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Kesterite-structured Cu2ZnSn(S,Se)4 (CZTSSe) thin film photovoltaics have

attracted considerable attention in recent years because of its low-cost and

eco-friendly raw material, as well as high theoretical conversion efficiency.

However, its photovoltaic performance is hindered by large open-circuit

voltage (VOC) deficiency due to the presence of intrinsic defects and defect

clusters in the bulk of CZTSSe absorber films. The doping of extrinsic cation to

the CZTSSe matrix was adopted as an effective strategy to ameliorate defect

properties of the solar cell absorbers. Herein, a novel Se&Sb2Se3 co-selenization

process was employed to introduce Sb into CZTSSe crystal lattice. The results

reveal that Sb-doping plays an active role in the crystallization and grain growth

of CZTSSe absorber layer. More importantly, one of the most seriously

detrimental SnZn deep defect is effectively passivated, resulting in

significantly reduced deep-level traps and band-tail states compared to Sb

free devices. As a result, the power conversion efficiency of CZTSSe solar cell is

increased significantly from 9.17% to 11.75%, with a VOC especially enlarged to

505 mV from 449mV. This insight provides a deeper understanding for

engineering the harmful Sn-related deep defects for future high-efficiency

CZTSSe photovoltaic devices.
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Graphical Abstract
The open-circuit voltage of Cu2ZnSn(S,Se)4 solar cells increases sharply from 449 to 505 mV due to the passivation of SnZn deep defects by a novel
Se&Sb2Se3 co-selenization process.

Introduction

Kesterite Cu2ZnSn(S,Se)4 (CZTSSe) has been considered

as an ideal photovoltaic material after monocrystalline

silicon due to its stable structure, benign and earth-

abundance raw materials, tunable direct band gap of

1–1.5 eV with a nearly optimal match to the solar

spectrum, as well as high optical absorption coefficient

(104 cm−1) (Wang et al., 2014; Yan et al., 2018; Le Donne

et al., 2019; Wang et al., 2022). So far, the highest certified

photoelectric conversion efficiency of CZTSSe solar cell has

reached 13% (NREL. Best, 2021), which is far from the

theoretical conversion efficiency of 32.8% (Shockley and

Queisser, 1961). (Shockley-Queisser limit) and its

counterpart of CuInGa(S,Se)2 (CIGSSe) that has already

achieved record efficiency of 23.35% (Nakamura et al.,

2019). Among the parameters which affecting the

performance of photovoltaic devices, the short-circuit

current density (JSC) of high-efficiency CZTSSe solar cells

has reached 84% of the theoretical limit, however, the open-

circuit voltage (VOC) is only 64% of this value. The large VOC

deficit has become a key bottleneck for the further improving

efficiency of CZTSSe solar cells (Su et al., 2020; Du et al.,

2021; Gong et al., 2021; Sun et al., 2021; Li et al., 2022).

As a multinary inorganic compound, the crystal structure of

CZTSSe is evolved from ZnS, but the stable region of CZTSSe

phase is very narrow, which is prone to cause atomic deletion or

interatomic displacement in the CZTSSe lattice, forming a variety

of defects and defect clusters (Chen et al., 2013; Xu et al., 2021a).

The recombination at these intrinsic defects is one of the main

factors responsible for its voltage losses. Among the various

defects in the bulk absorber, the antisite defect of CuZn and

SnZn is a matter of particular concern in this regard. It was

recently demonstrated that the defect clusters of [2CuZn+ SnZn]

was the origin of band tails (Reya et al., 2017; Ma et al., 2019) and

the SnZn defect is the main deep trap states in CZTSSe absorber

(Biswas et al., 2010; Li et al., 2019). Both of them contribute

greatly to the deficit of VOC. Therefore, it is a key strategy to

manipulate the Sn-related defects in order to reduce VOC loss

(Kim et al., 2020; Chen et al., 2021).

