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Cortex Fraxini is an important traditional Chinese herbal medicine with various

medical functions. Aesculin and aesculetin are the main effective components

of Cortex Fraxini. The fluorescence signals of the two compounds have a high

degree of overlap with each other, making quantitative analysis difficult with

conventional analytical methods. In the present study, different chemometrics

methods, including lasso regression (LAR), interval partial least squares (iPLS),

and multidimensional partial least squares (N-PLS) methods, were employed

and combined with excitation–emission matrix (EEM) fluorescence for the

purpose of accurate quantification of aesculin and aesculetin in Cortex

Fraxini samples. The most satisfactory results were obtained by using the

N-PLS method based on the EEM spectra without scatterings, with

correlation coefficient of calibration and prediction values higher than

0.9972 and 0.9962, respectively, root mean squared errors for calibration

and prediction values lower than 0.0304 and 0.1165, respectively, and

recovery values in the range of 83.32%–104.62%. The obtained credible

models indicated that the N-PLS method combined with EEM spectra has

the advantages of being green, low cost, and accurate and it is a good strategy

for the determination of active compounds in complex samples. To further

confirm the accuracy of the obtained results, the same samples were analyzed

by the recognized ultra-performance liquid chromatography method.
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1 Introduction

Chinese herbal medicine is a natural resource with abundant

sources. It is widely used in the treatment of diseases in China

and neighboring countries. Compared with western medicine,

Chinese herbal medicine is popular with people because of its low

toxicity and few side effects. Cortex Fraxini (Chinese name Qin-

pi) is an important traditional Chinese herbal medicine that has

been used to treat gout, arthritis, hyperuricemia, and other

diseases (Wang et al., 2016a) for over 2000 years. Coumarin

compounds are the main chemical active ingredients in Cortex

Fraxini medicinal materials, which have obvious effect in the

treatment of primary hyperuricemia (Zhou et al., 2018).

Nowadays, numerous methods exist for the quantitative

analysis of target ingredients of Chinese herbal medicines or

their formulas, including high-performance liquid

chromatography (HPLC), ultra-performance liquid

chromatography (UPLC), liquid chromatography–mass

spectrometry (LC-MS), gas chromatography–mass

spectrometry (GC-MS), ultra-high-performance supercritical

fluid chromatography (UHPSFC), Fourier-transform infrared

(FTIR) spectroscopy, excitation–emission matrix (EEM)

fluorescence spectroscopy, terahertz (THz) spectroscopy, and

proton nuclear magnetic resonance (1H NMR) spectroscopy.

Among these methods, EEM spectroscopy has the advantages

of rapidity, simplicity, low cost, high sensitivity, and non-

destructiveness. At present, a large number of reports on the

analysis of ingredients in foods and medicines by fluorescence

spectroscopy combined with chemometrics methods have been

reported, and a few examples include those of Bai et al. (2018),

Liu et al. (2019), Wang et al. (2017), and Li et al. (2021). These

successful examples demonstrated that fluorescence

spectroscopy combined with chemometrics methods can be

regarded as an effective way to quantitatively analyze target

components in complex systems.

Aesculin and aesculetin are the main effective components of

Cortex Fraxini. At present, many analytical methods have been

applied to analyze one or both components of aesculin and

aesculetin, including HPLC (Wang et al., 2019), LC-MS (Li

et al., 2013), capillary electrophoresis (CE) (Li et al., 2005),

GC-MS (Wang et al., 2016b), and electrochemical analysis

(Sheng et al., 2020). In our research, we intend to

quantitatively analyze these two components based on EEM

spectra because of its advantages of simplicity, low cost, and

high sensitivity. Owing to the complexity of the Cortex Fraxini

samples, unknown interferences may be present in the measured

data, and the fluorescence signals of aesculin and aesculetin have

a high degree of overlap with each other, making simultaneous

quantitative analysis difficult by using conventional fluorescence

methods. To realize the accurate quantitative analysis purposes,

appropriate algorithms should be explored and employed.

