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Carbon nanomaterials are some of the state-of-the-art materials used in drug-

delivery and tissue-engineering research. Compared with traditional materials,

carbon nanomaterials have the advantages of large specific surface areas and

unique properties and are more suitable for use in drug delivery and tissue

engineering after modification. Their characteristics, such as high drug loading

and tissue loading, good biocompatibility, good targeting and long duration of

action, indicate their great development potential for biomedical applications.

In this paper, the synthesis and application of carbon dots (CDs), carbon

nanotubes (CNTs) and graphene in drug delivery and tissue engineering are

reviewed in detail. In this review, we discuss the current research focus and

existing problems of carbon nanomaterials in order to provide a reference for

the safe and effective application of carbon nanomaterials in drug delivery and

tissue engineering.
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1 Introduction

Cancer is a disease that greatly affects human survival in this century (Banerjee, 2010;

Ouyang et al., 2018a; Ouyang et al., 2018b). Chemotherapy is, currently, one of the clinical

methods for treating cancer, but it has serious side effects and limited and individually

differenced therapeutic effects (Arias, 2011; Mohanty et al., 2011; Ouyang et al., 2022). To

overcome the problems (at least some of them) of chemotherapy in cancer therapy

strategies, over the past few decades, various drug-delivery systems have been explored

with the aim of targeting cancer delivery and controlled release of therapeutic drugs

within lesions (Hubbell and Chilkoti, 2012; Lee et al., 2014; Chen et al., 2017a; Ouyang

et al., 2021). In particular, in order to improve the specificity of treatment, researchers

have used nanotechnology to design different types of targeted drug-delivery systems,

which have been proven effective in preclinical animal experiments (Jin et al., 2015; Zheng

et al., 2015; Luo et al., 2016; Chen et al., 2017b). Targeted drug-delivery vehicles for cancer

therapy not only exhibit excellent in vivo pharmacokinetic characteristics and tumor-

homing ability but also enable selective control of drug release in diseased regions (e.g.,

cancer), resulting in the high efficacy and minimal side effects of cancer-specific

treatments (Chen et al., 2014; Das et al., 2015; Wang et al., 2018).
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Tissue engineering involves the reproduction and

regeneration of damaged organs and tissues (Webber et al.,

2015; Langer and Vacanti, 2016). Engineered tissues require

tissue, cellular, morphological and physiological characteristics

that are similar to those of in vivo tissues to achieve their potential

(Freed et al., 1994; Khademhosseini et al., 2009; Tamayol et al.,

2013). Therefore, the design of functional tissue engineering

must possess several key elements for guiding cell growth and

regulation, delivering bioactive molecules and generating

appropriate physical and chemical signaling cues. These can

be achieved by specific nanomaterials that possess the unique

features and properties among single atoms and continuous bulk

structure.

Carbon is one of the most important and closely related

elements in nature. Carbon atoms can form stable single,

double and triple bonds with sp3, sp2 and sp hybrid orbitals,

respectively, thus forming a variety of functional materials with

completely different structures and properties. For example,

quaternized carbon nanospheres (QCNSs) (Jiang et al., 2017)

with superior antibacterial activity; water-dispersible carbon

nano-onion clusters (CNOCs) (Sun et al., 2019) with high

photothermal conversion efficiency; and nano-diamonds

(Gupta et al., 2017) that can be used to treat cancer, etc. In

recent decades, the importance and potential of carbon

nanomaterials have been recognized by some of the highest

scientific awards, including the 1996 Nobel Prize in Chemistry

(fullerenes), the 2008 Kavli Prize in Nanoscience (carbon

nanotubes) and the 2010 Nobel Prize in Physics (graphene).

These show that carbon nanomaterials and their applications

are encountering their most rapid development and represent a

very important topic in modern materials science (Lu and

Schüth, 2006; Linares et al., 2014; Rondeau-Gagné and

Morin, 2014; Titirici et al., 2015).

This article presents the latest trends in the synthesis,

characterization and applications of carbon nanomaterials

(such as CDs, CNTs, graphenes and their composites)

through a comprehensive analysis of the creations of some of

the most prominent contributors. We conclude that the

sustainable development of carbon nanomaterials science can

provide innovative solutions for a sustainable future and a clean

environment (Scheme 1).

2 Synthesis methods and related
structures of carbon nanomaterials

2.1 Synthesis methods and related
structures of CDs

Since 2006, CDs have received extensive attention as new

members of the quantum dot family and are expected to become

new fluorescent nanomaterials (Ponomarenko et al., 2008). CDs

are a class of zero-dimensional (0D) carbon nanomaterials with a

size of less than 10 nm and a 0.34 nm lattice corresponding to the

(002) plane of graphene. When prepared using solution methods,

CDs usually have many (epoxy, hydroxyl, carbonyl and carboxyl)

functional groups on their surface. These functional groups lead

to CDs being water-soluble and being able to connect to various

organic polymers or biomolecules. The unique optical properties

of tunable luminescence from the ultraviolet to the near-infrared

(NIR) and multiphoton upconversion luminescence exhibited by

CDs are influenced by surfaces, quantum confinement and edges.

We, therefore, control these properties by controlling the shape

and size of CDs, as well as by heteroatom doping and surface

modification (Liu et al., 2013). In addition, compared with

organic dyes and traditional semiconductor quantum dots,

CDs not only have the characteristics of photobleaching

resistance and photostability but also have better

biocompatibility and lower toxicity. To reduce synthesis costs

and take better advantage of the unique properties of CDs,

researchers have carried out extensive research in a variety of

fields, including optical sensing, biological imaging,

photocatalysis and electrocatalysis. In 2013, researchers

successfully produced fluorescent CDs with blue light. Their

quantum yield (QY is about 80%) in aqueous solution is

comparable to that of semiconductor quantum dots. This

further promotes the development of CDs in the field of

biological imaging (Figure 1) (Zhu et al., 2013). Since then,

researchers have attempted to use CDs for biomedical and

optoelectronics applications such as photodynamic therapy,

drug delivery, solar cells and light-emitting diodes. In recent

years, graphene quantum dots (GQDs) have attracted great

attention as another 0D fluorescent carbon nanomaterial.

GQDs are defined as nanographene sheets less than 10 nm in

size. Compared with CDs, they are usually a single graphene

Scheme 1
The outline in this review.
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layer; therefore, they have fewer atomic layers and better

crystallinity.

There are twomethods for CD synthesis: bottom-up and top-

down methods. The former consists in the pyrolysis and

carbonization of small organic molecules or the stepwise

chemical fusion of small aromatic molecules, while the latter

is achieved by chemically, electrochemically or physically

decomposing larger carbon structures into smaller carbon

structures. The selected synthetic material and synthesis

methods usually determine the physicochemical properties of

the synthesized carbon spots, such as oxygen/nitrogen content,

size, crystallinity and fluorescence properties, including

fluorescence quantum yield, colloidal stability and

compatibility, etc.

2.1.1 Top-down methods
The first discovered and reported fluorescent CDs were

prepared using the top-down method. The method is

employed in the presence of water vapor, using argon as a

protective gas, and the laser ablation of graphite is performed

to synthesize carbon dots after surface passivation and acid

oxidation. Since then, researchers have developed top-down

methods by reducing the structure of graphene, graphene or

Go sheets, and CNTs to achieve a perfect sp2 hybrid structure.

For the top-down approach, scientists have developed a number

of methods to fracture carbon structures into CDs, such as arc

discharge, laser etching, nano-photolithography, electrochemical

oxidation, hydrothermal or solvothermal, microwave-assisted,

ultrasound-assisted, chemical stripping and nitric/sulfuric acid

oxidation. These synthetic methods are always complex and

uncontrollable, with relatively low yields and quantum yields,

and some are even environmentally harmful, making them

unsuitable for the mass production of CDs with high

fluorescent quantum yields.

