers when compared to

lower CAT concentrations (Glorieux and Calderon, 2018;

Galasso et al., 2021).

Glutathione

When compared with normal cells, cancer cells contain

higher GSH levels, as GSH metabolism appears to be involved

in protecting cancer cells from apoptosis (Gamcsik et al., 2012).

Furthermore, increased levels of GSH within tumor cells are

associated with resistance to platinum-containing anticancer

compounds, due to the formation of GSH-platinum

conjugates mediated by glutathione S-transferase P1 (GSP1)

(Peklak-Scott et al., 2008). The GSH related metabolism genes

are regulated by Nrf2 genes, which have been used as redox state

index for platinum resistant cancers (Galluzzi et al., 2012). The

overall cellular redox state is regulated by three systems, two of

which are glutathione-dependent: the reduced glutathione

(GSH)/oxidized glutathione (GSSG) system (Figure 5), the

glutaredoxin (Grx) system and the thioredoxin (Trx)/Trx

reductase system (Giles, 2006; Townsend, 2007; Tew and

Townsend, 2011). GSH acts directly as an electron donor,

whereas Grx uses GSH or GR as an electron donor and

depends on the intracellular concentration of GSH. On the

other hand, Trx uses nicotinamide adenine dinucleotide

phosphate (NADPH) as an electron donor, independently of

GSH (Tew and Townsend, 2011).

NADPH dehydrogenases (quinone)

Quinone reductase 1 (NQO1) can be considered the redox

barrier between the organism and its environment (Oberley et al.,

19801980). NQO1 detoxifies ROS-generating quinones to

hydroquinones through a back and forth route, using NAD(P)

H to reduce FAD and then catalyzing a two-electron reduction to

generate FAD and hydroquinone (Oshikawa et al., 2010).

Redox enzymes as a target of drugs
for cancer treatment

In addition to their activity on cell division, many cytotoxic

drugs are able to induce oxidative stress by modulating the

concentration of ROS (Giles, 2006; Townsend, 2007).

Furthermore, the susceptibility of some cancer cells towards

redox enzymes has been considered as a therapeutic target for

the rational design of new anticancer agents (Xiong et al., 2021).

As many drugs currently applied in chemotherapies have an

impact on redox pathways, probably contributing to their

antitumor activity, evaluating the possibility of precisely

affecting the cellular redox balance has become a leading

trend in anticancer research (Table 1) (Chen and Chang, 2019)

Metal complexes can also affect the cellular redox chemistry,

directly through metal- or ligand-based redox processes or

indirectly by interacting with biomolecules implicated in

cellular redox pathways (Bandeira et al., 2017; Ortega et al.,

2021).

Iron complexes

Iron(II) complexes bearing triapine-type heterocyclic

thiosemicarbazone ligands (triapine = 3-aminopyridine-2-

carboxaldehyde thiosemicarbazone, a molecule studied in the

treatment of cancers) have been reported to inhibit

ribonucleotide reductase (RNR), an enzyme which catalyzes

the reduction of ribose to deoxyribose in nucleotides for DNA

synthesis (Plamthottam et al., 2019). Inhibition of RNR by

triapine results in depletion of DNA precursors, selectively

depriving replicating cancer cells of nucleotides for survival.

The redox-active form of triapine responsible for RNR

inhibition is the Fe(II) (triapine)2 fragment. Iron complexes

with triapine analogs (1 and 2, Figure 6) have shown in vitro

that redox events are crucial for RNR inhibition, and were able to

inhibit cell proliferation at similar or lower concentrations

(250 nM - 0.7 μM) than triapine alone (Plamthottam et al.,

2019). The reductive activation of Fe(III)-triapine by

thioredoxin reductase-1 (TrxR1) and glutathione reductase

(GR), leading to the generation of reactive species has been

demonstrated. In particular, TrxR1 displayed high activity

with Fe(III)-thiosemicarbazone derivatives, and a specificity

between the Fe(III) complexes and the redox centers of TrxR

has been observed. (b; Myers et al., 2013; Lovejoy et al., 2011;