The aim of this work was to explore different chemometrics

strategies, such as lasso regression (LAR), interval partial least

squares (iPLS), and multidimensional partial least squares

(N-PLS) methods, in combination with EEM spectra for the

quantitative determination of aesculin and aesculetin in Cortex

Fraxini samples. Among these three methods, LAR is an

important machine learning technique that can be applied for

analyzing data suffering frommulticollinearity (Gao et al., 2022),

iPLS is a feature interval extraction method on the basis of PLS

that aims to minimize multicollinearity problems to improve the

accuracy of the PLS model (Abreu et al., 2015), and N-PLS is a

second-order multivariate calibration algorithm that can be used

for three-way data modeling even in the presence of

multicollinearity problems (Lopez-Fornieles et al., 2022). To

the best of our knowledge, there exist no published reports of

the analysis of the aesculin and aesculetin in Cortex Fraxini

samples by using the above-mentioned methods. The obtained

results of each method were fully validated by statistical

parameters, and the potentials of the methods were evaluated

and compared. The comparison results showed that the N-PLS

method gave the most satisfactory quantitative analysis results.

Furthermore, we compared the most satisfactory results achieved

from the N-PLS method with those obtained by the UPLC

method, which further proved the reliability and accuracy of

the explored method.

2 Theory

2.1 Chemometrics methods

In the following subsections, a brief introduction is given to

the three employed methods, LAR, iPLS, and N-PLS.

2.1.1 Lasso regression (LAR)
The LAR method is an important machine learning

technique for analyzing data suffering from multilinearity

(Yang and Wen, 2018). The basic idea of LAR is to minimize

the sum of squared residuals under the constraint that the sum of

the absolute values of the regression coefficients is less than a

constant, so that some regression coefficients strictly equal to

zero can be generated and an interpretable model can be obtained

(Tkachenko et al., 2021) when the regression coefficients are zero

and the corresponding variables are not selected, thus

eliminating irrelevant information variables and improving the

predictive accuracy of the model and its interpretability.

2.1.2 Interval partial least squares (iPLS)
algorithm

The iPLS algorithm can be used to extract the feature

bands and remove a large amount of useless information and

noisy variables. It divides the entire spectral region into

several subintervals of equal width. For each interval, a

local PLS is established. If a subinterval contains more

information and less noise, the performance of the
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corresponding model will be better (Wu et al., 2015).

Therefore, in each subinterval, the root mean squared

errors for cross-validation (RMSECV) are calculated, and

the subinterval with the minimum RMSECV value is taken

as the characteristic band and selected for further use. For

cross-validation, an individual sample is taken from the

calibration set and a model is established by the remaining

samples. Then, the model is applied to predict the removed

sample. The calculation formula of RMSECV is as follows

(Zhang et al., 2021):

RMSECV �

����������∑m
i�1
(yi − ~yi)2

m

√√
, (1)

where m is the sample numbers of the calibration set, yi is the

reference value of sample i, and ~yi is the calculated value of the

removed sample i.

2.1.3 Multidimensional partial least squares
(N-PLS)

N-PLS (Bro, 1996) is an extension of partial least squares

(PLS) regression to higher-order arrays; it has been used in

many quantitative analysis studies (Bro, 1996; Luo et al.,

2016). During the construction of the N-PLS models, it is

important to choose the proper number of latent variables

(LVs). Some necessary and useful information may be missed

if the number of LVs is too small, whereas some useless

information or even interferences will be involved in the

model if the number of LVs is more than required (Yang

et al., 2018). Therefore, the proper number of LVs should be

determined carefully. In this study, the proper number of LVs

was chosen on the basis of the minimum predicted residual

error sum of squares (PRESS) for each model (Thomas, 2003).

The calculation formula of PRESS is as follows (Khajehsharifi

and Eskandari, 2011):

PRESS � ∑m
i�1
(yi − ŷi)2, (2)

where m is the sample numbers of the calibration set and yi and

ŷi are the reference and calculated values, respectively, of sample

i in the calibration samples.

2.2 Validation of model performance

The performance of the established models should be

validated by statistical parameters. For the above purpose,

the following parameters have been employed: the correlation

coefficient for calibration (Rc) and prediction (Rp) and the

root mean squared errors for calibration (RMSEC) and

prediction (RMSEP). The correlation coefficient is a

measure of the linearity between the calculated and actual

values of the model, and the root mean squared error is a

commonly used index to measure the error in quantitative

models. A successful calibration model should have higher

values of Rc and Rp and lower values of RMSEC and RMSEP.