2.1.2 Bottom-up methods
In contrast, bottom-up methods typically use designed

precursors and preparation methods to control CDs with

good molecular weight and properties, shape and size. At the

same time, the bottom-up method is low-cost and can mass-

produce fluorescent CDs, which is the prerequisite to ensure the

practical application of CDs. Hydrothermal treatment of citric

FIGURE 1
Printed patterns obtained by CD ink and the integration of CDs and polymers. (A) Different graphic patterns on paper (illuminated by a portable
UV lamp). (B) Inks inmultiple colors, tuned by the CD concentration in aqueous solution (illuminated by a portable UV lamp). (C)CD ink patterned on
hydrophilic photoetching stripes (under UV, blue, and green light excitation). (D) Fluorescence microscopy images of PVA/CD nanofibers with UV,
blue, and green light excitation. The fluorescence microscopy images in (C) and (D) were obtained through band-pass filters of different
wavelengths: 450 nm, 550 nm, and 580 nm. (E) Bulk PDMAA/CD nanocomposites (The PL intensity was unchanged after 2,000 W UV exposure for
30 min).
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acid or carbohydrates, laser irradiation of toluene, stepwise

solution chemistry of benzene derivatives and precursor

thermolysis have been used to successfully prepare carbon

points. In addition to the above precursors, glycerol, amino

acids, ascorbic acid and other molecules rich in carboxyl,

hydroxyl and amino groups are suitable carbon precursors.

They are dehydrated at high temperatures and further

carbonized to form carbon spots.Yang and co-workers

synthesized nitrogen-doped carbon sites with about 80%

quantum yield via hydrothermal treatment of citric acid and

ethylenediamine (Zhu et al., 2013). In addition, the luminescence

color and quantum yield of CDs can be regulated by adjusting the

amount of auxiliary inorganic substrates such as KH2PO4, NaOH

and H3PO4, or the ratio of reagents. For example, Bhunia et al.

(2013) used different carbohydrates and dehydrating agents as

carbon precursors to synthesize visible-light-tunable high-

fluorescence CDs at different temperatures. In addition,

nucleation and growth kinetics were controlled by changing

the dehydrating agent and reaction temperature. This

synthesis method can control particle sizes of less than 10 nm

and can synthesize CDs with adjustable emission and relatively

high fluorescence quantum yield.

2.1.3 Surface modification
Surface modification is a prerequisite for the further

biomedical applications of CDs. Using different surfactants,

the solubility of CDs in non-polar solvents can be enhanced,

while their fluorescence properties can be adjusted. CDs with

different groups on their surfaces can be synthesized to fulfill

different functional requirements. Therefore, suitable

biodegradable polymer precursors with different group

components, such as amines, carboxylic acids and hydroxyl,

can be selected to modify CDs. For example, the carboxyl

groups on the CD surface make it hydrophilic during

synthesis and can be mixed with polyethylene-glycol-

containing amino groups to generate functionalized CDs.

Thus, proper surface modification is beneficial to the further

application and development of CDs in the biomedical field

before biological application.

2.2 Synthesis methods and related
structures of CNTs

Bare CNTs have a strong hydrophobic surface and are

difficult to dissolve in water. For biomedical applications,

surface functionalization of CNTs can improve the

biocompatibility of CNTs and reduce their toxicity. Surface

modification of CNTs mainly includes non-covalent

modification and covalent modification. Non-covalent

modification is to connect amphiphilic polymers to the

surface of CNTs through hydrophobicity, while covalent

modification is to connect hydrophilic molecules to the

surface of CNTs through covalent bonds to increase their

water solubility.

2.2.1 Covalent modification of CNTs
Various covalent-bond modification methods have been

used in the functionalization of CNTs, among which

oxidation reaction is the most important modification

method. The oxidation of CNTs mainly uses nitric acid as

oxidant. In this oxidation process, carboxyl groups appear at

the ends and defect positions of CNTs, which makes CNTs

water-soluble to a certain extent. However, the oxidized CNTs

accumulate and precipitate in salt solution, which cannot be

directly used in living systems (because most living systems

contain high-salt solution). Further surface modification is

necessary for biomedical applications of CNTs. Polyethylene

glycol (PEG), as a widely used surfactant, has been used to

covalently modify CNTs in vivo and in vitro. Another widely

used method of modifying CNTs is the cycloaddition reaction,

which occurs on the side of the aromatic ring rather than at the

end of the nanotubes or at the site of the defects formed by

oxidation. The cycloaddition reaction connects the azide to the

CNTs through a photochemical reaction. Prato et al. developed a

method to modify CNTs by 1, 3-dipole cycloaddition reaction

(Tagmatarchis and Prato, 2004). This method is also one of the

most common modification methods.

Because the covalent modification method destroys the

structure of carbon nanotubes, the inherent physical

properties of carbon nanotubes, such as photoluminescence

and Raman scattering, are destroyed after the chemical

reaction. For example, the Raman scattering and

photoluminescence intensity of single-walled carbon

nanotubes (SWCNTs) are greatly weakened after covalent

modification, which reduces the potential optical applications

of this class of materials.

2.2.2 Non-covalent modification of CNTs
Compared with covalent modification, the non-covalent

modification of carbon nanotubes involves the modification of

polymers or amphiphilic surfactant molecules onto the surface of

CNTs. In the process of non-covalent modification, the chemical

structure of CNTs is not damaged, but the length of CNTs is

shortened by ultrasound in the process of functionalization, and

other physical properties are retained. Therefore, the aqueous

solution of CNTs, especially SWCNTs, can be used in various

fields of biomedicine through non-covalent modification.

The aromatic carbon graphite surface of CNTs can be loaded

with aromatic molecules by π–π stacking. Using the π–π
interaction between CNTs and pyrene, Dai’s group used

pyrene and its derivatives to non-covalently modify CNTs and

found that proteins can be fixed to the CNTs modified by pyrene

derivatives (Chen et al., 2001; Wu et al., 2008). In addition,

Bertozzi et al. also modified CNTs with pyrene-linked sugar tree

molecules (Moon et al., 2008). In addition to pyrene derivatives,
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single-stranded DNA is also widely used to modify carbon

nanotubes, mainly through π–π stacking between the

nanotube surfaces and the aromatic rings in DNA (Kam et al.,

2005). However, Moon et al. found that the SWCNTs modified

by DNA molecules were unstable in vivo because they contained

nuclease to degrade DNA (Moon et al., 2008). Dai et al. found

that fluorescein-labeled PEG chains could modify SWCNTs, and

fluorescein labeled CNTs were obtained by π–π stacking between
aromatic rings on fluorescein and CNTs for biological imaging

(Nakayama-Ratchford et al., 2007). In addition, other aromatic

molecules have also been used to non-covalently modify CNTs.

A variety of amphiphilic molecules are used to suspend CNTs

by van der Waals forces and hydrophobicity to connect the

hydrophobic part to the surface of the nanotubes, while the

hydrophilic part is exposed to improve the water solubility of the

nanotubes. In the process of biological detection based on

SWCNTs, CNTs have been non-covalently modified with

Tween-20 and block copolymer to reduce the non-specific

adsorption between CNTs and proteins. Cherukuri et al. used

block copolymer to modify CNTs for in vivo experiments

(Cherukuri et al., 2006). However, using block copolymers to

modify CNTs is not stable enough in vivo because proteins in

plasma replace them. In addition, common surfactants such as

sodium dodecyl sulfate and Tween-100 can be used to suspend

CNTs, making them water-soluble. Amphiphilic-polymer-

modified CNTs have a relatively high critical micelle

concentration and are unstable in solution without the

presence of other surfactants. This modification method is not

suitable for use in biological systems, because large amounts of

surfactant may dissolve cell membranes and denature proteins.