Richardson et al., 2009). Iron(III) complex 3 (Figure 6) with

thiosemicarbazone-derived ligands is reduced by ascorbate to

iron(II), increasing lipid peroxidation. The formation of ascorbyl

radical anion (Asc_−) has been detected after adding ascorbate to

the iron(III) complex, resulting in the production of ROS

(Selyutina et al., 2022). The use of ascorbate to promote the

redox activity of these potential anticancer agents was

demonstrated in vitro. Complex 3 showed antiproliferative

action on the human melanoma cell line SK-MEL-28 at

concentrations of 3.125–25 μM, in the presence of 1,000 μM

of ascorbate (Kontoghiorghes et al., 2020). Upon introduction

of a methoxy group, compound 4c displayed elevated

cytotoxicity towards CaSki cancer cells. The IC50 values for

complex 4c were 0.75, 6.73, 7.32 and 23.71 µM for Caski,

SiHa, HeLa and L02 cells, respectively. Studies on the cell

death mechanisms induced by complex 4c showed that cancer

cell growth was suppressed by apoptosis, and the TrxR activity of

Caski, SiHa, and HeLa cells decreased to 48.92, 84.51 and 86.01%

respectively (Xie et al., 2017). Evaluation of the relationship
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TABLE 1 Redox modulation by cytotoxic anticancer drugs currently used clinically (Chen and Chang, 2019).

Target Drug Mechanism
of redox modulation

Glutathione system NOV-002 Induction of S-glutathionylation

BSO Glutathione depletion leading to induction of apoptosis by ROS

TLK286 Inhibition of glutathione-S-transferase

TLK199 Inhibition of glutathione-S-transferase

Thioredoxin system PX-12 Inhibition of thioredoxin-1

BNP7787 Inhibition of thioredoxin-1 and glutaredoxin

Arsenic derivatives ZIO-101 Inhibition of catalase

FIGURE 6
Iron complexes able to alter redox enzymatic activity.
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between the inhibition of TrxR and the cytotoxic activity suggests

that compound 4c carries out its activity through TrxR

inhibition, affecting cellular redox balance and leading to cell

death.

Iron(III) complexes bearing salen-type ligands (salen =

N,N′-ethylenebis(salicylaldimate) dianion) have been studied

for their anticancer activity. The cell death induced by

complexes like 5 was related to DNA cleavage and

superoxide dismutase (SOD) mimicking activity, probably

generating local imbalance in superoxide/hydrogen peroxide

levels, leading to cell apoptosis. Complex 5 was highly active

against K562 and MCF-7 (IC50 = 6.4 and 13.1 µM, respectively)

with IC50 value of 1.89 µM for the inhibition of SOD (Herchel

et al., 2009).

Ruthenium complexes

Ruthenium derivatives are among the most studied and

promising compounds for potential anticancer treatments. The

success of ruthenium is notably due to specific redox kinetics

properties and the relevant oxidation states (II) and (III). In studies

aimed at the development of biosensors, our group has shown that

cyclometalated ruthenium complexes can alter the activity of

purified oxidoreductases, such as glucose oxidase, horseradish

peroxidase, lactate dehydrogenase or PHD2 (Ryabov et al.,

2001; Saavedra-Diaz et al., 2013; Bautista et al., 2016; Vidimar

et al., 2019). Such compounds were used as mediators (electron

shuttles) in the electron transfer to or from oxidized or reduced

active sites of redox enzymes. The ruthenium complexes 7–11

shown in Figure 7 mediate the electron transfer and display high

reactivity with respect to horseradish peroxidase (HRP) and

glucose oxidase (GO) (Ryabova et al., 1999). Organometallic

ruthenium(II) derivatives bearing cyclometalated 2-

phenylpyridine (phpyH), (11 and 12, Figure 7), function as

noncompetitive inhibitors of glucose oxidase in the oxidation of

β-D-glucose by O2. The analogous coordination compound 13

behaves, in contrast, as a competitive inhibitor. Oxidation of Ru(II)

to Ru(III) compounds 14 and 15 does not make the complexes

competitive inhibitors (Saavedra-Diaz et al., 2013). Interestingly, if

ruthenium complexes are able to inhibit redox enzyme activity, the

reverse can also occur. For instance, ruthenium(III) compound 14

(oxidized form of 11) promotes the enzymatic activity of glucose

oxidase (Saavedra-Diaz et al., 2013). Bis-cyclometalated complex

15 is able to transport electrons from the reduced active site of

PQQ-dependent alcohol dehydrogenase (PQQ-ADH) to an

electrode with 1,2-propanediol as substrate (Le Lagadec et al.,

2006). Our group also studied how modifications in the ligand

structure could affect the ability of the metallacycles to interact

with their direct biological targets. The activity of two purified

oxidoreductases, glucose oxidase and horseradish peroxidase, was

evaluated in the presence of the cyclometalated derivatives (Licona

et al., 2020). The calculation of the k3 rate constant for the electron

transfer between the active site of the enzyme and the complexes

showed that the ability to alter the activity of both enzymes is

related to their oxidoreduction potentials. The coordination of a

second phenanthroline ligand in 7 (RDC34) lowered the redox

potential by c.a. 100 mV and increased the lipophilicity when

compared with 6 (RDC11). Such results showed that the

modification of the spatial structure of the complexes may also

be responsible for their capacity to alter the redox enzyme function

(Anand et al., 2009).