3 Experimental

3.1 Reagents and solutions

Aesculin and aesculetin were purchased from Chengdu

MUST BIO-TECHNOLOGY CO., LTD. (purity higher than

98%). The molecular structures of the two compounds are

illustrated in Figure 1. Ultra-pure water was purchased from

Watsons. Methanol was of HPLC grade and other chemicals were

of analytical grade.

Six Cortex Fraxini samples were purchased from local drug

stores (Jiangmen, Guangdong, China) and then pulverized with a

traditional Chinese medicine grinder.

3.2 Apparatus

Fluorescence data of all samples were measured by a fully

automatic and integrated FluoroMax-4 instrument with a 150 w

ozone-free xenon light source, excitation monochromator,

reference detector, sample cell, emission monochromator, and

signal detector. The spectral data were obtained by scanning the

samples at excitation wavelengths ranging from 200 nm to

600 nm and emission wavelengths ranging from 200 nm to

600 nm with steps of 10 nm.

The multifunctional ultrasonic cleaner (GS-060A) was

purchased from Shenzhen Keneng Cleaning Equipment

Co., Ltd.

The UPLC chromatograms were carried out on Waters

UPLC H-class instrument coupled with a PAD e λ detector, a

sample manager, a quaternary solvent manager, and a BEH

C18 column (2.1 × 100 mm, 1.7 μm). The gradient elution

program used 0.1% v/v formic acid in water (A) and

acetonitrile (B) as the eluents, and the program was as

follows: 0–1.00 min, 13%–15% B; 1.00–5.00 min, 15%–20%

B; 6.00–9.00 min 100% B; 9.00–10.00 min 100%–13.00% B;

10.00–12.00 min 13% B. The column temperature was at room

temperature, the scan wavelength ranged from 210 to 400 nm,

the flow rate was set at 0.5 ml/min, and the injection volume

was 10 μl (Preeti Chandra et al., 2016).

The implementation of the N-PLS and iPLS algorithms

was on the eclipse platform, and the version number was

4.19.0; the jdk version was 1.7.0_13-b20, the tomcat version

was 7.0, and the computer language was java. The

implementation of the LAR algorithm was on the pycharm

platform, and the computer language was python.
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3.3 Sample preparation

Stock solutions of aesculin (745 μg/ml) and aesculetin

(1,060 μg/ml) were prepared by dissolving the standards in

methanol, and they were stored at 4°C in the freezer. Working

solutions were prepared by appropriate dilution of the stock

solutions with methanol. Britton–Robinson buffer solution

(BR buffer) (0.2 mol/L, pH = 9) was used to stabilize the

fluorescence intensity of aesculin and aesculetin.

A series of 21 mixed standard solution samples was

prepared. The concentrations of aesculin and aesculetin

were in the range of 0.002–1.020 μg/ml and 0.009–4.000 μg/

ml, respectively, and the detailed concentrations of the

aesculin and aesculetin are shown in Supplementary Tables

S1, S2, respectively (in the Supporting information).

The purchased Cortex Fraxini samples were crushed into

powder by a pulverizer for better extraction of aesculin and

aesculetin. We referred to some Chinese literature and found

that the active substances in Cortex Fraxini can be better

extracted by soaking the sample in methanol for 24 h and then

extracting by ultrasonication for 30 min. Thus, in this study,

the powdered Cortex Fraxini samples were soaked in

methanol for 24 h at room temperature and then treated

with ultrasonication for 30 min. They were then filtered

and transferred to a 50.0 ml volumetric flask, left at room

temperature, and appropriately diluted with methanol

during use.

For the recovery test, the six actual samples were all spiked

with a certain amount of aesculin and aesculetin, respectively.

The recovery values were calculated as (Con1 − Con0)/Cons,
where Con1 was the calculated concentration of spiked

samples, Con0 was the calculated concentration of unspiked

samples, and Cons was the concentration of the target

compounds added to real samples.

For all of the above samples, 2 ml of BR buffer was added

and then the samples were diluted to the mark in 10.0 ml

volumetric flasks with ultra-pure water. Each mixed

standard sample was measured once, and each spiked and

actual sample was measured three times to obtain the average

value.