The SnZn defects and [2CuZn+ SnZn] defect clusters can be

largely suppressed in Sn-poor CZTSSe, however, the Sn-poor

composition resulted in poor absorber quality and high

concentrations of another detrimental deep defects of CuSn
(Haass et al., 2018; Xu et al., 2020; Guo et al., 2022), which is

also harmful to the solar cell performance. The substitution of Sn

with the same group element of Ge is another adoptable measure

to mitigate the unfavorable deep defects associated with Sn

(Neuschitzer et al., 2018; Xu et al., 2021b). Our recent work

has demonstrated that SnZn deep traps in CZTSSe absorber layer

could be modified by incorporation of small amounts of Ge

(Deng et al., 2021), whereas high Ge amounts not only resulted in

imperfections of absorber quality because of uncontrolled

evaporation of volatile Ge-Se species, but also brought about

high density of deep midgap defects, both of which are

detrimental to the solar cell performance (Collord and

Hillhouse, 2016; Giraldo et al., 2018).

The recent theoretical and experimental results indicate that the

Sb dopant in CZTSSe absorber has positive effect on Sn disorder

(Zhang et al., 2017; Tiwari et al., 2018), which can been rationalized

by their small difference in ionic radii, resulting in smaller lattice

relaxations and lower formation energy of SbSn antisites compared
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with other intrinsic Sn-related defects in CZTSSe. In this work, Sb3+

was introduced into CZTSSe absorber by a modified selenization

process using both of Sb2Se3 and Se as evaporation source. The effect

of different amount of Sb2Se3 source on the morphology, element

distribution of CZTSSe absorber, as well as photovoltaic performance

of final CZTSSe solar cells were systematically studied. Furthermore,

using deep-level transient spectroscopy (DLTS), the conclusive

evidence that Sb3+ doping could suppress a number of harmful

SnZn defect states within CZTSSe was provided. Benefitting from the

engineering of the defect characteristics via Sb3+ doping, the VOC of

CZTSSe solar cell is enhanced from 449 to 505mV, achieving a

champion efficiency of 11.75%.

Materials and methods

Materials

Nano powder of copper (Cu, 99.9%) was purchased from

Macklin Reagent Company (China). Zinc powder (Zn, 99.9%),

tin powder (Sn, 99%), sulfur powder (S, 99.9%), selenium

powder (Se, 99.9%), antimony triselenide pellets (Sb2Se3, 99.99%),

thiourea (NH2CSNH2, 99%); cadmium sulfate (CdSO4·8/3H2O,

99%), ethanolamine (C2H7NO, 99.5%), and 2-methoxyethanol

(C3H8O2, 99.7%) were purchased from Aladdin. Ammonium

hydroxide (NH4OH, 25%) was purchased from Tianjin Fuyu

Fine Chemical Co., Ltd. Thioglycolic acid (C2H4O2S, 98%) was

purchased from Acros Organics Company. 1,2-ethylenediamine

(H2NCH2CH2NH2, 99%) and 2-ethanedithiol (HSCH2CH2SH,

98+%) were obtained from Alfa Aesar. All chemicals used in this

study were used without further purification.

Fabrication of kesterite absorber film and
solar cells

CZTSSe precursor solution was prepared by dissolving the

elemental Cu, Zn, Sn, S, and Se into the mixture of 1,2-

ethanedithiol and 1,2-ethylenediamine, which was described

by the authors’ previous works (Deng et al., 2021), CZTSSe

precursor films were obtained by spin-coating the precursor

solution on Mo substrate, followed by sintering on a hot plate

at 330°C for 3 min. This spin-coating and annealing procedure

was repeated several times in a glove box until a desired

thickness of 2 µm was obtained. The normal selenization

processes were conducted in a rapid thermal processing

(RTP) furnace using a graphite box containing the as-

prepared CZTSSe films and excess selenium particles at

550°C for 15 min. For the co-selenization process, extra

Sb2Se3 with mass of 60, 70 and 80 mg respectively was

placed into the identical graphite box before annealing.

After selenization, a buffer layer of CdS, as well as window

layer of ZnO and ITO were successively deposited onto the

CZTSSe thin films by chemical bath deposition and

magnetron sputtering. The CZTSSe solar cells were finally

finished with thermal evaporated Ag top grid contact.

CZTSSe film and device characterization

X-ray diffraction (XRD) measurements were carried out

using a Bruker AXS (D8 Advance) with Cu Ka radiation

(1.5405 Å). Raman spectra were measured with a Renishaw

in Via Raman microscope system with a 532 nm wavelength

excitation laser. The morphology and compositional analysis

were performed by a field emission scanning electron

microscope equipped with Energy Dispersive X-ray

spectroscopy (EDS) (FESEM, Nova Nano SEM 450). The

J–V curves and parameter were tested with a solar

simulator (Zolix SS150) with an AM1.5 solar spectrum

filter. EQE was carried out using Zolix QE system

(SCS100). The DLTS measurements were carried out using

an FT-1030 HERA DLTS system equipped with a JANIS VPF-

800 heat controller. Electrochemistry impedance spectroscopy

(EIS) were measured using an Autolab electrochemical

workstation (AUT302N).