FIGURE 7
Ruthenium compounds capable to interact with redox
enzymes.
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To understand the role of the RDC11 complex in cancer

metabolism, studies were performed on the HIF1A (hypoxia-

inducible factor) pathway (Vidimar et al., 2019). At the molecular

level, RDC11 can affect redox enzyme activities and intracellular

redox state by increasing the NAD+/NADH ratio and ROS levels,

and at the metabolic level, the HIF1A pathway is affected by

inducing the activity of the iron redox enzyme PHD2, an enzyme

that controls HIF1A protein levels (Vidimar et al., 2019).

Notably, unlike cisplatin, the activity of RDC11 was not

affected by the presence of mutations in p53 (Gaiddon et al.,

2005). As such, PHD2 could be considered a direct target of

RDC11, which could activate the PHD2 activity through a

mechanism possibly involving the redox activity of the

ruthenium complex. Inhibition of HIF1A led to decreased

angiogenesis in patient-derived xenografts using fragments of

primary human colon tumors (Alpeeva et al., 2003).

An important feature of cancer cells is their elevated lactate

production due to high glucose consumption and the switch to

glycolytic metabolism. Lactate dehydrogenase (LDH), which

catalyzes the production of lactate in the final step of the

glycolytic pathway, is a fundamental enzyme in such process

(Netanya and Robert, 2019). To get a better understanding on

how cyclometalated compounds could impact on the activity of

LDH in vitro and in cancer cells, a comparative study was

performed using polypyridine ruthenium(II) complex 13 and

its structurally related cyclometalated-phenylpyridine

counterparts 11 and 12 (Bautista et al., 2016). The

cytotoxicity in gastric and colon cancer cells induced by 11

and 12 is significantly higher when compared to 13. The

inhibition mechanisms on purified LDH were evaluated and

kinetic studies allowed the calculation of the corresponding

inhibition constants. Though complexes 11 and 13 are

structurally similar, their inhibition modes are different.

Cyclometalated complex 11 behaves as a non-competitive

inhibitor of LDH, suggesting no interaction with LDH in the

vicinities of lactate/pyruvate or NAD+/NADH binding sites

(Bautista et al., 2016).

Such results suggested that ruthenium complexes might

affect the redox state of cancer cells by altering the activity of

redox enzymes (Meng et al., 2009). This could induce the

oxidation of proteins causing misfolding and activation of the

unfolded protein response (UPR), also called the endoplasmic

reticulum stress (ER stress) pathway (King and Wilson, 2020).

The UPR pathway helps cancer cells to survive under drastic

conditions and contributes to resistance in chemotherapy and

radiotherapy (Limia et al., 2019). However, despite the role of

UPR in promoting cancer progression and resistance to

chemotherapy, artificial induction of ER stress has been

suggested as a potential anticancer strategy. This approach has

been successfully demonstrated with RDC11 and RDC34 which

were able to strongly induce CHOP, a transcription factor that

mediates apoptosis in response to ER stress (Meng et al., 2009).

Interestingly, RDC34 displayed a higher expression of CHOP

thanRDC11, which can be explained by a greater retention in the

endoplasmic reticulum due to its higher lipophilicity (Klajner

et al., 2014). Similarly, structure-activity studies of RDC

complexes revealed that complexes with a relatively significant

lipophilicity and redox potentials in a specific 0.4–0.6 V (vs. SCE)

region were the most active. Such dependence on the redox

potential probably indicates that electron transfer to/from Ru(II)

should play a role in their UPR-inducing activity (Klajner et al.,

2014; Gaiddon et al., 2021).

Derivatives 18 and 19 in which the arene ligand is substituted

by ethacrynic acid through an amide or an ester moiety were able

to inhibit GST P1-1, with IC50 values in the 5.9–13.7 μM range

(Townsend et al., 2005; Ang and Dyson, 2006; Suss-Fink, 2010).

