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Polyvinylidene fluoride (PVDF), with excellent mechanical strength, thermal

stability and chemical corrosion resistance, has become an excellent material

for separation membranes fabrication. However, the high hydrophobicity of

PVDF membrane surface normally leads a decreased water permeability and

serious membrane pollution, which ultimately result in low operational

efficiency, short lifespan of membrane, high operation cost and other

problems. Metal-organic frameworks (MOFs), have been widely applied for

membranemodification due to its large specific surface area, large porosity and

adjustable pore size. Currently, numerous MOFs have been synthesized and

used to adjust the membrane separation properties. In this study, MIL-53(Al)

were blended with PVDF casting solution to prepare ultrafiltration (UF)

membrane through a phase separation technique. The optimal separation

performance was achieved by varying the concentration of MIL-53(Al). The

surface properties and microstructures of the as-prepared membranes with

different MIL-53(Al) loading revealed that the incorporation of MIL-53(Al)

enhanced the membrane hydrophilicity and increased the porosity and

average pore size of the membrane. The optimal membrane decorated with

5 wt% MIL-53(Al) possessed a pure water permeability up to

43.60 L m−2 h−1 bar−1, while maintaining higher rejections towards BSA

(82.09%). Meanwhile, the prepared MIL-53(Al)/LiCl@PVDF membranes

exhibited an excellent antifouling performance.
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1 Introduction

Membrane separation technology, due to its high efficiency, low energy consumption,

and environmental friendliness, has attracted substantial attention for advanced water

treatment (Vatanpour et al., 2018; Karimi et al., 2020; Ma et al., 2020). Among different

separation processes, ultrafiltration (UF), with the advantages of low operation costs and

acceptable separation efficiency towards viruses, high-molecular-organics and colloidal
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contaminants, has been widely applied in industries such as the

food, medicine, biological, environmental protection (He et al.,

2022). Currently, most ultrafiltration membranes are fabricated

with polymeric materials such as polyvinylidene fluoride

(PVDF), polyethersulfone (PES), polypropylene (PP), and

polysulfone (PS) (Kang and Cao, 2014; Vatanpour et al.,

2018). Compared with other polymeric materials, PVDF have

been gained noticeable attention for ultrafiltration membranes

fabrication owing to its excellent mechanical strength, thermal

stability and chemical resistance properties (Oskoui et al., 2019;

Castro-Muñoz et al., 2021; Cheng et al., 2021). However, PVDF

membranes are prone to be contaminated by organic pollutants

because of its low surface energy and strong hydrophobicity

properties (Cheng et al., 2021; Zuo et al., 2021). The fouling

behavior of membrane will increase the mass transfer resistance

during the filtration, which finally recall back the trade-off

relationship between selectivity and permeability. In addition,

membrane fouling normally increase the operational cost due to

a frequent membrane cleaning andmaintenance (Yu et al., 2020).

To improve the anti-fouling ability of the PVDF membrane, a

host of methods have been proposed, such as chemical grafting

(Liu C et al., 2019; Wu et al., 2019), surface modification (Liu et al.,

2020; Tang et al., 2020), and blending of additives (Saini et al.,

2020; Van Tran et al., 2021). Among these methods, blending of

additives, especially nanomaterials, has attracted much attention

due to their simple fabrication process and moderate operation

conditions. Mixed matrix membranes (MMMs) prepared by

incorporating nanomaterials into polymer matrices have been

proven to possess the ability to reduce the membrane fouling

properties and further improve the membrane permeability. For

example, by blending sandwich-like GO@UiO-66 nanoparticles to

the membrane casting solution, Liang et al. (2021) successfully

fabricated an UF membrane with superior permeability due to the

enhanced porosity and hydrophilicity. The dense hydration layer

of the obtained membrane surface significantly enhanced the

performance of the antifouling properties and BSA rejection.

