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We report the formulation of a new, cost-effective approximation method in

the time-dependent optimized coupled-cluster (TD-OCC) framework [T. Sato

et al., J. Chem. Phys. 148, 051101 (2018)] for first-principles simulations of

multielectron dynamics in an intense laser field. Themethod, designated as TD-

OCCD(T), is a time-dependent, orbital-optimized extension of the “gold-

standard” CCSD(T) method in the ground-state electronic structure theory.

The equations of motion for the orbital functions and the coupled-cluster

amplitudes are derived based on the real-valued time-dependent variational

principle using the fourth-order Lagrangian. The TD-OCCD(T) is size extensive

and gauge invariant, and scales as O(N7) with respect to the number of active

orbitals N. The pilot application of the TD-OCCD(T) method to the strong-field

ionization and high-order harmonic generation from a Kr atom is reported in

comparison with the results of the previously developed methods, such as the

time-dependent complete-active-space self-consistent field (TD-CASSCF),

TD-OCC with double and triple excitations (TD-OCCDT), TD-OCC with

double excitations (TD-OCCD), and the time-dependent Hartree-Fock

(TDHF) methods.
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1 Introduction

Recent years witnessed unprecedented progress in laser technologies, which made it

possible to observe the motions of electrons at the attosecond time scale (Itatani et al.

(2004); Corkum and Krausz (2007); Krausz and Ivanov (2009); Baker et al. (2006)). On

the other hand, various theoretical and numerical methods have been developed for

interpreting, understanding, and predicting the experiments.
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The multi-configuration time-dependent Hartree-Fock

(MCTDHF) method (Caillat et al. (2005); Kato and Kono

(2004); Nest et al. (2005); Haxton et al. (2011); Hochstuhl and

Bonitz (2011)), and the time-dependent complete-active-space

self-consistent-field (TD-CASSCF) method (Sato and Ishikawa

(2013); Sato et al. (2016); Sato et al. (2018a)) are the most

rigorous approaches to solve time-dependent Schrödinger

equation (TDSE) of many-electron systems, where the

wavefunction is given by the full configuration interaction

(FCI) expansion,

Ψ t( ) � ∑
I

CI t( )ΦI t( ), (1)

with both CI coefficients {CI(t)} and orbital functions {ψp(t)}

constituting Slater determinants {ΦI(t)} are propagated in time

according to the time-dependent variational principle (TDVP).

The TD-CASSCF method broadens the applicability of the

MCTDHF method by flexibly classifying the orbital subspace

into frozen-core, dynamical-core, and active. Unfortunately, the

factorial computational scaling impedes large-scale applications.

There are reports of various affordable size-inextensive methods

(Miyagi and Madsen (2013, 2014); Haxton and McCurdy (2015);

Sato and Ishikawa (2015)) developed by limiting the CI

expansion of the wavefunction. Alternatively, the size-

extensive coupled-cluster method, which relies on an

exponential wavefunction, is a superior choice to address

these problems with a polynomial cost-scaling (Kümmel

(2003); Shavitt and Bartlett (2009)). We have developed an

explicitly time-dependent coupled-cluster method considering

optimized orthonormal orbitals within the flexibly chosen active

space, called the time-dependent optimized coupled-cluster (TD-

OCC) method, (Sato et al. (2018b)) including double (TD-OCCD)

and double and triple excitation amplitudes (TD-OCCDT). Our

method is a time-dependent formulation of the stationary

optimized coupled-cluster method (Scuseria and Schaefer (1987);

Sherrill et al. (1998); Krylov et al. (1998)). Kvaal (Kvaal (2012))

also developed an orbital adaptive time-dependent coupled-cluster

(OATDCC) method using biorthogonal orbitals. We take note of a

few reports on the time-dependent coupled-cluster methods (Huber

and Klamroth (2011); Pigg et al. (2012); Nascimento and DePrince

(2016)), using time-independent orbitals, and their interpretation

(Pedersen and Kvaal (2019); Pedersen et al. (2021)), including the

very initial attempts (Schonhammer (1978); Hoodbhoy and Negele

(1978, 1979)).