Other ruthenium–arene complexes bearing EA-modified

imidazoles (20–22) are also efficient inhibitors of GST P1-1

and can inhibit cells growth of cisplatin resistant human

ovarian cancer cells with IC50 from 9 to 15 μM (Ang et al., 2007).

Complex 17 (RM175), which specifically binds to guanine

bases of DNA, can also react with the thiol group of GSH to form

[Ru(η (Nakamura et al., 1997)-biphenyl) (en) (GS]+ (en =

ethylenediamine, GS = glutathione). Further addition of

oxygen to the thiolate ligand produces the sulfenate complex.

Finally, the sulfinate adduct can be generated by oxidation

(Novakova et al., 2003; Wang et al., 2005). Such combination

of GSH and oxidation reactions contribute to the binding to

guanine in DNA. Substitution of the sulfenate ligand by guanine

N7 generates a redox-mediated pathway to DNA binding (Wu

et al., 2013).

The development of hormone-dependent forms of cancers of

lung, larynx, and bladder cancers have been associated with isozymes

from the aldo–keto reductase 1C subfamily (AKR1C) (Penning and

Byrns, 2009; Lanišnik and Penning, 2014). Furthermore, AKR1C

isozymes are related to the resistance to many anticancer drugs,

including platinum-based (Chen et al., 2008; Chen et al., 2013).

Ruthenium complexes bearing as ligands the zinc ionophores

pyrithione and its oxygen-containing analog (23–24) have been

studied against AKR1C isozymes. If compounds 23a and 23b

were able to efficiently inhibit AKR1C1, the inhibitory activity

was much lower for 24a and 24b. In addition, 23b also displayed

high cytotoxicity (EC50 = 3.8 μM) on the hormone-dependent breast

cancer cell line MCF-7, when complex 24b bearing a sulfur

macrocycle was almost inactive (EC50 = 200 μM). On the other

hand, 23a and 24a did not show cytotoxic effects against the same

cancer cell line (Kljun et al., 2016).

Nonsteroidal anti-inflammatory drugs (NSAIDs) have been

able to display chemopreventive properties in cancer cells due to

their ability to block cyclooxygenase (COX-1 and COX-2) and

lipoxygenase (LOX) enzymes which are often upregulated in

malignant tumors (Feng et al., 2014; Banti and Hadjikakou, 2016;

Boodram et al., 2016). The coordination of NSAID to a

[ruthenium(arene)] moiety in complexes 25–28 allowed the

inhibition of COX and LOX activity, and antiproliferative

activity against series of cancer cell lines.120.
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N-heterocyclic carbene (NHC) metal complexes have also

been studied as potential metal-based drugs. For instance,

ruthenium complexes 29a-29d can react with biologically

relevant thiols and selenols. TrxR enzymes activity could be

inhibited by such complexes, with IC50 values ranging from

0.30 to 3.74 μM. The compounds are also cytotoxic against

several cancer lines, with IC50 values of 2.06 and 51.67 μΜ for

MCF-7 breast cancer cells and >100 and 2.40 μΜ for HT-29

colon cancer cells for 29c and 29d respectively (Oehninger et al.,

2013).

The N=N azo bonds in complexes 30a and 30b bearing azpy-

type ligands (azpy = 2-phenylazopyridine) generate redox

potentials that are biologically accessible, and oxidation of

GSH to GSSG is observed under physiological conditions and

important levels of ROS in A549 lung cancer cells have been

detected (Chow et al., 2014). Unlike RM175 which forms a key

intermediate with GSH for subsequent DNA binding,

ruthenium-arene complexes 30a and 30b can catalyze the

oxidation of GSH to GSSG, with the first step being the

reduction of the azo bond (-N=N-) by GSH, followed by the

elimination of GSSG and the catalytic cycle is completed by the

reduction of O2 to H2O2 and the subsequent oxidation of the

ligand to regenerate the azo bond. Such ligand-based redox

reactions provide new concepts for catalytic drug design

(Dougan et al., 2008).

The two ruthenium Schiff base complexes, RAS-1H and

RAS-1T (31, 32), induced non-apoptotic programmed cell

death through the ER stress mechanism (Chow et al., 2016).

Interestingly, RAS-1T shows a ROS-mediated ER stress pathway,

while RAS-1H is independent of ROS. However, both complexes

are more active against apoptosis-resistant cell lines than clinical

drugs.