Zhu et al. (2020) embedded the rebar-like Fe3O4-palygorskite

nanocomposites (MPGS) in PVDF matrix to acquire the

MMMs with a better tensile strength. The flux recovery rate of

the MMMs with 7.0 wt% MPGS (＞80%) was more than twice

than that of the pure PVDF membrane (31.6%). Meanwhile, the

obtained membrane had an outstanding antifouling property due

to the high hydrophilicity of the modified membrane. Currently,

an increasing number of nanomaterials have been attempted to be

blended into PVDF matrix, such as metal nanoparticles (Alnairat

et al., 2021), covalent organic frameworks (COFs) (Xu et al., 2020;

Qian et al., 2022), carbon nanotubes (CNTs) (Ayyaru et al., 2019;

Gholami et al., 2022) etc. Thus, the choose and control of

nanoparticles in UF membrane is crucial important.

Metal-organic frameworks (MOFs), a well-known class of

porous crystalline inorganic-organic solid materials, provide a

potential for the separation application processes due to the

distinguished features of structural diversity, pore-size tunability,

high surface areas, and good thermal/chemical stability (Liu et al.,

2013). Importantly, due to the existence of organic ligands, the

MOFs exhibited excellent compatibility with polymeric matrix

than traditional nanomaterials (Xie et al., 2020; Liu et al., 2021).

MOF-based MMMs have been reported to show excellent

separation performance including catalytic oxidation, selective

permeability, and anti-fouling performance. For example, Liu

et al. (2021) reported a novel ZIF-67-imbedded PVDF (ZIF-67@

PVDF) mixed-matrix UF membrane fabricated by a nonsolvent-

induced phase separation (NIPS) technique. The well-dispersed

ZIF-67 nanoparticles exhibited excellent catalytic activity and

improved the membrane porosity. To date, numerous studies

have reported the application of MOF materials, including UiO-

66 (Wan et al., 2020; Wang et al., 2021), ZIF-8 (Karimi et al.,

2019), HKUST-1 (Yang et al., 2021), and MIL-101 (Ni et al.,

2021). Among these materials, MIL-53(M) series have attracted

much attention due to its chemical versatility, flexible structure,

breathing feature and stability (Naeimi and Faghihian, 2017).

Besides, MIL-53(Al), with the properties of permanent porosity,

outstanding structural stability, and larger specific surface area, is

considered as a promising adsorbent for water treatment (Liu

et al., 2013). All of these merits that MIL-53 (Al) exhibited

supplied the possibilities that MIL-53(Al) could be an excellent

candidate for membrane fabrication.

In this work, PVDF and MIL-53(Al) are used as the polymer

matrix and inorganic filler to prepare theMMMs through a phase

inversion method. The effects of MOFs concentration on the

morphology and physicochemical properties of the UF

membrane were explored. The performance of the UF

membrane was also evaluated concerning the water

permeability, BSA rejections, and antifouling performance.

2 Experimental

2.1 Materials

N,N-Dimethylformamide (DMF, AR grade), aluminum

nitrate nonahydrate (Al(NO3)3·9H2O, AR grade), and

terephthalic acid (H2BDC, AR grade) purchased from Sigma-

Aldrich (China) were adopted to synthesize MIL-53(Al).

Absolute ethanol (CH3OH, AR grade) and lithium Chloride

(LiCl, 99.0% purity) were provided by Sinopharm Chemical

Reagent Co., Ltd. (Shanghai, China). Poly (vinylidene fluoride)

(PVDF) was obtained from Solvey (Shanghai) Co., Ltd. Bovine

serum albumin (BSA, Molecular weight=66 kDa) was purchased

from Beyotime Biotechnology Co., Ltd. (Shanghai, China).