An ideal non-covalent modification of CNTs for modifying

biological systems should have the following characteristics:

First, the modified molecule should be either non-toxic or

biocompatible. Second, the polymer modified on the surface

of CNTs should be stable enough to prevent dissociation in

biological systems, especially in plasma solutions containing salts

and proteins. Amphiphilic-polymer-modified CNTs should have

a low critical micelle concentration value and maintain the

stability of the CNTs after removing the excess modified

molecules. Third, the modified molecule should have

functional groups that can be used for biological coupling

(such as linking antibodies or other molecules), allowing

CNTs to be used for different aspects of biological applications.

Dai and co-workers developed non-covalent PEG-

phospholipid (PL-PEG)-modified CNTs to meet the various

needs of biomedicine and obtained highly water-soluble CNTs

FIGURE 2
Carbon nanotube for PTX delivery. (A) Schematic illustration of PTX conjugation to SWCNT functionalized by phospholipids with branched PEG
chains. (B)UV-VIS-NIR spectra of SWCNT before (black curve) and after PTX conjugation (red curve). (C)Cell survival versus concentration of PTX for
4T1 cells treated with Taxol, PEG-PTX, DSEP-PEG-PTX, or SWNT-PTX for 3 days.
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and their various functionalities (Figure 2) (Liu et al., 2008).

Because phospholipids are a major component of cell

membranes, they are safer than biological systems. During the

modification process, two hydrocarbon chains of liposomes were

anchored on the surface of the CNTs, while the hydrophilic

chains extended to the water phase, making the CNTs water-

soluble and biocompatible. Different from surfactant-modified

CNTs, PL-PEG-modified SWCNTs have good stability in

solution, including serum. PL-PEG of different PEG lengths

and structures can be used to modify SWCNTs. Binding of

biomolecules may be affected by amino interactions with PEG

terminals. Using this strategy, PEG-modified single-walled CNTs

have been successfully applied in the biomedical field, mainly

including biological detection, biological imaging and drug

delivery.

2.3 Synthesis methods and related
structures of graphenes

The research upsurge of graphene has led to a strong interest

in the preparation of materials by researchers at home and

abroad, and different preparation methods are adopted

according to their respective uses. Currently, graphene

materials can be prepared by either bottom-up synthesis

(including chemical vapor deposition (CVD) and chemical

methods such as organic synthesis) or top-down synthesis

(including mechanical stripping). In addition, the chemical

oxidation method, the crystal epitaxy growth method and the

CNT stripping method are also used (Loh et al., 2010; Yang et al.,

2013a). Among these methods, the oxidative exfoliation method,

which was discovered by Hummers and Offeman in 1958 to

generate GO by reacting natural graphite with strong acids and

strong oxidizing substances, is widely used to prepare graphene

oxide (GO) (Hummers and Offeman, 1958). This method is the

easiest way to obtain large quantities of nanographene and its

derivatives. The prepared GO leaves a large number of epoxy,

hydroxide and carboxyl groups on its surface for subsequent

surface modification or linking to targeted molecules such as

peptides or antibodies.

Many articles have reported the extensive application of GO

and its derivatives (including reduction GO (RGO) and GO

complexes) in biomedicine, but good surface modification of GO

and its derivatives is essential. For example, Liu’s group prepared

RGO with oxygen-containing hydrophilic groups, which were

lost in the reduction process; it existed in the form of particles in

aqueous solution and was not soluble in water. In addition,

although the prepared GO can maintain good stability in

aqueous solution, GO agglomerates in physiological solutions

such as PBS, normal saline and cell culture medium, which may

be caused by the charge-shielding effect in the presence of salt

ions. Only through good surface modification can we improve

the stability of nanomaterials, including GO in vivo, and control

their behavior in vivo. GO and its derivatives can be modified

appropriately according to different use purposes. At present, a

variety of modification methods, including covalent modification

and non-covalent modification, are widely used in the surface

modification of GO and its derivatives for biomedical

applications (Feng and Liu, 2011; Yang et al., 2012a). In

addition, many inorganic nanoparticles are grown in situ or

adsorbed onto the GO surface to obtain functional complexes

based on nanographene (Yang et al., 2012b).

2.3.1 Covalent modification of graphenes
Many active chemical groups (such as hydroxyl groups,

epoxy and carboxyl) exposed at the GO edges and defect sites

can be covalently linked to modify nanographene (Park and

Ruoff, 2009). PEG is a strong hydrophilic polymer, which is

widely used for modifying all kinds of nanometer materials, so as

to improve their biocompatibility, reduce the nanomaterials non-

specific adsorption of biological molecules and cells, and further

improve the nanomaterials in vivo to better pharmacokinetically

promote tumor targeting (Liu et al., 2007a). In 2008, Dai and co-

workers used the amino-terminal-branched PEG to modify GO

for the first time, mainly connecting the amino group of PEG to

the carboxyl group on the surface of GO, so as to obtain PEG-

modified GO (NGO-PEG) of ultra-small size (10–50 nm). NGO-

PEG has shown excellent stability in a variety of physiological

solutions (Yang et al., 2010). Since then, PEG-modified GO has

been widely used in cell and in vivo biomedical research (Yang

et al., 2010; Yang et al., 2011b)

In addition to PEG modification, many other hydrophilic

macromolecules are used to covalently modify nanographene.

Liu’s group covalently modified GO with aminated dextran,

which could significantly improve the stability of GO in

physiological solution (Zhang et al., 2011). Bao et al. used

chitosan to covalently modify nanographene for drug and

gene delivery (Bao et al., 2011). In addition, Gollavelli’s and

Ling’s groups modified the GO functional complex with

polyacrylic acid to improve its biocompatibility (Gollavelli and

Ling, 2012). In addition to reacting with the carboxyl group on

the GO surface, the epoxy group on the GO surface can also

connect to the polymer to improve its stability. In a recent study,

Niu et al. modified GO using an amino group on polylysine

linked to an epoxide group on the surface of GO (Shan et al.,

2009).

In addition, besides using hydrophilic polymers to modify

GO, there are some other methods, such as using some small

molecules to modify GO. Zhang and co-workers reported that

sulfonic acid can covalently connect to the GO surface to

improve the stability of GO in physiological solution (Zhang

et al., 2010). Prato’s group modified GO with methylene nitride

via a 1,3-dipole cycloaddition reaction (Quintana et al., 2010).

However, the use of small molecule modifications of GO may

require more testing in biological experiments to determine their

biocompatibility.

Frontiers in Chemistry frontiersin.org06

Zheng et al. 10.3389/fchem.2022.990362

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://doi.org/10.3389/fchem.2022.990362


2.3.2 Non-covalent modification of graphenes
In addition to covalently modifying nanographene,

nanographene can also be non-covalently modified with

polymers or biological macromolecules through hydrophobic

interactions, π–π stacking or electrostatic adsorption. GO can

interact with surfactants and hydrophilic polymers to improve

their water solubility. However, for biomedical applications,

biocompatible-polymer-modified GO is better than small-

molecule-surfactant-modified GO. Park et al. (2010) used the

biocompatible molecule triton to modify reduced nanographene.

Hu et al. (2012) used Pluronic F127 (PF127) to modify

nanographene. The hydrophobic part of PF127 was connected

to the GO surface through hydrophobic action, and the

hydrophilic part extended into the solution, so as to prepare a

very stable GO PF127 complex. Recently, Professor Dai Hongjie’s

group prepared an ultra-small RGO, which was non-covalently

modified by amphiphilic PEGylated polymer and attached with

Arg-Gly-Asp (RGD) to improve its biocompatibility (Robinson

et al., 2011). In recent work, Liu’s group used branched PEG to

modify RGO and obtained RGO–PEG with very stable

properties. RGO–PEG has an extremely long blood circulation

time and can be used for photothermal therapy of tumors (Yang

et al., 2012b).

