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The bone sialoprotein-binding protein (Bbp) is a mechanoactive MSCRAMM protein
expressed on the surface of Staphylococcus aureus that mediates adherence of the
bacterium to fibrinogen-α (Fgα), a component of the bone and dentine extracellular
matrix of the host cell. Mechanoactive proteins like Bbp have key roles in several
physiological and pathological processes. Particularly, the Bbp: Fgα interaction is
important in the formation of biofilms, an important virulence factor of pathogenic
bacteria. Here, we investigated the mechanostability of the Bbp: Fgα complex using
in silico single-molecule force spectroscopy (SMFS), in an approach that combines
results from all-atom and coarse-grained steered molecular dynamics (SMD)
simulations. Our results show that Bbp is the most mechanostable MSCRAMM
investigated thus far, reaching rupture forces beyond the 2 nN range in typical
experimental SMFS pulling rates. Our results show that high force-loads, which
are common during initial stages of bacterial infection, stabilize the interconnection
between the protein’s amino acids, making the protein more “rigid”. Our data offer
new insights that are crucial on the development of novel anti-adhesion strategies.
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1 Introduction

Staphylococcus aureus infections have a high clinical and communal impact with an
estimated mortality rate that can reach 30.2% Bai et al. (2022). The persistence of these
infections lies on the Staphylococcus aureus’ ability to form biofilms Costerton et al. (1999);
Archer et al. (2011); Suresh et al. (2019), and the eventual dissemination of these pathogenic
bacteria throughout the body Kwiecinski and Horswill (2020). Despite the increase in
sterilization and hygienic measures, modern medical devices play a key role in the transfer
of these bacterial colonies through device-associated biofilm infections Wertheim et al. (2004);
Otto (2009); Lister and Horswill (2014). The contamination of patients during medical and
dental procedures is of increasing relevance, particularly with the emergence of drug-resistant
bacteria. In the dental field, it has been estimated that the carrier prevalence of S. aureus in
healthy adults varies from 24% to 84%Donkor and Kotey (2020). Additionally, the oral cavity is
a source for cross infection and dissemination of the infection directly into the bloodstream,
increasing the likelihood of septicemia and possibly death McCormack et al. (2015); Garbacz
et al. (2021); Jevon et al. (2021).
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Biofilms shelter the bacteria and enhance the persistence of
infection by eluding innate and adaptive host defenses González
et al. (2018); Versey et al. (2021). Biofilms also form a barrier,
protecting colonies from biocides and antibiotic chemotherapies
Sharma et al. (2019). Adhesins play critical roles during infection,
especially during the early step of adhesion when bacterial cells are
exposed to mechanical stress Latasa et al. (2006). Adhesins bind to
their target ligands, holding it tight to them even at extreme force
loadings that largely outperform classical binding forces Gomes P. S. F.
C. et al. (2022). The resilience to mechanical forces provides the
pathogen with a means to withstand high levels of mechanical stress
during biofilm formation, thus yielding these pathogens highly
resistant to breaking these cell adhesion bonds. These unusual
stress-dependent molecular interactions play an integral role during
bacterial colonization and dissemination and when studied, reveal
critical information about pathosis Dufrêne and Viljoen (2020).

Among S. aureus adhesins, the bone sialoprotein binding protein (Bbp)
is a bifunctional Microbial Surface Component Recognizing Adhesive
Matrix Molecule (MSCRAMM) Gillaspy et al. (1998). Bbp is part of the
MSCRAMM serine-aspartate repeat (Sdr) family that also includes SdrF
and SdrG in Staphylococcus epidermidis, and clumping factor A (ClfA), B
(ClfB), SdrC, and SdrE in S. aureus Josefsson et al. (1998); McDevitt et al.
(1994); Ní Eidhin et al. (1998); Tung et al. (2000). Ligand-binding for Bbp
occurs generally in the N-terminal region, from residues 273 to 598, where
Bbp binds to fibrinogen-α (Fgα), a glycopeptide on bone and dentine
extracellular matrix (ECM). Bbp’s binding region is subdivided into
domains N2 and N3, which are made up of two layers of β-sheets with
an open groove at the C-terminus where primary ligand binding occurs
Zhang et al. (2015) (Figure 1B). The binding of Fgα follows a “dock, lock,
and latch” mechanism O’Connell (2003); Ponnuraj et al. (2003); Bowden
et al. (2008); Foster et al. (2014); Zhang et al. (2017), that has been
previously investigated by a myriad of techniques Herman et al. (2014);
Vanzieleghemet al. (2015); Vitry et al. (2017);Herman-Bausier et al. (2018);
Milles et al. (2018). Thus, the pathogenic bacteria does not invade a host cell,
but rather adheres to the ECM via Bbp: Fgα interactions Patti et al. (1994).