4 Results and discussion

4.1 Spectral characters

In EEM spectra, Raman and Rayleigh scatterings are

unrelated to the chemical sample composition (Andersen and

Bro, 2003), and the existence of Raman and Rayleigh scatterings

may have some influence on the final analytical results. The EEM

spectra of aesculin and aesculetin are presented in Figure 2;

Figure 2A is with Raman and Rayleigh scatterings, and Figure 2B

is without scatterings. Moreover, one can see that there is a high

degree of overlap between the two signals. Therefore, it is difficult

to determine the concentration of the two components by the

ordinary fluorescence method. In the present study, the

scatterings are first removed and then the missing data is

filled by interpolation by using new data consistent with the

rest of the EEM spectrum (Bahram et al., 2006). As can be seen

from Figure 2B, the scatterings have been removed successfully.

In order to obtain satisfactory analytical results, in the present

study, three well-known chemometrics methods, namely LAR,

iPLS, and N-PLS, were employed, and the results obtained are

compared and discussed herein.

The EEM spectra matrices without scatterings were arranged in

a three-way array with the dimensions of 41 (emission wavelength

points) × 41 (excitation wavelength points) × sample numbers. To

explore themain characteristics of the employedmethods, themixed

standard samples were divided into calibration and prediction sets;

three quarters of the samples were selected as the calibration set and

used to establish the calibrationmodel, and the remaining ones were

selected as the prediction set and applied to validate the performance

of the established model. For the calibration set, the matrix size was

41 × 41 × 16, and for the prediction set the matrix size was

41 × 41 × 5.

4.2 Results and discussion

A suitable method was the vital factor for model

establishment. Three algorithms, namely LAR, iPLS, and

N-PLS, were applied individually to build calibration models.

FIGURE 1
Molecular structures of aesculin and aesculetin.
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The performances of the established models were compared with

each other by evaluation of Rc, Rp, RMSEC, and RMSEP.

4.2.1 LAR models
The first method explored was the LAR method. The

existence of multicollinearity may cause the model to shift

greatly and cannot simulate the overall view of data. LAR is

an important machine learning technique for analyzing data that

suffer from multilinearity. Before the LAR model establishment,

the contour values (Li et al., 2015) of the EEM spectra of all

samples were extracted for dimensionality reduction purposes.

The process of extracting the contour values is equivalent to the

process of extracting the emission wavelength values by fixing the

excitation wavelength. A plot of the contour values of the EEM

spectrum of a sample is presented in Supplementary Figure S2.

After extraction of the contour values, the data matrix of the

calibration set had a size of 16 (sample number) × 41 (emission

wavelength points). For the prediction set, the matrix had a size

of 5 (sample number) × 41 (emission wavelength points). By

application of this method, the irrelevant information variables

was eliminated and a regression model was obtained for each

target compound. In this case, the LAR model for each target

compound was described as follows:

The LAR model for aesculin:

CAesculim� −2.89 × 10−2 + 8.10 × 10−2 × V200 + 3.00 × 10−6 × V210 − 8.00 × 10−6 × V220

+ 3.90 × 10−5 × V250 + 5.20 × 10−5 × V280 + 2.00 × 10−6 × V410 + 1.10 × 10−5 × V450

− 3.29 × 10−4 × V470 + 1.34 × 10−4 × V480 + 6.00 × 10−6 × V520 + 8.70 × 10−5 × V530

− 3.57 × 10−4 × V560 + 3.80 × 10−4 × V570

.

(3)

The LAR model for aesculetin:

CAesculetin � −4.02 + 1.50 × 10−5 × V260 + 4.60 × 10−5 × V270 + 4.19 × 10−4 × V430

+ 9.29 × 10−4 × V490
.

(4)

In the above models, CAesculin and CAesculetin were the

concentrations of aesculin and aesculetin, respectively, V200

was the contour value at an emission wavelength of 200 nm,

FIGURE 2
The EEM spectra of aesculin (0.16 μg/ml) and aesculetin (1 μg/ml). (A): Scatterings are not eliminated; (B): Scatterings are eliminated.
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FIGURE 3
The relationship between the actual concentrations and calculated concentrations by using different methods for aesculin (A) and aesculetin
(B) in the calibration set and aesculin (C) and aesculetin (D) in the prediction set.

TABLE 1 Statistical parameters related to the calibration and prediction models of aesculin and aesceletin established by different methods.

Analytical method Analyte Calibration set Prediction set

Rc RMSEC Rp RMSEP

LAR Aesculin 1.0000 0.0023 0.9921 0.0680

iPLS 0.9958 0.0307 0.9962 0.0544

N-PLS 0.9972 0.0243 0.9998 0.0392

LAR Aesculetin 0.9967 0.1174 0.9767 0.2507

iPLS 0.9875 0.1969 0.9940 0.1386

N-PLS 0.9997 0.0304 0.9962 0.1165

LAR: lasso regression.

iPLS: interval partial least squares.