2.2 Synthesis of MIL-53 (Al)

The method for MIL-53(Al) synthesize was conducted

according to the previous study (Figure 1) (Mounfield and
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Walton, 2015). Firstly, Al(NO3)3·9H2O, H2BDC, and

deionized (DI) water were mixed together with a molar

ratio of 1:1:222. After magnetic stirring for 40 min, the

as-prepared mixture was heated at 220°C for 72 h in a

Teflon-lined steel autoclave. After the solvothermal

reaction, the steel autoclave was gradually cooled down to

room temperature (RT). The product was centrifuged and

washed with DI water, DMF and ethanol, sequentially.

Finally, the obtained powder products were placed into an

oven and dried for 24 h at 70°C.

2.3 Fabrication of MIL-53(Al)/LiCl@PVDF
membranes

The preparation process of MIL/LiCl@PVDF membranes is

shown in Figure 2. First, the as-prepared MIL-53(Al) powders

were dispersed in DMF (PH = 7.0) and sonicated for 1 h to obtain

a homogeneous mixed solution. After that, a certain proportion

of LiCl and PVDF were added to the mixed solution and stirred

for 24 h at 65°C to obtain an uniform casting solution. After

defoaming for 24 h, the casting solution was poured slowly onto a

FIGURE 1
Schematic illustration of the synthesis of MIL-53 (Al) by solvothermal methods.

FIGURE 2
Schematic illustration of the preparation process of MIL/LiCl@PVDF membranes.
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clean glass plate at room temperature and the membrane was

scraped by a scraping machine with speed of 100 mm/s. The

obtained membrane with a thickness of 200 µM was immersed in

a pure water and soaked for 24 h to remove excess organic solvent

(Figure 2). The fabricated membranes were labelled as M1, M2,

M3, M4, and M5, according to the quality percentage of MIL-

53(Al). For comparison, the control membrane (labelled as M0)

was also fabricated based on the above procedure without adding

MIL-53(Al). The compositions of the casting solutions are

exhibited in Table 1.

2.4 Membrane characterization

The intensity-weighted hydrodynamic diameter (Dh) and

Zeta potentials of MIL-53(Al) were measured by using a

dynamic light scattering (DLS) analyzer (ZEN3600, Malvren,

United Kingdom). Themorphologies of the obtainedmembranes

were observed by the scanning electron microscope (SEM,

XL30 FEG, Netherlands or SU8100, Japan). X-ray diffraction

(XRD) patterns of the fabricated membranes and MIL-53(Al)

powders were collected by X-ray diffractometer (Rigku Ultima

IV, Japan). Fourier transform infrared (FTIR, Thermo FTIR-

iS10) was adopted to investigate the chemical structure of the

membrane in the range of 500–4,000 cm−1. The contact angles of

the membranes were measured by a contact angle meter

(OCA20, Dataphysics Instruments, Germany) at room

temperature with 2.0 µl deionized (DI) water.

The porosity and mean pore size of the membranes were

measured according to a dry-wet weight method. The membrane

samples were cut into rectangles with an area of 4 cm2 and soaked

in DI water. After mopping the superficial water with filter paper,

the weight of the wet membrane was recorded asW1. Afterwards,

the wet membranes were dried at 60°C for 24 h and weighed as

W2. Each types of membrane were tested for three times and the

average value was taken. The membrane porosity (ε) was

calculated by the following Eq. 1:

ε � (W1 −W)2
ρwAδ

× 100% (1)

Where W1 and W2 (kg) are the weights of the wet and dry

membranes. ρw (g/cm3) is the density of the pure water, A (cm2)

is the membrane area, and δ (µM) is the average membrane

thickness. The mean pore radius of the membrane was calculated

by the following Eq. 2 (Yong et al., 2019):

rm �
���������������
(2.9 − 1.75ε)8ηδQ

εAΔP

√
(2)

The antifouling property of membranes was evaluated by

the Flux Recovery Ratio (FRR). First, the pure water flux

(JW1) of the membranes was measured at 0.1 MPa for 30 min.