The non-covalent modification methods listed above are

based on the hydrophobic forces between hydrophilic

polymers on the GO surface. Since the surface of GO has a

strong negative charge, a polymer with positive charge can bind

to the surface of GO through the effect of charge, so as to achieve

the effect of modification. Liu’s group modified GO with a

positively charged polymer, polythylene-imine (PEI),

commonly used in gene transfection to obtain a very stable

GO–PEI complex in physiological solution, while reducing the

toxicity of PEI alone and improving the efficiency of GO-based

gene transfection (Feng et al., 2011). In addition, Dong et al.

(2011) used the same method to modify graphene nanoribbons

to obtain PEI–NGR complexes for cell gene transfection and in

situmicroRNA detection. Misra’s group used the same approach

for drug delivery. DOX-loaded GO was modified with positively

charged folic-acid-linked chitosan to obtain

DOX–GO–Chitosan–Folate nanocarriers for pH-controlled

drug release (Depan et al., 2011).

In addition to the use of synthetic polymers to modify GO,

some natural biomolecules such as proteins and DNA can also

modify GO. Recently, Huang et al. modified GOwith fetal bovine

serum to obtain a GO–protein complex. Compared with GO

without surface modification, GO–protein significantly reduced

cytotoxicity (Figure 3) (Hu et al., 2011). In addition, non-

polarized amino acids in BSA can also bind to the GO surface

by hydrophobic forces. In another work, Liu et al. (2011)

modified GO with gelatin. Graphene and GO have very high

electrons on the surface, so GO can be linked to many aromatic

molecules through π–π stacking.

FIGURE 3
Characterization of interaction of GOwith FBS proteins. (A) SDS-PAGE of FBS proteins in the supernatant after centrifugation. (B) AFM images of
GO (left) and FBS-coated GO nanosheets (right). (C) FBS protein loading ratio on the surfaces of GO at different incubation times. (D) BSA loading
capability of GO, SWCNTs, and MWCNTs.
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3 Advances in the drug delivery of
carbon nanomaterials

3.1 CD-based carbon nanomaterials for
drug delivery

Because CDs have many advantages, such as fast cell

extraction, good biocompatibility, strong fluorescence, high

stability and no influence on drug activity, many researchers

use CDs as multifunctional carriers for drug release and loading

(Wang et al., 2022). For example, CDs were embedded into the

zeolite imidazole framework (ZIF), and the fluorescence intensity

and size of the nanocomposite were optimized by changing the

concentration of carbon points and precursors; then, 5-

fluorouracil was loaded with the nanocomposite as a carrier

for pH-responsive drug release. Tang et al. developed a

fluorescence resonance energy transfer (FRET)-based carbon

drug-delivery system (Figure 4) (Tang et al., 2013). CDs could

serve as FRET donors or could be loaded with anticancer drugs.

Since the distance between the acceptor and donor significantly

affects FRET signaling, it can be used to sensitively monitor the

release of the chemotherapeutic drug doxorubicin from carbon

dots in real time. Hua et al. (2017).prepared a novel fluorescent

carbon quantum dots (or carbon dots, CDs) for the first time by

one-step hydrothermal treatment of chitosan, ethylenediamine

and mercaptosuccinic acid. The as-prepared CDs have

mitochondrial targeting ability without further modification of

other mitochondriotropic ligands. The CDs-RB nanomissiles

generated by conjugating CDs with the photosensitizer rose

bengal (RB) can target/accumulate in the mitochondria of

cells to achieve mitochondria-targeted photodynamic therapy.

Yang et al. (2017). Passivated multifunctional carbon quantum

dots (or carbon dots, CDs) with polyamine-containing

organosilane molecules. The as-synthesized CDs exhibit

negligible cytotoxic/systemic side effects, enabling simultaneous

cellular imaging and anticancer drug delivery. Hua et al. (2018).

Synthesized a novel class of multifunctional fluorescent carbon

quantum dots (or carbon dots, CDs) by a one-pot hydrothermal

reaction of m-phenylenediamine and L-cysteine, with no toxic side

effects, can achieve high-quality nucleolar imaging in living cells

and track nucleolus-related biological behaviors in real time.

Furthermore, upon conjugation with the commonly used

photosensitizer protoporphyrin IX (PpIX), the resulting CD-

PpIX nanomissiles can rapidly and specifically target tumor

sites and cause efficient tumor ablation after laser

irradiation.Therefore, drug delivery based on CDs shows great

potential in biomedical applications.

3.2 CNT-based carbon nanomaterials for
drug delivery

Due to carbon nanotubes having different surface chemistries

and sizes, they can enter cells through two pathways: a free

diffusion/penetration pathway that requires no energy and an

energy-dependent endocytosis pathway. Because all atoms are

exposed on the SWCNT surface, it has a large specific surface

area, so SWCNT can be loaded with proteins, DNA and aromatic

drugs via π–π stacking and hydrophobic interactions (Nurunnabi

et al., 2013; Yang et al., 2013b). In addition to non-covalent

adsorption, small molecules of drugs can also be loaded onto

FIGURE 4
(A) A schematic representation of the surface coupling
chemistry for FRET-CD-DDS. (B) Proposed mechanism of the
FRET-CD-DDS for drug delivery.

FIGURE 5
(A) Schematic structure of PLSWNT-RGD-DOX. (B) Confocal
fluorescence images. Concentration dependent survival curves of
U87MG cells (C) andMCF-7 cells (D) treated by various samples, as
indicated.
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carbon nanotubes through chemical bonds (such as ester bonds,

disulfide bonds), giving these drugs highly stimulating and

responsive drug release, thus achieving effective tumor therapy.

In 2007, Dai’s group discovered that doxorubicin, widely

used as an antitumor agent, could be effectively loaded onto the

surface of SWCNTs (PL-PEG-modified) via hydrophobic

interactions and π–π stacking. (Figure 5) (Liu et al., 2007b).

The results showed that up to 4 g of DOX could be loaded per

Gram of SWCNTs. DOX loaded onto SWCNTs can be used for

pH-dependent drug release, and targeted cell killing can be

achieved when targeted molecules are attached to the surface

of PEG-modified SWCNTs (SWCNT-PEG). In subsequent work,

DOX loaded on SWCNT-PEG was found to be less toxic to mice

and to achieve good antitumor effects after intravenous injection

into mice (Liu et al., 2009). Both studies demonstrated that

suitably surface-modified SWCNTs would be good drug-

delivery vectors. This efficient drug-loading strategy can be

generalized to other structurally similar drug carriers (such as

MWCNTs) and a variety of other aromatic drug molecules for

effective drug loading and cancer treatment. Dahri et al. (2021)

grafted a smart carrier composed of dimethylacrylamide-

trimethyl chitosan (DMAA-TMC) on functionalized SWNTs,

which improved the biocompatibility and biodegradability of the

SWCNTs. Therefore, smart drug delivery carrier can be used to

load, transport and release cancer chemotherapy drugs.

In addition, many studies have shown that some drug

molecules can be linked to the functional groups or the

surface-modified polymers on the surface of CNTs through

breakable bonds. In 2008, Dai and co-workers connected

paclitaxel (PTX; widely used as an anticancer drug) to a

branched PEG (SWCNT–PEG–PTX) chain modified with

SWCNTs via a broken bond. In vivo experiments showed that

SWCNT–PEG–PTX had a good inhibitory effect on 4T1 breast

cancer in mice, and the therapeutic results were better than those

of paclitaxel (Liu et al., 2008). At the same time, platinum

compounds (cisplatin prodrugs) were covalently linked to

non-covalently modified SWCNTs such as paclitaxel (Dhar

et al., 2008). They found that in the highly redox environment

of cancer cells, conjugated platinum (IV) compounds could be

easily reduced to cytotoxic cisplatin and specifically kill cancer

cells with the help of folic acid linked to the surface of

SWCNT–PEG. In addition to using SWCNTs as intracellular

drug-molecule delivery carriers, MWCNTs are also effective drug

carriers for drug delivery and tumor therapy (Wu et al., 2009).