N-PLS: multidimensional partial least squares.
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and the remaining parameters followed the same pattern in their

definitions.

To assess the prediction ability of the established models,

they were estimated by prediction sets; the statistical results are

shown in Table 1. As can be seen, the values of Rc were

1.0000 and 0.9967 and of RMSEC were 0.0023 and 0.1174 for

aesculin and aesculetin, respectively, demonstrating that the

established models have good linearity and can be applied to

the prediction set. For prediction purposes, Rp values of

0.9921 and 0.9767 (Figure 3) and RMSEP values of

0.0680 and 0.2507 were obtained for aesculin and aesculetin,

respectively.

In addition, as can be seen from Table 2, the recovery values

were in the range of 80.04%–103.36%, and 76.65%–106.03% for

aesculin and aesculetin, respectively. One can conclude that not

all recovery results were satisfactory, such as the recovery of

aesculetin (76.65%) obtained from Cortex Fraxini 4. We suspect

the possible reason is that the unknown interference and useless

information in the spectra has an impact on the final analysis

results. Therefore, as described in the following section, a method

that can be used to extract characteristic variables to improve the

accuracy of the analytical results was explored.

4.2.2 iPLS models
The iPLS method can be used to extract the characteristic

intervals from the given spectral data to obtain more accurate

analytical results. In the present study, the iPLS method was also

performed on the contour values, and 8 intervals were

determined for further analysis. Then, one optimum interval

and corresponding PLS component was determined according to

the minimum RMSECV value. In the present study, the interval

in the emission wavelength range of 310–350 nm is determined

for both aesculin and aesculetin, and the optimization numbers

of the PLS component are 2 and 1, respectively. The

corresponding statistical parameters of the established iPLS

models are summarized in Table 1.

As can be seen from Table 1, the iPLS models have higher Rp

values and lower RMSEP values than that of LAR models,

demonstrating that the iPLS method has good feature

extraction ability and can be applied to improve the accuracy

of the established models.

After model evaluation, the recovery values were also

calculated; as can be seen from Table 2, the recovery values

were in the range of 82.36%–105.45%, and 74.88%–99.87% for

aesculin and aesculetin, respectively. The same phenomenon

occurred as with the LAR method in that the recovery of

aesculetin (74.88%) in Cortex Fraxini 4 was not satisfactory.

From this perspective, we suspect that one possible reason was

that some important information from the contour values might

be lost, so a high-order chemometrics method was considered to

deal with the EEM spectral data.

4.2.3 N-PLS models
The calibration set with the size of 41 × 41 × 16 was applied to

establish the calibration model, and the performance of the

established models was evaluated by using the prediction set.

In the process of establishing the N-PLS models, the optimal

number of LVs should first be determined. In the present study,

the optimum number of LVs for the N-PLS models was indicated

by the minimum PRESS value versus the number of LVs

(Supplementary Figure S1). For aesculin (Supplementary

Figure S1A), the minimum PRESS value can be determined

TABLE 2 Recovery values obtained by different methods.

Samples Analyte Spike (μg/ml) Recovery (%)

LAR iPLS N-PLS UPLC

Cortex Fraxini 1 Aesculin 0.48 103.36 96.68 90.53 102.35

Cortex Fraxini 2 0.50 96.80 99.52 99.56 92.14

Cortex Fraxini 3 0.48 102.13 100.17 99.95 81.96

Cortex Fraxini 4 0.48 80.04 82.36 88.16 96.96

Cortex Fraxini 5 0.25 99.57 105.45 103.99 86.43

Cortex Fraxini 6 0.40 89.12 90.60 87.22 89.42

Cortex Fraxini 1 Aesculetin 2.00 89.35 87.9 90.25 86.59

Cortex Fraxini 2 2.30 93.74 84.57 89.84 99.55

Cortex Fraxini 3 2.00 103.47 92.13 83.32 95.31

Cortex Fraxini 4 2.00 76.65 74.88 104.62 89.14

Cortex Fraxini 5 1.00 106.03 99.87 92.55 84.88

Cortex Fraxini 6 1.50 95.32 91.53 101.53 89.62
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with 2 LVs, and for aesculetin (Supplementary Figure S1B), the

local minimum PRESS value can be determined with 5 LVs. The

statistical parameters of the N-PLS models are summarized in

Table 1.