Using a combination of in silico and in vitro single-molecule force
spectroscopy (SMFS), we have previously reported that S. epidermidis’

adhesin SdrG, when in complex with Fgβ, was able to withstand
extreme mechanical loads Milles et al. (2018). The necessary force
applied to rupture the SdrG: Fgβ complex was shown to be an order of
magnitude stronger than that needed to rupture the widely employed
Streptavidin:biotin complex Sedlak et al. (2018), and more than twice
of that of cellulosomal cohesin:dockerin interactions Schoeler et al.
(2014); Bernardi et al. (2019). Most biological complexes rupture at a
relatively low force range Seppälä et al. (2017); Haataja et al. (2019);
Hoelz et al. (2011; 2012); Mendes et al. (2012); Bernardi and Pascutti
(2012), including other host-pathogen interactions Bauer et al. (2022).
A molecular mechanism for a catch-bond behavior of the SdrG: Fgβ
was then revealed by investigating the system in a “force-clamp”
regime Melo et al. (2022), with magnetic tweezers based SMFS
revealing that the SdrG: Fgβ bond can live for hours under force
loads Huang et al. (2022). Here, taking advantage of a powerful in silico
SMFS approach, we describe how Bbp plays a key role in bacterial
adhesion during nosocomial infections, by investigating the Bbp: Fgα
complex at different pulling velocities combining all-atom (aa) and
coarse-grained (CG) steered molecular dynamics (SMD) simulations
(Figures 1A, B). Building on in vitro SMFS data, our results point to
Bbp’s interaction with the extracellular matrix fibrinopeptide as the
most mechanostable so far investigated, independent of the loading
rate. Our findings reveal that a few key interactions are responsible for
the outstanding force resilience of the complex. Furthermore, our
results offer insights into the development of anti-adhesion strategies.

2 Results

2.1 Bbp is highly mechanostable under stress

To probe the mechanics of the interaction between Bbp and Fgα,
and to characterize the atomic details of the complex under force load,
we performed aa-SMD simulations with Bbp anchored by its
C-terminal while Fgα was pulled at different velocities
(Supplementay Table S1). The simulations resulted in Force vs
extension curves that reveal a clear one-step rupture event, as

FIGURE 1
Bbp’s adhesion domain. (A) Scheme illustrating the SMD protocol applying force at the interface between two molecules of interest. In this protocol, a
spring is attached to one of the termini of eachmolecule, in our case, the C-terminal end of both Bbp and Fgα peptide. While the end of Molecule two is fixed,
the end of Molecule one is then pulled at constant velocity. (B) Tridimensional structure of Bbp. The protein is represented in cartoon, colored by its different
domains. The latch is highlighted in green. Fgα is colored in orange and its aminoacids represented as sticks colored in light pink. The SMD pulling and
anchor points are indicated in the image as spheres.
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represented in Figure 2A. For the slowest pulling velocity, 160 replicas
were performed following a wide-sampling paradigm previously
developed in our group Sedlak et al. (2020). At the pulling velocity
of 2.5 × 10−04 nm/ps, we observed that the most probable rupture force
for the complex was 3,510 pN, as described by the Bell-Evans (BE) Bell
(1978); Evans and Ritchie (1997) fit of the peak forces at that pulling
speed (see Figure 2B). Our results reveal that Bbp: Fgα is the most
mechanostable complex investigated thus far, which is in agreement
with previous experimental data where we showed that SdrG: Fgβ
complex can withstand forces on the 2 nN range, equivalent to
breaking of covalent bonds Milles et al. (2018).

To investigate the dependence of the mechanostability of Bbp: Fgα
on the force loading rate, we performed CG-SMD simulations at

several, much lower, pulling speeds (Supplementary Table S1). We
have recently shown that aa-SMD and CG-SMD can be combined to
in an in silico SMFS approach Gomes D. E. et al. (2022); Melo et al.
(2022). Here, the combination of the two levels of molecular details is
capable of rendering predictions that are consistent with theory and
experimentation with the advantage of being 10 to approximately
100 times faster than aa-SMD simulations, depending on the pulling
speed Gomes D. E. et al. (2022); Melo et al. (2022). A Dudko-
Hummer-Szabo Dudko et al. (2006) (DHS) fit was performed
through the SMD data, including both the aa-SMD, and the CG-
SMD (see Figure 3). The DHS fit suggests that the system should
rupture at forces higher than 2 nN at 105 pN/s force loading rate, in
agreement with experimental data Milles et al. (2018). It is interesting

FIGURE 2
Bbp mechanostability under high mechanical load. (A) Force versus extension curve as an exemplary trace, with rupture peak force at 3,510 pN. (B)
Histogram for the most probable rupture force (blue, rugged plot in red) with the Bell-Evans (BE) model for the first rupture peak (red), based on the all-atom
steered molecular dynamics simulation replicas with the slowest simulated pulling velocity (2.5×10−4 nm/ps).