3.3 Graphene-based carbon
nanomaterials for drug delivery

In the past few decades, nanoparticle-based drug delivery has

been widely used in tumor chemotherapy, with the aims of

improving tumor treatment effectiveness and reducing toxic

side effects. Since 2008, numerous research groups have been

working on nanographene-based drug-delivery systems.

Monolayers of GO or RGO can be used for drug loading due

to their large specific surface area. The electrons on the

nanographene surface can be combined with various aromatic

drug molecules through π–π bonds; then, the functionalized GO

or RGO surfaces can be linked with targeting molecules to

selectively deliver drugs to specific cells.

Inspired by the use of CNTs for drug loading, GO with

different surface modifications can also be used as a carrier to be

connected with the loading of various anticancer drugs through

physical adsorption or covalency. The anticancer drugs mainly

include doxorubicin (DOX), camptothecin (CPT), SN38, ellagic

acid, β-lapachone (β-lapachone) and 3-bis-(chloroethyl)-1-

nitrosorea (BCNU). In 2008, Dai’s group used PEG-modified

nanocrystalline graphene to obtain RGO–PEG, which is very

stable in physiological solutions and can be loaded with the

water-insoluble drug SN38 via π–π interactions. Compared with

the anticancer efficiency of CPT11, the

NGO–PEG–SN38 nanocomplex significantly improved its

ability to kill tumor cells (Yang et al., 2010). The use of GO

as a good drug carrier has also been reported by different research

groups (Liu et al., 2011). To achieve targeted delivery of drugs

into specific cells, Dai et al. attached an anti-CD20 antibody to

the RGO-PEG surface and then loaded DOX to selectively kill

B-cell lymphoma (Sun et al., 2008). Zhang et al. found that

sulfonic-acid-modified GO coupled with folic acid could target

cells with high expression of folate receptors. In addition, DOX

and CPT, two anticancer drugs, were simultaneously loaded onto

the GO surface to achieve the synergistic killing effect of tumor

cells (Zhang et al., 2010).

Recently, many research groups have also developed drug-

delivery systems based on GO that can respond to environmental

stimuli. Shi’s team developed GO modified with a PEG shell to

prevent the NGO–PEG from releasing the loaded drugs (e.g.,

DOX). They modified GO with newly synthesized PEG cross-

linked with disulfide bonds that release DOX upon cleavage of

the disulfide bonds in a reducing environment and found that

DOX delivery using such a loading system significantly improved

the therapeutic efficacy of tumor cells (Figure 6) (Wen et al.,

2012). In addition, Pan designed a heat-sensitive drug carrier

based on GO. Firstly, the heat-sensitive polymer PNIPAM [Poly

(N-isopropylacrylamide)] was chemically connected to the GO

surface to obtain a very stable GO–PNIPAM complex

under physiological conditions without obvious toxicity to

cells. After loading CPT, GO–PNIPAM–CPT showed an

excellent tumor-cell-killing ability compared with CPT alone

(Pan et al., 2011).

In addition to using functionalized GO as a drug-delivery

vector, many research groups still use drug delivery based on GO

functional complexes. In 2009, Yang et al. (2009) used a

GO–IONP nanocomposite to load DOX and achieve

controllable release of DOX in pH response. At the same

time, they utilized the magnetic properties of GO–IONP to
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FIGURE 6
Schematic diagram showing antitumor activity of redox sensitive DXR-loaded NGO-SS-mPEG.

FIGURE 7
In vitro fluorescence cell viability images andQuantified cell viability of the Silk fibroin/PLA in the presence and absence of CQDnanoparticles at
1, 3, 5, and 7 days of culture.
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link folic acid to achieve dual targeted drug delivery based on

GO–IONP (Yang et al., 2011a; Yang et al., 2011b). Liu and co-

workers prepared GO–IONP nanocomposites by high-

temperature reactions and then covalently modified

GO–IONP with amino PEG to improve its stability and

biocompatibility. The GO–IONP–PEG obtained can be used

for magnetic targeted drug delivery and photothermal therapy

of tumor cells (Ma et al., 2012).

4 Advances in the tissue engineering
of carbon nanomaterials

4.1 Application of CDs in tissue
engineering

Manufactured scaffolds should possess the following

properties to be applicable for tissue engineering: 1) high

porosity of interconnected pore structure, 2) larger surface

area, 3) suitable mechanical strength, 4) better

biocompatibility and 5) controlled biodegradability (Nidhin

et al., 2014; Raja and Fathima, 2018; Babbar et al., 2020).

Meanwhile, CDs are integrated into various polymer scaffolds

to enhance their application in tissue engineering (Shafiei et al.,

2019).

4.1.1 Cardiac-tissue engineering using CD-based
carbon nanomaterials

Ren et al. prepared p-phenylenediamine functionalized CD-

mediated silk fibroin-PLA (SF-PLA) nanofibrous scaffolds. It has

better mechanical properties and can be applied in cardiac-tissue

engineering and nursing care (Figure 7) (Yan et al., 2020). In the

absence of any external electrical supply, the incorporation of

CDs into SF-PLA scaffolds significantly enhanced cell adhesion,

proliferation and mRNA expression of cardiac genes (Tnnc1,

Tnnt2, Cx43, and Atp2a2).

4.1.2 Bone-tissue engineering using CD-based
carbon nanomaterials

Shafiei et al. developed nanofibrous scaffolds for efficient

bone-tissue engineering application by an electrospinning

method (Shafiei et al., 2019). Non-invasive scaffolds based

on CD-peptide-mixed tannin-polyurethane (CDP-f-PU)

fabricated by Gogoi et al. (2017) exhibited higher

FIGURE 8
The SEM micrographs of electrospun scaffolds with the magnification of 5.00 Kx: S1, S2, S3, S4, S5, S6, S7, and S8.
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biocompatibility, osteoconductivity and osteodifferentiation

ability in bone-tissue regeneration. Ghorghi et al. (2022)

fabricated Captopril/CQDs/polycaprolactone (CP-CQDs-

PCL) nanocomposite scaffolds with reduced fiber diameter

due to the conductive properties of CQDs in the scaffolds

(Figure 8). The scaffold with 0.5% CQD significantly

increased the adhesion, proliferation and ALP activity of

MG-63 cells, which was sufficient for bone-tissue

engineering applications.

4.2 Applications of CNTs in tissue
engineering

4.2.1 Neuronal-tissue engineering using CNT-
based carbon nanomaterials

It has been reported that CNTs can support neuronal

attachment, promote the generation of neurites and be

directly used as substrates for neuronal-tissue engineering

(Koppes et al., 2016; Arslantunali et al., 2014; Lee et al., 2018;

Shao et al., 2018; Shrestha et al., 2018;Wang et al., 2018;Wu et al.,

2017; Xia et al., 2019). However, the potential toxicity of

biological systems and the difficulty in generating canonical

2D/3D structures limit their utilization. Although polymer

scaffolds have excellent biocompatibility, their poor electrical

conductivity and the fact that they are not easily stretched limit

their application in electrically propagating tissues. However, in

combination with carbon nanotubes with strong electrical

conductivity and good mechanical properties, they can be

used in neuronal-tissue engineering, while the polymer

scaffold minimizes the toxic effects of carbon nanotubes.

Numerous studies have shown that carbon nanotubes and

biocompatible polymers combined with each other can be

used as two-dimensional conductive meshes or membranes

for neural-tissue engineering (Table 1).