Complex 33 displayed a cytotoxic activity 15 and 7.5 times

higher than cisplatin against A549 and HeLa cells, respectively

(Li et al., 2018). This ruthenium complex reacted with the NAD+/

NADH couple through transfer hydrogenation reactions and also

induced ROS in cells (Li et al., 2018). As overexpression of

P450 enzymes in tumors is often associated with resistance to

various drugs, the use of P450 inhibitors as ligands allowed the

preparation of ruthenium prodrugs 34–36, that can be triggered

to controllably release the inhibitors. Activation of the

compounds by light provides the free ligands that can inhibit

the P450 enzymes, while the remaining ruthenium center can

damage DNA (Zamora et al., 2017).

Heterobimetallic ruthenium-gold complexes 37 and

38 were highly active against series of cancer cells,

displaying a better selectivity than their mononuclear

counterparts. The TrxR activity of HCT116 cells was

inhibited by compound 37 (IC50 = 5.22 µM), while cisplatin

was inactive. Complex 38 presented cytotoxicity with IC50

values of 5.2, 73.2 and 8.1 µM towards Caki-1, HEK-293T and

HTC116 cancer cells, respectively (Férnandez-Gallardo et al.,

2016).

Osmium complexes

Cyclometalated osmium complexes synthesized by our

research group have shown high cytotoxic activity, with IC50

below 1 μM on various series of cancer cell lines, driven by the

level of lipophilicity and low reduction potential (Boff et al.,

2013). For instance, the ODC2 (39, Figure 8) and ODC3

complexes (40) cause cell death by inducing the transcription

factor CHOP and the ER stress pathway (Suntharalingam et al.,

2013; Oakes, 2017; Gaiddon et al., 2021).

Mononuclear and trinuclear arene Os(II) complexes bearing

pyridylimine or phenoxyimine derived ligands (41–42) were

active against cisplatin-resistant cancer lines, and it has been

shown that they were able to inhibit the topoisomerase I

(Pommier, 2006; Banothile et al., 2014). The activity of related

osmium complexes bearing iminopyridine ligands (43a and 43b)

has also been evaluated (Fu et al., 2012). Complexes 43a and 43b

were active against ovarian and lung cancer cell lines, and their

activity associated with the production of ROS and oxidation of

NADH. Contrary to their ruthenium azopyridine analogues (30a

and 30b), the complexes cannot oxidize GSH, but can oxidize

NADH to NAD+ through a hydride transfer to the osmium(II)

center (Romero-Canelón et al., 2013). Related azo derivative 44

acts through a ROS-dependent pathway, and its cytotoxicity is

inversely related to the intracellular concentration of GSH

(Needham et al., 2017). Complexes 45 and 46 bearing the EA

fragment were able to inhibit between 20 and 30% of GST

enzyme activity, even in cisplatin-resistant cancer cell lines

(Agonigi et al., 2016; Allocati et al., 2018).

Rhodium complexes

In recent years, interest in potential rhodium(III) drugs has

flourished due to their enzymes inhibition capacity (Sohrabi

et al., 2021). Rhodium(III) complexes 47–50 (Figure 8) can

reduce NAD+ to NADH using formate as the hydride source.

The competition reactions between NAD+ and pyruvate for

formate-catalyzed reduction showed a preference for NAD+

reduction (Soldevila-Barreda et al., 2015).

Rhodium(III) complexes bearing NHC ligands have been

studied as inhibitors of TrxR. The study of IC50 values for various

human cancer cell lines showed that the presence of a benzyl

substituent on the nitrogen atoms of the NHC affected the

activity, as 51 presented a lower cytotoxicity than 52 towards

cancer cells. However, both complexes exhibited strong

inhibition of TrxR (IC50 values of ~1 μM for 51 and 52)

(Truong et al., 2020). Rhodium(I) complexes 53a-c also

showed cytotoxic activity towards MCF-7, HT-29 y

HepG2 cancer cell lines, where the lowest IC50 values were

obtained for HepG2 cells (1.33, 5.84 y 4.96 μM for 53a - 53c,

respectively). Complex 53a was able to inhibit TrxR both in vitro

and in vivo and showed an IC50 value of 2.5 μM for TrxR in
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HepG2. It is proposed that TrxR could be a possible biological

target for the 53a complex (Fan et al., 2019).