The TD-OCCDT scales as O(N8) (N= the number of active

orbitals), not ideally suited for applications to larger chemical

systems. Therefore, we have developed a few lower costmethods in

the TD-OCC framework (Pathak et al. (2020b,c,a, 2021)). We find

triple excitations are necessary, including perfect optimization of

the orbitals. Therefore, we are interested in developing affordable

TD-OCCmethods retaining a part of the triples. Themost popular

coupled-cluster method that treats the triple excitation amplitudes

approximately is called CCSD(T) (Raghavachari et al. (1989);

Watts et al. (1993)). Bozkaya et al, (Bozkaya and Schaefer

(2012)) included various symmetric and asymmetric triple

excitation corrections to their optimized double (OD) method.

In this communication, we report the formulation and

implementation of the CCSD(T) method in the time-dependent

optimized coupled-cluster framework, TD-OCCD(T). Following

our previous works (Sato et al. (2018b); Pathak et al. (2020b,c,

2021)), we exclude single excitation amplitudes but optimize the

orbitals according to time-dependent variational principle (TDVP).

As the first application of this method, we study electron dynamics in

Kr using intense near-infrared laser fields.

2 Methods

The second quantization representation of the Hamiltonian,

including the laser field, is as follows,

Ĥ � hμ] t( )ĉ†μĉ] +
1
2
uμγ
]λ ĉ

†
μĉ

†
γ ĉλ ĉ] (2)

where ĉ†μ (ĉμ) represents a creation (annihilation) operator in a

complete, orthonormal set of 2nbas time-dependent spin-orbitals

{ψμ(t)}. nbas is the number of basis functions used for expanding

the spatial part of ψμ, which, in the present real-space

implementation, corresponds to the number of grid points, and

hμ] t( ) � ∫ dx1ψ
p
μ x1( ) h0 + Vext[ ]ψ] x1( ), (3)

uμγ
]λ � ∫∫ dx1dx2

ψp
μ x1( )ψp

γ x2( )ψ] x1( )ψλ x2( )
|r1 − r2| , (4)

where xi = (ri, σi) represents a composite spatial-spin coordinate.

h0 is the field free one-electronic Hamiltonian and Vext = A(t)pz

FIGURE 1
Time evolution of dipole moment of Kr irradiated by a laser
pulse with a wavelength of 800 nm and a peak intensity of 2 ×
1014 W/cm2 calculated with TDHF, TD-OCCD, TD-OCCD(T), and
TD-CASSCF methods.
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in the velocity gauge, A(t) = −∫tE(t′)dt′ is the vector potential,

with E(t) being the laser electric field linearly polarized along the

z axis.

The complete set of 2nbas spin-orbitals (labeled with μ, ], γ, λ)
is divided into nocc occupied (o, p, q, r, s) and 2nbas − nocc virtual

spin-orbitals. The coupled-cluster (or CI) wavefunction is

constructed only with occupied spin-orbitals, which are time-

dependent in general, and virtual spin-orbitals form the

orthogonal complement of the occupied spin-orbital space.

The occupied spin-orbitals are classified into ncore core spin-

orbitals, which are occupied in the reference Φ and kept

uncorrelated, and N = nocc − ncore active spin-orbitals (t, u, v,

w) among which the active electrons are correlated. The active

spin-orbitals are further split into those in the hole space (i, j, k, l)

and the particle space (a, b, c, d), which are defined as those

occupied and unoccupied, respectively, in the reference Φ. The

core spin-orbitals can further be split into frozen-core space (i′′,
j′′), fixed in time and the dynamical-core space (i′, j′), propagated
in time (Sato and Ishikawa (2013)) (See. Figure 1 in Sato et al.

(2018b) for a pictorial illustration).