Shao et al. (2018) synthesized membranes composed of

carbon nanotubes and poly (Dimethyl Diallyl Ammonium

chloride). These membranes can provide potent regulatory

signals for the adhesion, differentiation and growth of neural-

stem-cell-derived neurons. Wu et al. (2017) studies on Schwann

cells showed that the biocompatible chitin/carbon nanotube (Ch/

CNT) composite hydrogel not only had no cytotoxicity nor

neurotoxicity but also exhibited increased proliferation,

adhesion and diffusive bodies, and cells exhibited greater

extension and elongation. Arslantunali et al. (2014) designed

the MWCNT/poly (2-hydroxyethyl methacrylate) composite

catheters, which can promote peripheral nerve regeneration.

More recently, Xia et al. (2019) reported electrospun fibrous

scaffolds constructed using polyvalent polyanion-dispersed

carbon nanotubes, which can be used for neural-tissue

regeneration. The results demonstrated that the scaffold acts

as a biocompatible platform for pluripotent stem cell (IPS)

adhesion and proliferation, while being able to induce higher

differentiation of IPSs. Furthermore, aligned fibers can guide

neurites to grow in specific directions. Lee et al. (2018)

synthesized MWCNT and PEGDA composite scaffolds; when

combined with electrical stimulation, they showed synergistic

effects on promoting nerve growth in neural-tissue engineering.

Shrestha et al. (2018) developed a self-electrically stimulating

bilayer nerve guide catheter (NGC) for neural-tissue engineering.

The results of cell experiments showed that this NGC can

enhance the proliferation, differentiation and adhesion of PC

12 cells and Schwann cells. Furthermore, cells can be observed to

distribute along the aligned fibers. Wang et al. (2018) produced a

poly (lactic-co-glycolic acid) (PLGA) composite scaffold that

could guide the growth of PC12 cells and DRG neurons along

the fiber direction. Furthermore, by applying electrical

stimulation, the material PC12 cells and DRG neurons loaded

with polylactic-co-glycolic acid (PLGA) composite scaffolds

exhibited longer neurite lengths, and PC12 cells under 40 mV

electrical stimulation also increased compared with the control

differentiation. Similarly, Koppes and colleagues (Koppes et al.,

2016) synthesized composite scaffolds by mixing carboxylated

SWCNTs with hydrogels, which could be applied by direct

current stimulation. With the increase in SWNT loading, the

electrical conductivity of the composite scaffolds increased

significantly, resulting in a marked improvement in neurite

outgrowth. Furthermore, by applying electrical stimulation,

TABLE 1 A list of CNTs with polymers for neural tissue engineering.

No CNT type Polymer Method Reference

1 MWCNTs Poly (dimethyldiallylammonium chloride) Layer-by-layer assembly Shao et al. (2018)

2 MWCNTs Chitin Solution and regenerating Wu et al. (2017)

3 MWCNTs Poly (2-hydroxyethyl methacrylate) Polymerization process Arslantunali et al. (2014)

4 MWCNTs Hyperbranched polyglycerol sulfate Dispersion and coating Xia et al. (2019)

5 MWCNTs PEGDA Vat-photopolymerization Lee et al. (2018)

6 MWCNTs Chitosan/polyurethane/polypyrrole Electrospinning Shrestha et al. (2018)

7 MWCNTs Poly (lactic-co-glycolic acid) Electrospinning Wang et al. (2018)

8 SWCNTs Hydrogels Gel method Koppes et al. (2016)
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the growth of the SWCNT-loaded material was increased by a

factor of 7.0 compared with the control. However, the exact

mechanism of neurite elongation is not well understood, so

further research is required.

4.2.2 Cardiac-tissue engineering using CNT-
based carbon nanomaterials

Biomaterials with sufficient mechanical strength and good

electrical conductivity can be used in cardiac-tissue engineering.

Despite their biocompatibility, polymeric materials are generally

inert and require further improvement of their mechanical

properties, which limit cell-to-cell interactions and signaling

(Shin et al., 2013b; Kharaziha et al., 2014; Pok et al., 2014;

Wickham et al., 2014; Sun et al., 2015; Liu et al., 2016; Yu

et al., 2017; Mombini et al., 2019). Various polymer/CNTs

composites with high mechanical and electrical properties of

biopolymers have been investigated (Table 2).

Shin et al. (2013a) prepared CNT–GelMA and cultured it

with neonatal rat cardiomyocytes. Compared with controls,

cardiomyocytes exhibited a 3-fold increase in spontaneous

beating rate, an 85% lower excitation threshold and

significantly improved cell adhesion. The experimental results

obtained by Yu et al. (2017) showed that CNT–collagen scaffolds

increased the rhythmic contractile area of cardiomyocytes

(CMs), indicating improved function of CMs.

Wickham et al. (2014) showed that PCL and PCL/T-CNTs

membranes did not improve the attachment and proliferation

of cardiac stem progenitor cells (CPCs). In the case of

electrospun meshes, the incorporation of T-CNTs can be

observed to increase mechanical strength and cell

proliferation, but no effects on cell differentiation are

observed. Similarly, Liu et al. (2016) showed that electrospun

poly (lactic-co-glycolic acid)/MWCNTs induce elongation of

neonatal rat cardiomyocytes while enhancing the production of

sarcomeric α-actin and troponin I in cardiomyocytes. The

application of carbon nanotubes helps to overcome the

limitation of insufficient remodeling of intercalated discs

(IDs) connecting cardiomyocytes. Kharaziha et al. (2014)

produced grids that were able to support cardiomyocyte

ingrowth. Compared with the grids without MWCNTs, the

grids containing MWCNTs exhibited stronger spontaneous

and synchronous beating behavior, with a 3.5-fold lower

excitation threshold and a 2.8-fold higher maximum

trapping rate.

Pok et al. (2014) studies have shown that composite

hydrogels can achieve excitation conduction velocities

(22 ± 9 cm/s) similar to native myocardial tissue to support

the function of cardiomyocytes. Therefore, they can be used as

electrical nanobridges for communication between

cardiomyocytes. Sun et al. (2015) developed a CNT/

collagen patch that enhanced the assembly of intercalated

discs in cardiomyocytes. Mombini et al. (2019) produced

electrospun cardiac conductive scaffolds composed of

chitosan (CS), polyvinyl alcohol (PVA) and carbon

nanotubes at different concentrations (1, 3, and 5 wt%).

Biological results showed that the electrical stimulation of

scaffolds containing 1 wt% CNTs promoted gene expression

of cardiac markers.

4.2.3 Bone-tissue engineering using CNT-based
carbon nanomaterials

Engineered tissue is used to produce synthetic 3D structural

bone scaffolds that provide support for cell differentiation,

attachment and proliferation (Gupta et al., 2014; Oyefusi

et al., 2014; Duan et al., 2015; Khalid et al., 2015; Gonçalves

et al., 2016; Tanaka et al., 2017a; Tanaka et al., 2017b; Jing et al.,

2017; Wang et al., 2019; Świętek et al., 2019). Bone generates an

electrical current when pressure is applied, so bone is a tissue

with piezoelectric properties, whereas piezoelectric materials

exhibit the reverse piezoelectric effect (The material

compresses when an electrical current is applied) (Table 3);

therefore, bone-tissue regeneration can be accelerated by using

electroactive scaffolds and applying electrical stimulation.

Tanaka et al. (2017a) fabricated CNT-containing 3D bulk

structures and investigated their efficiency as scaffolds for bone

repair. Mechanical tests showed that the compressive strengths of

the fabricated structures and rat femurs were 62.1 and

61.86 MPa, respectively, with no significant differences. In the

TABLE 2 A list of CNTs with polymers for cardiac tissue engineering.