FIGURE 3
Dynamic Force spectrum for the Bbp: Fgα complex combining data from all-atom and coarse-grained SMD simulations. All-atom, and Coarse-grained
steered molecular dynamics simulations (CG-SMD and aa-SMD) were performed at different velocities: 2.5×10−6 to 2.5×10−3 nm/ps (blue) and 2.5×10−4 to
2.5×10−3 nm/ps (green), respectively. A Dudko-Hummer-Szabo Dudko et al. (2006) (DHS) fit was performed through the SMD dataset predicting Δx =
7.489×10−2 nm, k0off = 2.596×10−12 s−1, ΔG = 2.293×102 kBT.

Frontiers in Chemistry frontiersin.org03

Gomes et al. 10.3389/fchem.2023.1107427

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://doi.org/10.3389/fchem.2023.1107427


to note that the BE model is able to fit well all the simulation results, at
both aa and CG level, as evidenced by the density plots in Figure 3.

The influence of the peptide size on the rupture force was also
investigated. We have shown previously that SdrG complexed with
shortened Fgβ peptides had lower unbinding forces Milles et al.
(2018). Here, we simulated a model of Bbp complexed with Fgα
elongated by nine residues (See Methods section) by aa and CG-SMD
simulations (Supplementary Table S1). Our results show that the force
loading rate was not significantly impacted by the size of the peptide
(Supplementary Figure S1), indicating that the original complex
formed at the crystal structure has the minimal length to keep the
important contacts with the protein latch to hold the DLL
configuration.

2.2 Key hydrogen bonds are responsible for
Bbp: Fgα high mechanostability

After confirming that Bbp: Fgα complex presents a hyperstable
interaction under shear mechanical load, we used the approximately
3 μs of aa-SMD simulation data to investigate the molecular origin of
the mechanostability of the complex. Previously, simulations of the
SdrG: Fgβ revealed the presence of frequent and persistent hydrogen
bonds (H-bonds) between the peptide and the protein backbone,
showing that the high-force resilience of the complex was largely
independent of the peptide side-chains interactions, and therefore the
peptide’s sequence Milles et al. (2018). Here, we computed the
occupancy of the H-bonds between the Bbp and Fgα before the
complex rupture. We identified the key amino acid interactions
responsible for keeping the complex together at high force loads
(Table 1). Different than SdrG: Fgβ, Bbp: Fgα interactions are not
dominated by backbone-backbone interactions, with a significant
amount of side-chain interaction of the peptide playing an
important role in the complex mechanostability. The backbone
interactions between Bbp Leu584, Thr582, Thr586 and FgαThr565,Ser567,Thr586

have been previously described as important for Fgα binding at the
crystal structure Zhang et al. (2015). However, we noticed that the
side-chain H-bonds are rearranged upon application of mechanical
stress on the complex. On the crystal, BbpAsp334 forms a side-chain
H-bond with FgαSer566, and during the SMD simulations, this
interaction shifts to FgαThr565, being the H-bond with the highest
occupancy over the trajectories. Another shift occurs between

BbpAsp334,Ile335 interacting with FgαPhe564, on the crystal, to BbpSer333

interacting with FgαPhe564 in our simulations. The H-bond between
BbpAsp588 and FgαGln563 is described as important to lock the peptide
N-terminus and is still present before the rupture of the complex,
although with lower occupancy. Instead, a charged side-chain
interaction arises with significant occupancy values: BbpAsp556:
FgαLys562. These data corroborates the importance of backbone
interactions to maintain the high mechanostability and also
highlights important side chain H-bonds plasticity that occurs
when Bbp: Fgα is exposed to mechanical stress.