Copper complexes

Copper plays an important role in the development of cancer,

through the generation of angiogenesis and metastasis, and effective

cellular uptake of copper bymalignant cells has been observed (Gaur

et al., 2018; Quiles et al., 2020). Copper shows high redox activity as

it can easily switch between I and II oxidation states in intracellular

medium, allowing potential interaction with redox enzymes.

Copper(II) chelates (cassiopeins) have been evaluated as cytotoxic

agents towards human lung cancer cells H157 and A549. Complex

54 (Cas IIgly, Figure 8) was shown to inhibit glutathione through

redox cycling, generating ROS and inducing apoptosis. In both cell

FIGURE 8
Osmium, rhodium and copper complexes studied as anticancer agents.
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lines, Cas IIgly induced a dramatic decrease in intracellular GSH

levels, most of which was oxidized to GSSG (IC50 values were in the

2.5–5 μM range) presumably through the reduction of Cu(II) to

Cu(I) (Kachadourian et al., 2010). Cyclic(alkyl) (amino)carbene

(CAAC) copper complexes 55–57 have been evaluated against

series of cancer cells, displaying IC50 values around 0.14–17.4 µM

on all cancer lines and TrxR inhibition of up to 52.3% at 10 μM

(Bertrand et al., 2017).

Copper complexes bearing thiosemicarbazone ligands have

also been studied as cytotoxic agents (Richardson et al., 2006; c;

Kalinowski et al., 2009). Compound 58 allowed for a notable

GSH depletion and lysosomal damage causing apoptosis, and

was able to modify the GSH/GSSG ratio from 0 to 7% of the

control, corroborating an important redox activity. Complex 58

showed an IC50 of 5 μM towards SK-N-MC cells (Lovejoy et al.,

2011; Park et al., 2016).

Platinum complexes

The anticancer activity of platinum(II) complexes has generally

been associated to cross-linking with the nitrogen bases of DNA,

forming adducts that inhibit replication and generate strand breaks

and miscoding, causing apoptosis and inhibition of RNA and

protein synthesis (Ortega et al., 2021). However, DNA

interactions are not the only mechanisms and targeting cytosolic

proteins is also important for inducing apoptosis (Zhou et al., 2002;

Ortega et al., 2021). For instance, TrxR can interact with platinum

compounds and cisplatin-derivatized TrxR can provoke apoptosis in

cancer cells. 4) In order to reduce the side effects and drug resistance

caused by Pt(II), the use of Pt(IV) complexes has been evaluated

(Hall et al., 2007). Such platinum(IV) derivatives are pro-drugs that

can be reduced intracellularly to the corresponding active Pt(II)

compound (Johnstone et al., 2016; Olszewski et al., 2011; e). Thus,

the design of new Pt(IV) compounds displaying high cellular uptake

and sensitivity to reduction by enzymes overexpressed in cancer has

been highlighted (Czarnomysy et al., 2021; Zhong et al., 2020; 1;

Wexelblatt and Gibson, 2012). Four octahedral Pt(IV) compounds

have entered clinical trials (tetraplatin, iproplatin, satraplatin, and

LA-12, Figure 9). Unfortunately, LA-12 failed in phase I trials, while

tetraplatin showed high neurotoxicity andwas not investigated after

phase I. Iproplatin showed limited benefits in phase II trials, and

studies on the orally available satraplatin were dropped in phase III

(Nagyal et al., 2020; Chunyan et al., 2021).

Studies on the possible routes of action of such platinum

derivatives showed that the coordination of carboxylic acid

ligands as redox modulators in the axial positions of the

Pt(IV) center enhanced the antiproliferative effects through

simultaneous DNA interactions and generation of ROS

(Figure 9) (Wangpaichitr et al., 2021; Tolan et al., 2016; f)

Platinum(II) derivatives can also exhibit redox activity in

biological systems. For example, cisplatin and transplatin

monochlorido analogs with heterocyclic acylhydrazones (63,

Figure 10) inhibited bovine GPx-1 and murine TrxR-1 and

exhibited higher cytotoxicity than cisplatin and transplatin

(Lemmerhirt et al., 2018). The IC50 towards various cancer

cell lines were in the 0.7–22.8 μM range. Complexes 63a - 63f

exhibited higher activity than cisplatin and transplatin, with

inhibition higher than 50% towards TrxR observed at 25 μM.

In addition to their DNA-intercalating capacity, terpyridine-

platinum(II) complexes 64 also targeted TrxR (Lo et al., 2009).