Then, the BSA aqueous solution (1 g/L) was used as the feed

and the flux (JP) was recorded for every 10 min interval

during the period of 30 min. After filtration of the BSA

solution, the membranes were washed with deionized

water for 30 min and the water flux of cleaned membranes

(JW2) was measured again. FRR was calculated by the

following Eq. 3:

FRR � JW1

JW2
× 100% (3)

Furthermore, to further analyze the fouling process in details,

total fouling ratio (Rt), reversible fouling ratio (Rr) and

irreversible fouling ratio (Rir) were calculated using the

following equations:

Rt � (1 − Jp
JW1

) × 100 (4)

Rr � (JW2 − Jp
JW1

) × 100% (5)

Rir � (JW1 − JW2

JW1
) × 100% � Rt − Rr (6)

TABLE 1 The composition of the casting solutions.

Membrane Compositions

DMF (wt%) LiCl (wt%) PVDF (wt%) MIL-53 (Al) (wt%)

M 80 — 15 —

M0 80 5 15 —

M1 80 5 15 1

M2 80 5 15 3

M3 80 5 15 5

M4 80 5 15 7

M5 80 5 15 9
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3 Results and discussions

3.1 The properties of MIL-53 (Al)

The properties of MIL-53(Al) were analyzed by XRD, FTIR,

size analyzer and Zeta potential. Figure 3A shows the XRD

patterns of MIL-53(Al) nanoparticles. The diffraction peaks

that emerged at 2θ=15.20°, 17.86°, 25.23° and 26.92° were

consistent with the literature, which indicated that the MIL-

53(Al) crystals were successfully synthesized (Loloei et al., 2021;

Mahdavi et al., 2021). The FTIR spectra of the synthesized MIL-

53(Al) was presented in Figure 3B. The absorption peaks located

around 1700–1,400 cm−1 are due to the presence of carboxylic

functional groups (Jiang et al., 2016), the peaks at 1,507 cm−1and

1,580 cm−1 are derived by the asymmetric stretching of the

carboxylate groups, while the peak located at 1,417 cm−1 is

explained by the symmetric stretching of carboxylate groups

(Jiang et al., 2016; Imanipoor et al., 2020; Aqel et al., 2021). The

small peak at 1,697 cm−1 is derived from the stretching vibration

of C=O (Venkateswarlu et al., 2020; Yang et al., 2022). In

addition, the absorption peaks at 587 cm−1 and 468 cm−1 are

corresponded to the Al-O bond (Liu J.-F et al., 2019). The

vibration peaks between 730 and 1,100 cm−1 are ascribed to

the stretching of C-H, which indicated the presence of organic

ring in the frame structure of MOFs (Rahmani and Rahmani,

2018; Chatterjee et al., 2020). The particle size distribution of

MIL-53(Al) (Figure 3C) demonstrated that the majority MIL-

53(Al) were with diameter between 200 and 350 nm with an

average size of 257.94 nm. The Zeta potential of MIL-53(Al)

results are shown in Figure 2D. In aqueous environment, the

isoelectric point (pHPZC) of MIL-53(Al) is 6.87. The surface of

MIL-53 (Al) is positively charged at pH< pHpzc, while negatively

charged at pH> pHpzc.

3.2 Characterization of the membranes

3.2.1 The morphologies and structures
The surface and cross-section morphologies of the

membranes were characterized by SEM. As shown in

Figure 4A, the pure PVDF membrane (M) exhibited a

relatively dense surface with small pores atop on it. After the

addition of LiCl, a porous surface of M0 membrane (Figure 4B)

can be easy identified. The pores on the membrane surface are

caused by the increasing exchange rate of solvent and non-

solvent due to the presence of LiCl that strongly interacted

FIGURE 3
(A) XRD patterns, (B) XPS spectra, (C) size distribution, and (D) Zeta potentials of the synthesized MIL-53 (Al).
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with the polymer and solvent (Zahirifar et al., 2018; Zheng

et al., 2018; Pal et al., 2020). The obtained membranes

modified with the addition of MIL-53 (Al) showed a larger

cavities than the LiCl@PVDF membrane. When MIL-53 (Al)

was introduced into the casting solution, the exchange rate of

solvent and non-solvent was further accelerated, which is

beneficial to increase pores size and porosity (Figure 4E)