The real action formulation of the TDVP with orthonormal

orbitals is our guiding principle, (Sato et al. (2018b))

S � Re∫t1

t0

Ldt � 1
2
∫t1

t0

L + Lp( )dt, (5)

L � 〈Φ| 1 + Λ̂( )e−T̂ Ĥ − i
z

zt
( )eT̂|Φ〉, (6)

T̂ � T̂2 + T̂3/ � τabij Ê
ab

ij + τabcijk Ê
abc

ijk/ , (7)
Λ̂ � Λ̂2 + Λ̂3/ � λijabÊ

ij

ab + λijkabcÊ
ijk

abc/ , (8)

where τab/ij/ (λij/ab/) are (de-)excitation amplitudes, and

Ê
ab/
ij/ � ĉ†ab̂

†

b/ĉjĉi. The stationary conditions, δS = 0, with

respect to the variation of the parameters of the wavefunction

(δτab/ij/ , δλij/ab/, and δψμ) gives us the corresponding equations of

motions (EOMs), δψμ is orthonormality-conserving orbital

variation.

For deriving the TD-OCCD(T) method, we first construct a

fourth-order Lagrangian defined in Pathak et al. (2021). We

make a further approximation to the Lagrangian and write

separating it into two parts,

L 4( )
CCD T( ) � L0 + 〈Φ| 1 + Λ̂2( ) �f + v̂( )eT̂2[ ]

c
|Φ〉 − iλijab _τ

ab
ij (9a)

+〈Φ|Λ̂2
�f + v̂( )T̂3[ ]

c
|Φ〉 + 〈Φ|Λ̂3

�fT̂3( )
c
|Φ〉

+〈Φ|Λ̂3 v̂T̂2( )
c
|Φ〉 − iλijkabc _τ

abc
ijk , (9b)

where �f � f̂ − iX̂, f̂ � (hpq + vpjqj ){Êp
q }, v̂ � vprqs {Êpr

qs }/4, and

vprqs � uprqs − uprsq , X̂ � Xμ
] Ê

μ
] , and Xμ

] � 〈ψμ| _ψ]〉 is anti-

Hermitian. The double amplitudes are obtained by making

L(4)CCD(T) of Eq. 9a stationary with respect to δS/δλijab(t) � 0,

δS/δτabij (t) � 0, the triples by making Eq. 9b stationary with

respect to δS/δλijkabc(t) � 0, and δS/δτabcijk (t) � 0,

i _τabij � vabij − p ij( )�fk

jτ
ab
ik + p ab( )�fa

cτ
cb
ij

+ 1
2
vabcdτ

cd
ij + 1

2
vklijτ

ab
kl + p ij( )p ab( )vakic τcbkj

− 1
2
p ij( )τabik τcdjl vklcd + 1

2
p ab( )τbcij τadkl vklcd

+ 1
4
τabkl τ

cd
ij v

kl
cd +

1
2
p ij( )p ab( )τbcil τadjk vklcd

(10)

−i _λijab � vijab − p ij( )�fi

kλ
kj
ab + p ab( )�fc

aλ
ij
cb

+ 1
2
vcdabλ

ij
cd +

1
2
vijklλ

kl
ab + p ij( )p ab( )vcjkbλikac

− 1
2
p ij( )λikcdτcdkl vjlab + 1

2
p ab( )λklbcτcdkl vijad

+ 1
4
λklabτ

cd
kl v

ij
cd +

1
2
p ij( )p ab( )λjkacτcdkl vilbd

− 1
2
p ij( )λikabτcdkl vjlcd

+ 1
2
p ab( )λijbcτcdkl vklad +

1
4
λijcdτ

cd
kl v

kl
ab

(11)

i _τabcijk � p k/ij( )p a/bc( )vbcdktadij − p i/jk( )p c/ab( )vlcjktabil
− p k/ij( )�fl

kτ
abc
ijl + p c/ab( )�fc

dτ
abd
ijk ,

(12)

−i _λijkabc � p k/ij( )p a/bc( )vdkbc λijad − p c/ab( )p i/jk( )vjklc λijab
+ p c/ab( )�fd

c λ
ijk
abd − p k/ij( )�fk

l λ
ijl
abc

+ p i/jk( )p a/bc( )�fi

aλ
jk
bc ,

(13)

where p(μ]) and p(μ|]γ) are the permutation operators; p(μ])
Aμ] = Aμ] − A]μ, and p(μ/]γ) = 1 − p(μ]) − p(μγ).