FIGURE 1
(A) XRD pattern and (B) Raman spectra of CZTSSe films selenized with different Sb2Se3 contents.
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Results and discussion

In order to introduce Sb into the CZTSSe absorption layer,

Sb2Se3 & Se mixed atmosphere was employed in the

selenization of CZTSSe precursor film. To identify the

change in the crystal structure of annealed CZTSSe films,

X-ray diffraction (XRD) patterns of the selenized CZTSSe thin

films with different Sb2Se3 content ranging from 60 to 80 mg

were measured. At the same time, the customary selenizing

films using only Se source was also examined as reference. As

shown in Figure 1A, all samples exhibit a pure kesterite crystal

structure with main diffraction peaks of 27.28°, 45.25°, and

53.64°, which can be indexed to the (112), (204), and (312)

planes of the CZTSSe phase (JCPDS # 52-0868) (Xiao et al.,

2016; Li et al., 2021). It is clear that introduction of Sb2Se3 in

selenization did not bring additional secondary phase. To

further confirm the phase purity of selenized CZTSSe thin

films, Raman spectra were carried out and shown in Figure 1B.

The samples with different selenization condition present

almost similar Raman spectra. All the peaks in the

selenized thin films were consistent well with kesterite

structure of the CZTSSe. No distinct peaks corresponding

to any binary and ternary impurity phases could been

detected. Thus, according to the XRD and Raman spectra

results, it is reasonable to conclude that Sb-doped CZTSSe

thin films without any possible impurity phases were obtained

in the co-selenization annealing treatment with Se and Sb2Se3.

To investigate the effect of Sb-doping on the microscopic

morphology of the selenized CZTSSe film, scanning electron

microscopy (SEM) characterization on samples annealed under

different quantity of Sb2Se3 were performed. As shown in

Figure 2, the top surface of CZTSSe films are composed of

large grains in a few micrometers after selenization. When the

CZTSSe precursor film was annealed under a Se and Sb2Se3

FIGURE 2
Top-view and cross sectional SEM images of CZTSSe films
selenized with different Sb2Se3 contents: (A) and (E) 0 mg, (B) and
(F) 60 mg, (C) and (G) 70 mg, (D) and (H) 80 mg.

FIGURE 3
J-V curves of the best devices with CZTSSe films selenized
under different Sb2Se3 contents.

TABLE 1 Summary of the Photovoltaic Performances for CZTSSe
devices with the absorber selenized under different condition.

Device VOC (mV) JSC (mA/cm2) FF (%) PCE (%)

References 449 33.55 60.94 9.17

60 mg 471 34.99 65.54 10.81

70 mg 505 35.31 65.88 11.75

80 mg 476 34.10 64.60 10.48
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environment, the SEM images (Figures 2B,C) display a clear

increase in the grain sizes, indicating that the Se&Sb2Se3 co-

selenization process can significantly promote the growth of

grains. However, a few voids can be seen on the surface of

CZTSSe films when the quantity of Sb2Se3 was further increased

to 80 mg (Figure 2D), which can been ascribed to the overgrowth

of CZTSSe films induced by incorporation of Sb (Liu et al., 2021).

On the basis of the previous results, the accelerative grain growth

of kesterite thin films by Sb doping was resulted from the liquid-

assisted grain growth due to the formation of low-melting Sb2Se3
during the annealing process (Guo et al., 2015; Cai et al., 2020).

The cross-sectional SEM images indicate that the CZTSSe films

are composed by a typical double-layer structure with bigger

grains at the surface and smaller grains at the bottom. In

addition, the incorporation of Sb resulting in increasing the

grain size at the surface can be further demonstrated from the

cross section SEM images. The bigger crystals reduce the grain

boundaries at the top CZTSSe layer, accordingly reducing the

recombination of photo-generated carriers, which is beneficial to

the VOC of a CZTSSe photovoltaic device. The EDS mapping

images of Sb-doped CZTSSe films revealed that Sb is evenly

distributed in the entire absorption layer, consistent with the

distribution of other metal elements of Cu, Zn and Sn

(Supplementary Figure S1), indicating that there is no obvious

phase separation in the Se&Sb2Se3 co-selenized CZTSSe films,

which is in good agreement with the XRD and Raman results.