As can be seen from Table 1, the results from the calibration

set show that the N-PLS method yielded satisfactory Rc values of

0.9972 and 0.9997 and RMSEC values of 0.0243 and 0.0304 for

aesculin and aesculetin, respectively, demonstrating that the

established models have the ability to accurately calculate the

prediction set. The established models were then applied to the

prediction set, and values were obtained for Rp of 0.9998 and

0.9962, and RMSEP of 0.0392 and 0.1165 for aesculin and

aesculetin, respectively, which proved that good predictions

were obtained.

Next, the spike recovery experiment was performed. As

can be seen from Table 2, the recovery values were in the range

of 87.22%–103.99% for aesculin, and 83.32%–104.62% for

aesculetin. Compared with the results of the previous LAR

and iPLS methods, the linearity, predictive ability, and

accuracy of the N-PLS models were improved. However,

owing to the same phenomenon that occurred with the

LAR and iPLS methods, the recovery values of aesculetin in

Cortex Fraxini 4 were nearly the same and not satisfactory, so

we decided that it was necessary to further verify which

method gives the most reliable recovery values.

4.3 UPLC method for validation

A UPLC method was developed to further confirm the

accuracy and reliability of the presented strategies. The two

analytes and the backgrounds can be separated properly and

completely under the chromatographic conditions mentioned

above, and thus they can be quantified accurately based on

peak areas. The chromatograms of aesculin, aesculetin, and a

Cortex Fraxini sample are shown in Supplementary Figure S3.

For a comprehensive comparison, the concentrations of

aesculin and aesculetin used for UPLC and fluorescence

were the same. In the measurement process, the samples

with lower concentrations were not detected

(Supplementary Tables S1, S2); thus, the calibration

equations of aesculin and aesculetin were established from

samples 1 to 14 in the calibration set. The statistical parameters

of the calibration equations are summarized in Table 3; the low

RMSEC and RMSEP values and high Rc and Rp values illustrate

the accuracy of the UPLC method. The recoveries of aesculin

and aesculetin by UPLC are shown in Table 2. First, we can see

that the recovery rates of aesculin (81.96%–102.35%) and

aesculetin (84.88%–99.55%) were satisfactory. One can then

conclude that the accuracy of the UPLC and N-PLS methods is

comparable. The separation of complex samples with UPLC

requires some effort to find suitable conditions. A comparison

of the comprehensive results of the N-PLS and UPLC methods

shows that EEM fluorescence coupled with the chemometrics

method can be regarded as a reliable and accurate approach to

determine the two components in Cortex Fraxini samples

simultaneously.

4.4 Further discussion

The above comparisons show that the analytical results of

the N-PLS method on the EEM spectra are more accurate and

reliable than the LAR and iPLS methods on the contour values.

The reason may be that the higher-order N-PLS algorithm is

less disturbed by the noise of the analysis system, so the

quantitative analysis results obtained are more accurate

(Pierce et al., 2011). Although the LAR and iPLS methods

have not yielded satisfactory results, these strategies still have

application values in proper analytical systems.

5 Conclusion

The present study reported a comparative study of three

different algorithm (LAR, iPLS, and N-PLS) methods in

combination with EEM spectroscopy for the determination

of aesculin and aesculetin in traditional Chinese medicine.

Satisfactory results were obtained with the N-PLS method on

the basis of the EEM spectra despite the strong overlaps of the

two analytes. The results presented herein show that the

methodology proposed has the advantages of being simple,

sensitive, and low cost. Consequently, EEM with the aid of

proper chemometrics methods is a useful tool in processing

the serious problem of overlapping and can be extended to

other complex systems in the fields of food and the

environment, such as body fluids.
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TABLE 3 Analytical results related to the calibration and prediction
results for aesculin and aesculetin based on the UPLC method.

Analyte Calibration set Prediction set

Rc RMSEC Equation Rp RMSEP

Aesculin 0.9923 0.0274 y = 36228x-797.31 0.9957 0.0816

Aesculetin 0.9858 0.1414 y = 53779x-6536.4 0.9965 0.0222

y: peak area.

x: concentration (μg/ml).
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