No CNT type Polymer Method Reference

1 MWCNTs Gelatin methacrylate Photo-crosslinking Shin et al. (2013b)

2 MWCNTs Collagen type I Sonicated Yu et al. (2017)

3 MWCNTs Thiophene Electrospinning Wickham et al. (2014)

4 MWCNTs Poly (lactic-co-glycolic acid) Electrospinning Liu et al. (2016)

5 MWCNTs Poly (glycerisebacate)/gelatin Electrospinning Kharaziha et al. (2014)

6 SWCNTs Gelatin chitosan hydrogel Gel method Pok et al. (2014)

7 SWCNTs Collagen patch Intercalated disc assembly Sun et al. (2015)

8 SWCNTs Polyvinyl alcohol/chitosan Electrospinning Mombini et al. (2019)
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presence of recombinant human BMP-2, CNT blocks showed

higher ALP activity favoring osteogenic behavior. Tanaka et al.

(2017b) concluded that carbon nanotubes have better protein

uptake and release capacity than hydroxyapatite (HA). CNT

porous structures combined with recombinant human BMP-2

showed higher cell proliferation, better osteoconductivity and

more osteogenesis. Oyefusi et al. (2014) grafted HA onto carbon

nanotubes and graphene nanosheets and then used human fetal

osteoblast cell lines to study their effects on cell proliferation and

differentiation. The experimental results showed that both

CNTs–HA and graphene--HA materials can promote cell

growth and differentiation. Khalid et al. (2015) synthesized

MWCNT/HA scaffolds containing different loadings of CNTs

(1 wt%, 3 wt%, and 5 wt%). The cytotoxicity of the composite

scaffolds was dose-dependent with the CNT content.

Experiments using a human osteosarcoma cell line showed

that cell viability decreased with the increase in CNT content.

Duan et al. (2015) fabricated poly (L-lactic acid) (PLLA)/

CNTs scaffolds using a freeze-drying method. In vitro studies

have shown that CNTs can promote the cell proliferation and

osteogenic differentiation of bone-marrow mesenchymal stem

cells (BMSCs). In vivo experiments showed that CNTs

significantly promoted the expression of osteogenesis-related

proteins and the formation of type I collagen. Jing et al.

(2017) reported that MWCNT scaffolds could enhance the

proliferation rate of BMSCs and their protein expression of

bone sialoprotein (BSP) and osteocalcin (OCN).

Goncalves et al. (2016) synthesized 3D-printed porous CNT

scaffolds, which can be used for bone-tissue engineering. Cell

proliferation experiments (6 days) were performed with

MG63 osteoblast-like cells, and the results showed that the

use of scaffolds containing 10 wt% MWCNTs had the most

positive effect on cell proliferation.

Recently, Wang et al. (2019) introduced a

polymethylmethacrylate (PMMA) bone cement loaded with

different MWCNTs (0.1, 0.25, 0.5, and 1 wt%) that could be

injection-molded for high-load joint replacement. In vitro

studies have shown that this bone cement can promote the

adhesion, proliferation and osteogenic differentiation of rat

bone-marrow mesenchymal stem cells (rBMSCs). In vivo

experiments have shown that PMMA bone cement

containing 1 wt% MWCNTs could significantly enhance

bone ingrowth, and the ingrowth rate was as high as 42%

12 weeks after surgery. Swietek et al. (2019) reported a solvent-

casting method to combine functionalized CNTs (fCNTs) and

iron oxide (ION) in two different mass ratios (1:1 and 1:4) to

synthesize PCL-based 3D composite scaffolds for in-bone

regeneration. The toxicity of composite scaffolds was

assessed using the SAOS-2 human cell line. The results

showed that fCNTs containing 1 wt% significantly improved

cell attachment, and ion concentrations below 1 wt% increased

cellular metabolic activity, indicating that the composite

scaffold could be used for bone-tissue regeneration.

Gupta et al. (2014) fabricated SWCNT composite

microspheres and polylactic-co-glycolic acid (PLAGA) for

bone-tissue engineering. Compared with pure PLAGA

scaffolds, MC3T3-E1 cells added SWCNT showed no

abnormality in adhesion and growth, but the cell proliferation

rate and gene expression were enhanced. The composites were

further implanted in Sprague Dawley rats for 2, 4, 8, and

12 weeks. The results showed that the SWCNT/PLAGA

composite has good in vivo biocompatibility. However,

possibly due to the lack of a controlled porous structure, the

material did not significantly improve bone-tissue repair.

4.3 Application of graphene in tissue
engineering

Inspired by the mechanical, electrical and optical properties

of nanographene, many research groups have developed

potential applications based on nanographene substrates in

TABLE 3 A list of CNTs with polymers for bone tissue engineering.

No CNT tpye Polymer Method Reference

1 MWCNTs — — Tanaka et al. (2017a)

2 MWCNTs — — Tanaka et al. (2017b)

3 MWCNTs — — Oyefusi et al. (2014)

4 MWCNTs — — Khalid et al. (2015)

5 MWCNTs Poly (L-lactic-acid) Freeze drying Duan et al. (2015)

6 MWCNTs Collagen/hydroxyapatite Freeze-drying Jing et al. (2017)

7 MWCNTs PCL-hydroxyapatite Extrusion-based additive manufacturing system Gonçalves et al. (2016)

8 MWCNTs Polymethyl methacrylate Injection moulding Wang et al. (2019)

9 MWCNTs Polycaprolactone Co-precipitation method Świętek et al. (2019)

10 SWCNTs Polylactic-co-glycolic acid Oil-in-water emulsion method Gupta et al. (2014)
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tissue engineering. Therefore, it is increasingly important to

understand the interaction between the nanographene matrix

and cells.

4.3.1 Neuronal-tissue engineering using
graphene-based carbon nanomaterials

Charge-conducting polymers and carbon-based materials

make biological interfaces conductive (Huang et al., 2013;

Sinclair et al., 2013; Tu et al., 2013; Serrano et al., 2014; Song

et al., 2014; Walters, 2014; Munoz et al., 2015; Pascual et al., 2015;

Zhang et al., 2016). Among these conductive materials, graphene

composites with excellent chemical, electrical and thermal

properties and extremely low cytotoxicity are ideal materials

for tissue engineering and prosthetics. Graphene and its

derivatives are often used as neural structures in combination

with neurotransmitters, anticoagulants and growth factors

(Table 4).

Serrano et al. (2014) synthesized 3D free-standing porous

and flexible GO scaffolds for nerve regeneration. Cell cultures

showed that highly interconnected and viable neural networks

formed on these scaffolds for 14 days. However, there is a lack of

in vivo studies confirming that these scaffolds can guide nerve

regeneration. Song et al. (2014) observed that 3D graphene had

good biocompatibility and was able to promote the growth of

microglia.

After coating the aligned PLLA nanofiber scaffolds with GO

in the presence of the nerve growth factor (NGF), their

hydrophilicity and surface roughness were significantly

improved. This fibrous scaffold promotes the proliferation and

differentiation of Schwann cells and rat pheochromocytoma 12

(PC12) cells (Zhang et al., 2016). Tu et al. (2013) constructed

intelligent biomimetic GO-based composites. The acetylcholine-

like unit (dimethyl aminoethyl methacrylate) and the

phosphorylcholine-like unit MPC on the surface of GO can

promote the germination and growth of neurites after being

covalently linked together.

Neural-tissue engineering has also been developing materials

that can induce neuroinflammation (Sinclair et al., 2013).

Astrocytes, peripheral macrophages and microglia in the brain

mediate neuroinflammatory responses to hypoxia, ischemia and

viral and bacterial infections (Huang et al., 2013; Walters, 2014;

Munoz et al., 2015; Pascual et al., 2015). Observations suggested

that the neuroinflammatory response of 3D graphene to

microglia is milder than that of 2D graphene, suggesting that

topographical features may influence inflammatory behavior.