The influence of Se&Sb2Se3 co-selenization and

incorporation of Sb into CZTSSe absorber layer on final solar

cell performance was evaluated. Figure 3 presents the J-V

characteristics of the best-performing CZTSSe photovoltaic

devices with different amount of Sb-doping. The devices used

CZTSSe films selenized annealing only in a Se environment

exhibited a power conversion efficiency (PCE) of 9.17% with

short-circuit current density (JSC), VOC, and FF values of

33.55 mA cm−2, 449 mV, and 60.94%, respectively. The

CZTSSe films selenized with Se and 70 mg Sb2Se3 produced

the best PCE of 11.75%, with a VOC of 505 mV, a JSC of

35.31 mAcm−2 and a FF of 65.88%. All the three photovoltaic

parameters increase with increasing Sb2Se3 content using in

selenization, especially the VOC. With further increase of the

quantity of Sb2Se3 to 80 mg, the VOC exhibits an obvious drop,

while JSC and FF show slight decrease, probably because the voids

formed at the surface of CZTSSe films have deteriorated the

quality of p-n junction, as demonstrated by SEM results. The

corresponding photovoltaic parameters extracted from the J-V

curves are shown in Table 1. Figure 4 shows statistical

distributions of PCE recorded from 20 individual cells of each

selenization condition, and the mean of photovoltaic parameters

are displayed in Supplementary Table S1, which further

demonstrated the efficiency of the Sb doped devices is

significantly improved. Moreover, the distribution is relatively

concentrated, indicating good repeatability and credibility.

FIGURE 4
Statistical distribution of solar cell efficiency with CZTSSe films selenized under different Sb2Se3 contents: (A) 0 mg, (B) 60 mg, (C) 70 mg, (D)
80 mg
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The external quantum efficiency (EQE) curves of the

best-performing CZTSSe solar cells with and without Sb-

doping were compared, as displayed in Figure 5A. It is

observed that the EQE are almost the same in the

wavelength range of 350-550 nm. However, in the range of

550-1100 nm, the Sb-doped CZTSSe solar cells exhibits a

slight increase of light response, indicating better quality of

CZTSSe/CdS heterojunction and fewer defect energy level in

the absorber layer than the control device. The

corresponding bandgaps of CZTSSe films are compared in

Figure 5B, which are graphically determined from the EQE

data by plotting [E×ln (1−EQE)]2 versus E. As can be seen,

there is no obvious change in bandgaps of CZTSSe films

using a standard selenization process and Se&Sb2Se3 co-

selenization process, which are all calculated as 1.075 eV,

suggesting the significant VOC improvement of the Sb-doped

CZTSSe devices was not lies in the bandgap change of

CZTSSe absorber layer. In addition, Urbach band-tail

analysis was performed to examine the band tailing for

both devices. As depicted in the Supplementary Figure S2,

the value of Urbach tail energy (Eu) is estimated to be 52 and

30 meV for the pristine CZTSSe device and Sb doped-

CZTSSe device. A distinctly lower Eu for the absorber

with Sb-doping indicates that the band tailing is reduced

compared with that of the undoped CZTSSe film, which is

probably linked to the decreased amount of antisite defects

upon Sb incorporation (Zhao et al., 2021).

The underlying mechanism for Sb-doping induced

performance improvement is further analyzed by DLTS,

aiming at gaining insights on change of defects properties in

FIGURE 5
EQE curves (A) and bandgap estimation (B) of the champion
pristine CZTSSe device and Sb doped-CZTSSe device.

TABLE 2 SnZn deep defect metrics of the champion pristine CZTSSe
device and Sb doped-CZTSSe device.

Device Peak temp (K) Ea (eV) NT (cm−3) Defect level

References 310 0.558 9.91×1013 SnZn

70 mg 307 0.507 3.80×1012 SnZn

FIGURE 6
(A)DLTSmeasurements of the champion pristine CZTSSe device and Sb doped-CZTSSe device, (B) Arrhenius plots corresponding to the peaks
derived from the DLTS spectra.
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the Sb-incorporated CZTSSe absorber layer. DLTS

measurements were carried out on the best-performing

CZTSSe devices with and without incorporation of Sb.