The EOM for the orbitals can be written down in the

following form Sato et al. (2016),

i| _ψp〉 � 1̂ − P̂( )F̂|ψp〉 + i|ψq〉Xq
p, (14)

where 1̂ � ∑μ|ψμ〉〈ψμ| is the identity operator within the space

spanned by the given basis, P̂ � ∑q|ψq〉〈ψq| is the projector onto
the occupied spin-orbital space, and

F̂|ψp〉 � ĥ|ψp〉 + Ŵ
r

s |ψq〉Pqs
or D−1( )op, (15)

where D and P are Hermitialized one- (1RDM) and two-

(2RDM) particle reduced density matrices defined in Sato

et al. (2018b), and Wr
s is the mean-field operator (Sato and

Ishikawa (2013)). The matrix element Xq
p includes

orbital rotations among various subspaces. Non-redundant

orbital rotations are determined by i(δabDj
i−

Da
bδ

j
i )Xb

j � Fa
pD

p
i −Da

pF
ip
p − i

8 _τ
abc
ijk λ

jk
bc − i

8τ
abc
ijk

_λ
jk

bc . Redundant

orbital rotations {Xi′
j′}, {Xi

j}, and {Xa
b} can be arbitrary

antiHermitian matrix elements. The general expressions for

the RDMs are the same as in the TD-OCCDT(4) method

(Pathak et al. (2021)).

3 Numerical results and discussion

Our numerical implementation has an interface with the

Gaussian09 program (Frisch et al. (2009)) for checking ground

state energy with the standard Gaussian basis results. We study

BH molecule with double-ζ plus polarization (DZP). We have
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reported ground state energy computed by propagating in the

imaginary time for OCCD and OCCD(T) methods in Table 1

and compared those with the optimized double and asymmetric

triple excitation corrections for the orbital-optimized doubles

method of Bozkaya et al., Bozkaya and Schaefer (2012). We also

compare our OCCD ground state energy result with Krylov

et al.,Krylov et al. (1998) within the chosen active space of six

electrons correlated among the six optimized active orbitals. We

obtained a perfect agreement for all available values.

We have used a spherical-finite-element-discrete-variable

representation (FEDVR) basis for representing orbital

functions, Sato et al. (2016); Orimo et al. (2018) χklm(r, θ,ψ) �
1
rfk(r)Ylm(θ,ϕ) where Ylm and fk(r) are spherical harmonics and

the normalized radial-FEDVR basis function, respectively. The

expansion of the spherical harmonics continued up to the

maximum angular momentum Lmax, and the radial FEDVR

basis supports the range of radial coordinate 0 ≤ r ≤ Rmax,

with cos1/4 mask function used as an absorbing boundary for

avoiding unphysical reflection from the wall of the simulation

box. We have used lmax = 72, and the FEDVR basis supporting

the radial coordinate 0 < r < 300 using 78 finite elements each

containing 25 DVR functions. The absorbing boundary is

switched on at r = 180 in all our simulations. The Fourth-

order exponential Runge-Kutta method (Hochbruck and

Ostermann (2010)) is used to propagate the EOMs with

20000 time steps for each optical cycle. We run the

simulations for a further 6,000 time steps after the end of the

pulse. In all correlation calculations, eight electrons of 4s4p

orbitals are considered as active and correlated among

thirteen active orbitals. We report simulation results

computed using a three-cycle laser pulse with a central

wavelength of 800 nm having intensity 2 × 1014 W/cm2 and a

period of T = 2π/ω0 ~ 2.67 fs.

We report the time evolution of dipole moment of Kr in

Figure 1 and in Figure 2 single electron ionization probability.

Time-dependent dipole moment is evaluated as a trace

〈ψp|ẑ|ψq〉D
q
p using 1RDMs. For the single electron ionization

probability, we computed the probability of finding an electron

outside a sphere of a radius of 20 a.u. using RDMs defined in Refs.

19; 20; 37. We compare the results of TD-CASSCF, TD-

OCCD(T), TD-OCCD, and TDHF methods.