Furthermore, 3D graphene foam promoted the growth of

neural stem cells and PC-12 cells (derived from the neural

crest), demonstrating their use in neural repair and neurogenesis.

4.3.2 Cardiac-tissue engineering using CNT-
based carbon nanomaterials

In cardiac-tissue engineering, graphene is often used to treat

cardiovascular disease and prevent blood clotting in artificial

heart valves (Ong et al., 2015; Sergi et al., 2015; Weijmans et al.,

2015). Cardiovascular disease affects human health due to its

high incidence and prevalence and is intensely studied in

regenerative medicine (Shi et al., 2010; Şenel et al., 2014). The

scarcity of donors and the high number of complications limit

the use of heart transplantation for the treatment of

cardiovascular disease (Shin et al., 2013b; Gálvez-Montón

et al., 2013). The heart has dynamic functional characteristics

and a complex tissue structure. Therefore, in cardiac-tissue

engineering, an ideal artificial cardiac scaffold needs to be

similar to the heart in structure, electrophysiology and

mechanical properties to stimulate angiogenesis and maintain

the viability of transplanted cells (Shin et al., 2013a;

Radhakrishnan et al., 2014).

GO/gelatin methacrylate (GM) hydrogel is a synthetic

cardiac scaffold that can be used to treat cardiovascular

disease (Nguyen et al., 2015) GM facilitates the uniform

distribution of GO in the hydrogel matrix and is a

biocompatible surfactant. GO/GM hydrogels support cell

spreading and alignment and enhance viability and

proliferation in a 3D environment. Their tunable mechanical

stiffness and electrical conductivity enable engineered cardiac

patches to treat myocardial infarction (Kim et al., 2013; Kim and

Song, 2014; Nguyen et al., 2015). Hydrogels can increase the local

retention time of the carriers at the target site and increase their

likelihood of being internalized by the tissue (Bae et al., 2012; Qi

et al., 2014). Studies have reported that PLL can enhance the

biological activity of GO in tissue engineering. GO/PLL

composites have strong biocompatibility and high mechanical

properties, which can accelerate cell growth and differentiation

(Shin et al., 2014).

TABLE 4 A list of graphenes with polymers for neuronal tissue engineering.

No Graphene type Polymer Method Reference

1 3D free standing porous and flexible GO — — Serrano et al. (2014)

2 3D graphene foams — — Song et al. (2014)

3 GO PLLA nanofibrous Coating Zhang et al. (2016)

4 biomimetic GO Dimethylaminoethyl methacrylate Covalently linking Tu et al. (2013)

5 biomimetic GO MPC Covalently linking Tu et al. (2013)
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4.3.3 Bone-tissue engineering using CNT-based
carbon nanomaterials

Graphene is a multifunctional carbon-based material that

can serve as a framework for multicomponent nanostructured

biomimetic scaffolds with bone-like morphology and chemical

structure (Deepachitra et al., 2013; Lalwani et al., 2013; Depan

et al., 2014; Oyefusi et al., 2014). The application of graphene

nanocomposites containing polymers (chitosan, collagen,

polypropylene fumarate) in bone-tissue engineering is

discussed in detail in the following sections (Table 5).

GO is uniformly dispersed in the matrix, generates strong

interfacial adhesion through polar and hydrogen bonding

interactions and provides sufficient stiffness and strength in

the biological state, providing effective support for the

formation of bone tissue (Depan et al., 2014). Recently, a

research group has synthesized a layered hybrid system

composed of chitosan, GO and HPA (Oyefusi et al., 2014).

The GO layer provides biocompatibility and mechanical

strength; the HPA layer provides higher bioactivity; and

chitosan in the middle layer further strengthens the hybrid

material. Incubation of pre-osteoblasts (MC3T3-E1) with this

hybrid system promotes uniform cell mineralization,

proliferation and enhancement of proteins (actin, vinculin and

fibronectin). These properties are important for cell adhesion and

osteoblast morphogenesis (Oyefusi et al., 2014). Lalwani et al.

(2013) synthesized PPF 2D nanocomposites containing GO

nanosheets, and MoS2 nanosheets showed the highest

mechanical strength and were ideal candidates for BTE.

Deepachitra et al. (2103) studies on osteosarcoma bone cell

lines (SaOS-2, CPC-2, MG-63, etc.) showed that fibrin is an

important marker of osteoblast differentiation. Colorimetric

assays (MTT, alkaline phosphatase (ALP) and in vitro calcium

release) have shown that fibrin-modified GO has good

biocompatibility and enhances osteoconductivity, making it an

ideal scaffold for BTE.

5 Conclusion and outlook

In this review, we summarize recent advances in the

preparation and application of carbon nanomaterials for drug

delivery and tissue engineering. Such materials have excellent

chemical, optical and mechanical properties. Although these

nanomaterials are all made of the same carbon element,

allotropes are made with different carbons and have different

properties. Such materials also behave differently in the body

depending on how carbon atoms combine at the nanoscale to

form large nanostructures. Using mature surface modification

methods, carbon nanomaterials with a good water solubility and

biocompatibility can be obtained for use in drug delivery and

tissue engineering.

The uniqueness of carbon nanomaterials provides many new

approaches and opportunities for future applications. Cutting-

edge research based on the intersection of carbon

nanotechnology and biomedicine has demonstrated the

promise of the use of various carbon nanomaterials for

various applications, especially some very unusual properties

and capabilities of carbon materials that are not available in

other nanomaterials. NIR-II fluorescence imaging based on

SWCNTs has changed the characteristics of the low

penetration depth and sensitivity of conventional fluorescence

imaging, and this technology is a new field of development. In the

past few years, we have also witnessed the application of imaging

techniques based on SWCNTs for NIR-II fluorescence imaging

with a high sensitivity, low toxicity and deeper level of

penetration. The high loading capacity of carbon

nanomaterials, especially graphene and its derivatives, enables

the efficient loading of drug molecules/nanoparticles by π–π
stacking. However, based on the clinical application of carbon

nanomaterials in the future, we still have some problems to think

about and solve:

1 What is the future development direction of drug delivery

and tissue engineering based on carbon nanomaterials?

2 What are the major obstacles we need to overcome before

carbon nanomaterials can be used in clinical applications?

3 Can carbon nanomaterial-based drug delivery and tissue

engineering inspire us to explore new directions in chemistry

and biology?

Therefore, in this article, we summarize the latest research

progress of different kinds of carbon nanomaterials in the fields

of drug delivery and tissue engineering. Although the behavior

of such materials in vivo has long been a concern, the

advantages of carbon nanomaterials in biomedical

applications are prominent. Regarding the three types of

TABLE 5 A list of graphenes with polymers for bone tissue engineering.

No Graphene tpye Polymer Method Reference

1 Polyethylene glycol-functionalized GO Poly (propylene fumarate) Freeze-drying Depan et al. (2014)

2 GO Chitosan/HPA Chemical conjugation Oyefusi et al. (2014)

3 Multi-walled GO nanoribbons or GO nanoplatelets Polypropylene fumarate Thermal cross-linking and specimen fabrication Lalwani et al. (2013)

4 Surface functionalized GO Fibrin Coating Deepachitra et al. (2013)
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carbon nanomaterials discussed in this paper, including CDs,

CNTs and graphene, each has unique physical and chemical

properties. These properties are attributable to their specific

chemical structure and nanometer size. The unique

physicochemical properties of carbon nanomaterials make

them suitable for the delivery of certain drugs and tissue

engineering. Carbon nanomaterials can enable closer

interdisciplinary links between nanotechnology, biology and

medicine. They pave the way for biologists and clinicians to

develop more powerful and useful tools.
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