(Ayyaru et al., 2020). As it can be seen from Figures 4C,D,

part of the MIL-53(Al) nanoparticles was exposed on the top

of the membrane surface during the phase transformation

process. The XRD patterns of the prepared membrane are

shown in Figure 4F. Compared with M and M0, the

characteristic diffraction peak of MIL-53 (Al) at 16.86°

emerged on the M3 membrane, which confirmed the MIL-

53(Al) particles were successfully incorporated inside the UF

membrane.

The cross-sectionmorphologies of the membranes are shown

in Figure 5. All membranes presented typical asymmetric

structures with cavities and pores. The pure PVDF membrane

presented a large number of small finger-like pores, which are

consistent with previous researches (Karimi et al., 2020). The

formation of such structure was attributed to the quick

precipitation of PVDF at both the inner and the outer walls,

which finally resulted in a finger-like structure (Kamaludin et al.,

2022). After the addition of LiCl, the finger-like pores turned into

sponge-like pores, and the thickness of the dense support layer at

the bottom decreased. This variation can be attributed to the

thermodynamic and kinetic effects of LiCl (Zheng et al., 2018).

After further introduction of MIL-53(Al), the pores of

membranes are still sponge-like, and the thickness of the

dense support layer at the bottom was decreased. The

transition from finger-like pores to sponge-like pores

indicated that the addition of LiCl and MIL-53(Al) increases

the viscosity of the casting solution and lowers the cloud point (Li

et al., 2010). The sponge-like pores have a better mechanical

properties than the finger-like pores (Feng et al., 2013), which is

beneficial to increase the life-span of the MMMs.

The hydrophilicity of the MIL-53(Al) decorated PVDF

membranes was evaluated in Figure 6. The contact angle for

the prepared MIL-53(Al)/LiCl@PVDF membranes are

FIGURE 4
The surface morphologies of the (A) M membrane; (B) M0 membrane; (C,D) M3 membrane with different magnifications; (E) surface porosity
and mean flow pore size of membranes; and (F) XRD pattern for the M, M0 and M3 membranes.
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FIGURE 5
Cross-sectional SEM images of the (A) M membrane, (C) M0 membrane, (E) M3 membrane; and high magnification of (B) M membrane, (D)
M0 membrane, (F) M3 membrane.

FIGURE 6
Contact angle results of membranes.

FIGURE 7
FTIR results of the M, M0 and M3 membranes.
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decreased, which indicated that the addition of MIL-53(Al)

greatly enhanced the hydrophilicity of the membranes due to

intrinsically hydrophilic nature of MIL-53(Al) materials.

Meanwhile, the membrane surface became more

hydrophilic due to the capability of the hydrophilic pores

to imbibe water via capillary effects (Zhu et al., 2015).

Besides, it could be observed that contact angle of M5 and

M4 membranes slightly increased, as compared with TFN-3

membrane. This may be attributed to the agglomeration of

MIL-53 (Al), which resulted in a rougher membrane surface

and reducing the membrane hydrophilicity (Samsami et al.,

2022).

3.2.2 Chemical properties of the membranes
The chemical properties of the synthetic membrane surface

were analyzed by FTIR. As it can be seen from the Figure 7, three

absorption peaks of PVDF at 1,401 cm−1, 1,175 cm−1 and

873 cm−1 are corresponded to the deformation vibrations of

CH2, asymmetric stretching of F-C-F and skeletal vibration of

C-C, respectively (Shah et al., 2021; Kachhadiya and Murthy,

2022). With the addition of inorganic salt additives of LiCl, the

emerging peaks on the M0 membrane at 1,432 cm−1, 1275cm−1

and 1,070 cm−1 were ascribed to the β-phase polymorph (Shah

et al., 2021). For M3 membrane, the new peaks at 1,507 cm−1 and

587 cm−1 are corresponding to the characteristic peaks of MIL-

53(Al).