Iridium complexes

Iridium(III) derivatives can participate in cellular redox

reactions and inhibit proteins, and the use of cyclometalated

ligands or the substitution of small counter-anions by larger ones

allowed for the synthesis of highly cytotoxic compounds (Wang

et al., 2021; g; Mou et al., 2017; Zhang et al., 2018a; Pettinari et al.,

2015; Venkatesh et al., 2017) (Cao et al., 2013; Leung et al., 2013;

g) (Mou et al., 2017; Prieto-Castañeda et al., 2022). The

anticancer activities of such iridium complexes are generated

by different mechanisms, such as catalytic interference with

cellular redox balance, (Li et al., 2017), interactions with

protein kinases, (Du et al., 2018), and regulation of non-

apoptotic pathways (Novakova et al., 2003; Wilbuer et al.,

2010). Additionally, cyclometalated iridium(III) complexes are

efficient photosensitizers (PSs) capable to generate singlet oxygen

(1O2), allowing for their potential application in PDT. (Lv et al.,

2016; Nam et al., 2016). Other cytotoxic ROS such as superoxide

anion (O2_
−) and hydroxyl radicals (_OH) have also been produced

(Novohradsky et al., 2019). The activity of cyclometalated

complexes 65 and 66 (Figure 10) against lung cancer cells

FIGURE 9
Pt(IV) anticancer drugs that have entered clinical trials (A) and
redox interaction of Pt(IV) complexes and glutathione (B).
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FIGURE 10
Platinum, iridium, silver and gold compounds studied as potential enzymes inhibitors.
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(A549) increased remarkably after irradiation at 425 nm, with a

phototoxicity index between 93 and 120 (Qin et al., 2020). Cell-

based assays showed that 66 produced a rise in intracellular ROS

concentrations, reduction in ATP production, mitochondrial

DNA damage, increase in lipid peroxidation, and inhibition of

proteasomal activity (Qin et al., 2020).

Ferrocenyl-substituted half-sandwich iridium(III)

cyclometalated-phenylpyridine complexes showed a higher

cytotoxic activity than cisplatin. Notably, these bimetallic

iridium–iron (67–69) derivatives were more active against A549,

Hela, and HepG2 cells than their respective monometallic iridium

and ferrocene compounds (Ge et al., 2019). Such activity has been

explained by the easy conversion of NADH to NAD+ through

hydride transfer by the Ir(III)Cp* group to form iridium-hydride

species. The hydride can further be transferred to oxygen to form

H2O2 (Lu and Holmgren, 2012; Liu et al., 2014).

Silver complexes

The activity of silver complexes against bacteria and cancer cells

can be associated to their solubility and stability in water,

lipophilicity, redox properties and rate of release of silver ions

(Gandin and Fernandes, 2015; Medici et al., 2016; Chenga and

Qi, 2017). Homoleptic and heteroleptic phosphine silver(I)

complexes 70–72 (Figure 10) selectively inhibit the selenoenzyme

thioredoxin reductase both as an purified enzyme and in human

ovarian cancer cells, with inhibition concentration values in the

nanomolar range, causing disruption of cellular thiol-redox

homeostasis and apoptosis (Dammak et al., 2020). Silver

complexes 73 and 74 bearing NHC ligands have also been

studied against series of cancer cell lines, with IC50 values in the

range of 16–24 μM in cisplatin-resistant cells. Such silver(I)

complexes also displayed TrxR inhibition with concentrations in

the nanomolar range (Pellei et al., 2012).

Another series of triphenylphosphine complexes (75–77)

inhibited the lipoxygenase enzyme (LOX) with IC50 values of

2.3, 7.6 and 7.2 µM for 75–77 complexes, respectively. Complex 75

presented IC50 values of 1.6 μM against leiomyosarcoma cells

(LMS) and 2.5 μM for human breast adenocarcinoma (MCF-7).

Compound 76 presented IC50 values of 1.6 and 2.0 μM for LMS

andMCF-7, respectively, while IC50 for compound 77were 1.5 and

1.6 μM for LMS andMCF-7 (Poyraz et al., 2011; Banti et al., 2012).

Gold complexes

Among gold complexes, auranofin (78, Figure 10), is of special

importance. Auranofin was approved by the FDA for the treatment

of rheumatoid arthritis in 1985 and is currently evaluated for

applications in neurodegenerative diseases, acquired

immunodeficiency syndrome, parasitic and bacterial infection, as

well as anticancer agent. The routes of action of gold compounds

often involve enzyme inhibition, and the anticancer activity of

auronafin has mainly been attributed to the inhibition of TrxR

enzyme (IC50 = 82.6 nM) (Marzano et al., 2007).