Figure 6 shows the results of capacitance-mode DLTS

(C-DLTS) measurement at the temperature range of

150–280 K, and the reverse biased (VR), pulse voltage (VP),

and pulse width were set at 0.4 V, - 0.2 V, and 10 ms,

respectively. As can be seen from Figure 6A, both devices

display an obvious peak at about 310K, indicating that a deep

level defect is detected here. Compared with the reference device,

the DLTS peak of the CZTSSe device treated with 70 mg Sb2Se3 is

significantly narrowed, demonstrating a faster carrier emission

rate and thus a more minor carrier recombination. The defect

activation energies (Ea) and density (NT) deduced from the

Arrhenius curves of ln (τVthNv) versus 1000/T are depicted in

Figure 6B, and the detailed values are shown in Table 2.

According to the reported value of Ea in previous literatures

(Nisika et al., 2020), the measured deep-level defects with Ea of

0.558 eV for pristine and 0.507 eV for Sb-doped CZTSSe device

can been identified as SnZn donor defects. One can see that the

incorporation of Sb significantly reduced the Ea of SnZn donor

defects, which could speed up the emission rate of minority

carriers from the electron trapping. Furthermore, over one-

order-lower defect density upon Sb introduction has been

demonstrated as expected. In prior research, it has been

verified that SnZn antisite defect was the main reason for large

VOC loss (Li et al., 2019; Du et al., 2021). Therefore, the sharp

improved VOC in Sb-doped kesterite photovoltaic devices can

been well explained by the suppression of SnZn deep-donor states

in CZTSSe absorber layer.

Finally, to further illustrate the effect of Sb doping on the

collection efficiency of the CZTSSe photovoltaic devices,

electron beam-induced current (EBIC) measurements were

performed on the pristine and 70 mg Sb2Se3 treated devices.

Figures 7A,B comparatively show the EBIC images across the

cross section of the two devices. Bright areas in the EBIC image

indicate regions of effective collection of minority carriers, and

its depth is a reflection of depletion width and minority

diffusion length (Chantana et al., 2019; Raghuwanshi et al.,

2020). As can be seen that the bright regions are mainly located

at the upper absorber layer, indicating high-efficiency

collection of photo-generated carriers at the top of large-

grained CZTSSe films. From the normalized EBIC signals

along the dotted arrow of both CZTSSe devices (Figure 7C),

it is clear that the EBIC signal is dramatically enhanced after Sb

incorporation in the regions from CZTSSe/CdS p-n junction to

upper CZTSSe film, implying the improved carrier collection

capability and prolonged minority diffusion length, which can

be ascribed to substantially reducing SnZn deep defects. The

EBIC findings echo the DLTS results above and clearly

demonstrate that Sb doping is beneficial to quenching the

SnZn deep-trap levels in CZTSSe absorber layer and hence

reduce nonradiative recombination in CZTSSe photovoltaic

devices. EIS was further applied to probe the characteristics of

minority carrier recombination, as shown in Supplementary

Figure S3. A significantly enhanced recombination resistance is

observed in CZTSSe solar cells treated with 70 mg Sb2Se3,

indicating Sb-doping can decrease the recombination center

in the bulk of CZTSSe film, which is consistent with the EBIC

results.

FIGURE 7
The EBIC images of pristine CZTSSe device (A) and Sb doped-CZTSSe device (B), (C) is the corresponding normalized intensity profiling along
the dashed line in (A,B).
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Conclusion

In summary, this work presents an effective approach to

introduce Sb into CZTSSe absorber layer by a facile Sb2Se3 and Se

co-selenization process. The influence of Sb2Se3 contents used

during the co-selenization process on the morphology and

structure, as well as electrical properties of CZTSSe films was

evaluated. With the optimized doped content of Sb, the CZTSSe

solar cell efficiency enhanced from 9.17% to 11.75%, with an

open-circuit voltage progressively increased to 505 from 449 mV.

DLTS and EBIC results revealed that SnZn antisite defects were

dramatically passivated because of the incorporation of Sb,

resulting in significantly reduced deep trap density and

improved collection ability. This study provides a simple and

promising doping strategies for engineering the defect

characteristics in kesterite film, which would help decrease the

VOC deficit for future high-performance kesterite solar cells.
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