We observe a substantial underestimation (both in Figure 1,

and Figure 2) by the TDHF method due to the lack of correlation

treatment. All correlation methods perform according to their

ability to treat electron correlation. We also computed results

using the TD-OCCDT method but not reported here since those

results are not identifiable from the TD-CASSCF results within

the graphical resolution.

Next, we report high-harmonic generation in Figure 3. It is

calculated by squaring the modulus I(ω) = |a(ω)|2 of the Fourier

transform of the expectation value of the dipole acceleration with

a modified Ehrenfest expression (Sato et al. (2016)). In panel (c)

of Figure 3, we plot the absolute relative deviation (δ(ω), of the

spectral amplitude a(ω) from the TD-CASSCF value for each

method. All methods qualitatively predict similar HHG spectra

with TDHF underestimates the spectral intensity. The relative

deviation of results from TD-CASSCF ones follows the general

trend TDHF>TD-OCCD>TD-OCCD(T)>TD-OCCDT, the

same as what we observe for the time-dependent dipole

moment and single ionization probability. We also simulated

results with lower and higher intensity. However, the trend

remains the same.

Finally, we make a tally of computational costs for all the

methods considered in this article. All simulations performed

using an Intel(R) Xeon(R) Gold 6,230 central processing unit

(CPU) with 40 processors with a clock speed of 2.10 GHz, and

report total simulations time in Table 2. Further, we report a

reduction in the computational cost for various TD-OCC

methods relative to the TD-CASSCF. We see a massive 63%

cost reduction for the TD-OCCD(T) method, which is larger

TABLE 1 Comparison of the ground state energy of BH (re=2.4 bohr)
molecule in DZP basisa.

Method This work References

OCCDb − 25.225 591 67 − 25.225 592 Bozkaya and Schaefer (2012)

OCCD(T)b − 25.226 913 29 − 25.226 913 Bozkaya and Schaefer (2012)

OCCDc − 25.178 285 70 − 25.178 286 Krylov et al. (1998)

OCCD(T)c − 25.178 301 00

aGaussian09 program (Frisch et al. (2009)) is used to generate the required one-electron,

two-electron, and overlap integrals, required for the imaginary time propagation of

EOMs in the orthonormalized Gaussian basis. A convergence cut-off of 10–15 Hartree of

energy difference is chosen in subsequent time steps.
bSix electrons correlated within the full basis set.
cSix electrons correlated within the six optimized active orbitals.

FIGURE 2
Time evolution of single ionization probability of Kr irradiated
by a laser pulse with a wavelength of 800 nm and a peak intensity
of 2 × 1014 W/cm2 calculatedwith TDHF, TD-OCCD, TD-OCCD(T),
and TD-CASSCF methods.
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than for the TD-OCCDT method (58%), and a minimal increase

from the TD-OCCD method.

4 Concluding remarks

We have reported the formulation and implementation of

the TD-OCCD(T) method. As the first application, we

employed this method to study laser-driven dynamics in

Kr exposed to an intense near-infrared laser pulse. We

observe a 63% cost reduction in comparison to the TD-

CASSCF method without losing much accuracy.

Therefore, we conclude that TD-OCCD(T) method will

certainly be beneficial in exploring highly accurate ab

initio simulations of electron dynamics in larger

chemical systems.
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FIGURE 3
The HHG spectra (A,B) and the relative deviation (C) of the
spectral amplitude from the TD-CASSCF spectrum from Kr
irradiated by a laser pulse with a wavelength of 800 nm and a peak
intensity of 2 × 1014 W/cm2 with various methods.

TABLE 2 Comparison of the total simulation timea (in min) spent for
TD-CASSCF, TD-OCCDT, TDCCD(T), and TD-OCCD methods.

Method Time (min) Cost reduction (%)

TD-CASSCF 47303 . . .

TD-OCCDT 19697 58

TD-OCCD(T) 17504 63

TD-OCCD 17494 63

aTime spent for the simulation of Kr atom for 66000 time steps (0 ≤ t ≤ 3.3T) of a real-

time simulation (I0 = 2 × 1014 W/cm2 and λ = 800 nm), using an Intel(R) Xeon(R) Gold

6230 CPU with 40 processors having a clock speed of 2.10 GHz.
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