Gold(I) complexes 79 bearing flavone-derived ligands displayed

anticancer activity towards undifferentiated Caco-2 andMCF-7 cells

with IC50 values lower than cisplatin and similar to auranofin. The

IC50 values for compounds 78 and 79 towards undifferentiated

Caco-2 cancer cell line were 1.52 and 2.33 μM, respectively. The

cytotoxicity of complexes 79 can be associated with the inhibition of

cyclooxygenase 1/2 enzyme and alteration of the activity of

thioredoxin reductase and glutathione reductase (Mármol et al.,

2019). Gold(I) complex 80 with oleanolic acid-derived ligand can

provoke apoptosis in ovarian cancer A2780 cells through different

mechanisms, such as induction of ER stress and inhibition of TrxR.

Gold(I) compounds bearing pentacyclic triterpene ligand are able to

inhibit the TrxR enzyme with an IC50 value of 2.61 μM, while free

pentacyclic triterpene showed an IC50 > 50 μM. Complex 80 was

active against A2780 cells, with IC50 of 10.24 μM (Mianli et al.,

2020).

Linear gold(I) complexes bearing triethylphosphine and

cyanate (81a), thiocyanate (81b) or ethylxanthate (81c)

ligands were able to inhibit TrxR1 and TrxR2. The IC50

values towards TrxR1 were 1.1, 1.8 and 0.7 nM, and 7.8,

5.0 and 3.6 nM for TrxR2, for 81a—81c, respectively.

Complexes 81a—81c presented IC50 values of approximately

80 and 2-fold lower than those of cisplatin and auranofin,

respectively, towards different cancer cell lines such as HCT-

15 (IC50 = 0.32, 0.08 and 0.61 μM for 81a-c) and HeLa (IC50 =

0.18, 0.09 and 0.13 μM) (Gandin et al., 2010). On the other

hand, gold(I) NHC complexes 82–87 were active against

A2780cis, A2780, HepG2, HepAD38 and MDCK cancer cell

lines with IC50 values in the 0.11–5 μM range (Schuh et al.,

2012; Hickey et al., 2008; Karaca et al., 2017; h). The cytotoxic

activity of these compounds has been associated to the ability to

generate cell cycle arrest through different pathways,

particularly via the inhibition of TrxR. The cellular activity

of TrxR was reduced by about 55–60% in A549 lung cancer cells

upon treatment with 2.5 μM of the gold derivatives (82–87)

(Zhang et al., 2018b).

Recently, Gerner et al. showed that the cationic bis-NHC gold(I)

complex [Au(9-methylcaffeine-8-ylidene)2]
+ 88) can display

multimodal activity in ovarian cancer cells. It was demonstrated

that 88 affects nuclear and telomeric proteins. It also affects actin,

leading to the induction of Nrf2 genes, in parallel with the

production of GSH. Treatment of cancer cells with 88 also led to

a 2-fold reduction in the ratio of reduced to oxidized glutathione

(Meier-Menches et al., 2020).

Conclusions

In this review, we highlighted recent developments on the use

of transition metal complexes as anticancer agents acting through
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changes in the intracellular redox balance and interaction with

redox enzymes. The tuning of the redox properties of the

complexes through the rational design of the ligands and

judicious choice of metal and oxidation state is crucial for their

ability to interact with redox active enzymes, resulting in increased

biological and anticancer activities. Although the exact

mechanisms of action for the cytotoxicity exerted by such metal

derivatives are not always unquestionably determined, evaluating

the roles played by redox interactions provides essential

information that would allow to prepare more effective and

selective antineoplastic drugs. To reach this goal, an extensive

effort has to be taken using unbiased approaches (proteomic,

transcriptomic, metabolomic) to compare the activity of a wide

range of metal complexes and identify the direct interactants,

regulated pathways and metabolites that are impacted by those

compounds. Such methodology will allow to decipher without bias

the physico-chemical determinants that drive the cytotoxicity and

redox impact of metal complexes on cells. In parallel, biologists

and oncologists need to further elucidate how cancer cells adapt to

the metabolic challenges raised by tumor growth, aiming at

identifying novel druggable targets for metal-based molecules.
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