3.3 Separation performance of the
membranes

Based on the above analysis, the properties and structures of

the membranes changed significantly after the addition of MIL-

53(Al) nanoparticles, which would further affect the separation

FIGURE 8
(A) Pure water permeability results; (B) rejection performance of BSA.

FIGURE 9
Anti-fouling performance: (A) water flux recovery and fouling resistance ratio of membranes; (B) Time-dependent flux of membranes for BSA
solution filtration.
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and antifouling performance of the membranes. As can be seen

from Figure 8A, M0 membrane possessed a lower pure water

flux of 16.98 L m−2 h−1 bar−1. After the incorporation of MIL-

53(Al), the pure water flux of M3 membrane significantly

improved to 43.60 L m−2 h−1 bar−1. This can be mainly explained

by the addition of MIL-53(Al), which significantly improved the

hydrophilicity of the membrane and reduced the mass transfer

resistance. Meantime, the porous MIL-53(Al) also provided more

extra transport nano-channels for water molecules. However, with

excess MIL-53(Al) addition, the agglomeration of MIL-53(Al)

nanoparticles could finally block the membrane pores and

leading to a decrease of the pure water flux. BSA solutions was

used as feed to monitor the separation experiments of the MMMs.

As shown in Figure 8B, the MIL-53(Al)/LiCl@PVDF membranes

were found to maintain a high rejection (>80%). Especially, for

membrane with 5 wt%MIL-53(Al), M3 MMMs reached a 83.53%

rejection towards BSA, while maintain an excellent pure water

permeability of 43.60 L m−2 h−1 bar−1, simultaneously. Thus, the

parameters to prepare M3 membrane was considered as the

optimal modification process.

The antifouling performance of the membrane was evaluated

by the filtration of BSA solution and the results were provided in

Figure 9. After the filtration of BSA, the flux of M0 membrane

decreased significantly, while Rr and Rir values reached to 68.52%

and 42.63%, respectively. This result indicated that BSA was

adsorbed on the membrane, which caused serious membrane

fouling during the filtration conditions. Compared with

M0 membrane, the FRR and Rir value of MIL/LiCl@PVDF

ultrafiltration membrane was improved and decreased,

respectively. This can be raised from the greatly improved

hydrophilicity of the membrane surface after being modified

with MIL-53(Al). The introduction of MIL-53(Al) could

contribute to form a hydration layer and the porous MIL-

53(Al) can effectively reduce the deposition of pollutants on

the membrane surface due to the reduced steric hindrance effect

(Xue et al., 2011). Furthermore, the Rir value of the MIL/LiCl@

PVDFmembrane is relieved, which indicated that the antifouling

ability of the ultrafiltration membrane has been improved during

the filtration process.

4 Conclusion

In this work, a series of the LiCl@PVDF-based

nanocomposite membranes with various MIL-53(Al)

concentration were prepared through a phase separation

technique. The results shown that the prepared MIL-53(Al)/

LiCl@PVDF membranes possess an asymmetric structure with a

thin dense skin layer and sponge-like sub-layer. Incorporation of

hydrophilic MIL-53(Al) enhanced the membrane hydrophilicity

and increased the porosity and average pore size of the

membrane. At its optimism preparation conditions with 5 wt

% MIL-53(Al), the obtained membrane exhibited a pure water

permeability up to 43.60 L m−2 h−1 bar−1 and an excellent BSA

rejection of 80.29%. Furthermore, the FRR value of the

membranes reached up to 88.99%, which was 56.87% higher

than that of the ultrafiltration membrane without the addition of

MIL-53(Al), indicating that the prepared MIL-53(Al)/LiCl@

PVDF membranes exhibited an excellent antifouling

performance.
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