2.3 The force propagates indirectly from the
latch to the peptide

How a shear force load “activates” the hyperstability of the
complex can be investigated by analysing the evolution of pairwise
interactions during the force-loading event. Such analysis can be used
to investigate how a catch-bond may be formed in the Bbp: Fgα
complex Liu et al. (2020). Previously, it has been shown that SdrG: Fgβ
presents a catch-bond behavior Huang et al. (2022), which is expected
also for Bbp: Fgα. To analyse the pairwise interactions during the
SMD, we employed the generalized correlation-based dynamical
network analysis method Melo et al. (2020), which can also be
used to calculate force propagation pathways Schoeler et al. (2015).
Figure 4A shows the pairwise interactions obtained from the network
analysis. The thickness of the connections between nodes (amino acid
residues) represents how well correlated the motion of these nodes are,
and therefore how well connected are these amino acid residues.

The force propagation pathway that connects the pulling and the
anchoring residues shows that most of the force is propagating from
the protein latch directly to the peptide, passing by the center of Bbp’s
N2 domain (Figure 4B). These results are slightly different than the
ones obtained for the SdrG: Fgβ complex upon high mechanical stress
Milles et al. (2018). However, in a previous study, it was observed that
changes in the pulling velocities can lead to different force propagation
pathways, suggesting different unbinding mechanisms at different
pulling rates Melo et al. (2022).

The rigidity of the protein under high-force load can also be
studied using the betweenness map from the dynamical network
analysis (see Figure 4C). The betweenness is defined as the number
of shortest paths from all vertices to all others that pass through that
node, in this case, an amino acid residue. If an amino acid residue has
high betweenness, it tends to be important for controlling inter-
domain communication within a protein Melo et al. (2020). High
betweenness values (thicker red tubes) are seen on the latch that is in
direct contact with Fgα, highlighting the strong correlation between
the motif and the peptide. Interestingly, high betweenness is also
found at connections intra N2 domain, pointing that Bbp: Fgα
complex becomes more rigid under high force loads, particularly in
the region interconnecting the latch, the peptide and the N2 domains.
Such behavior helps the stabilization of the interactions under high
forces.

A representation of the network in subgroups, or communities, is
shown at Figure 4D. The communities group the amino acid residues
that are most inter-connected in relation to the rest of the network.We
can see that Bbp: Fgα is subdivided in a handful of communities. The
latch, most of Fgα, and part of the N2 domains are united in the same
community in light blue, showing that these amino acids are highly

TABLE 1 Hydrogen bonds occupancy between Bbp and Fgα residues calculated
and averaged before the main rupture event.

Bbp Fgα Occupancy (%) Nature

Asp334 Thr565 54.84 Side-chain

Asp556 Lys562 45.39 Salt-bridge

Leu584 Thr565 36.14 Backbone

Thr582 Ser567 35.62 Backbone

Thr586 Gln563 35.03 Backbone:Side-chain

Ser333 Phe564 18.54 Side-chain

Asp588 Gln563 12.77 Side-chain

Thr587 Ser561 12.66 Side-chain

Frontiers in Chemistry frontiersin.org04

Gomes et al. 10.3389/fchem.2023.1107427

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://doi.org/10.3389/fchem.2023.1107427


connected. We also measured the correlation between motions on the
interface residues to determine how cooperative their motion is and
the essential contacts that are keeping the complex stable under high
mechanical load. Essentially, the higher the correlation between

residues, the more relevant is their interaction for the stability of
the protein complex. We noticed that two Fgα residues are highly
correlated (values equal or superior to 0.5) to Bbp at the interface,
namely: FgαGln563: BbpAsp588,Ser585,Thr586,Thr587 and FgαPhe564:BbpSer585

FIGURE 4
Bbp:Fgα dynamical network under high mechanical load. (A) Representation of the dynamical network. The thickness of the links between the nodes
(amino acid residues) represents the correlation of motion between these residues. (B) The force propagates from the latch indirectly to the peptide, passing
by the N2 domain of the protein. The color scheme of the complex is the same from Figure 1. The network’s optimal path is colored in dark blue while the
sub-optimal paths are colored in red. (C) Full dynamical network revealing themost correlated regions of the complex. The weight of the network edges
(represented by the thickness of red tubes) is given by the betweenness values. (D) Generalized correlation-based communities represented by different
colors of the nodes and edges in the network.

FIGURE 5
Mean generalized coefficients for contacts along Bbp:Fgα interface. The x-axis is labeled by Bbp amino acid residues and the y-axis indicates the
averaged generalized correlation values (vertical bars indicate the standard error of themean), labeled by Fgα aminoacid residues. The circle sizes indicates the
average Cartesian distance. Only amino acid residues with a mean correlation higher than 0.35 are shown.
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(Figure 5). The importance of FgαGln563 described as a persistent
H-bond contact with BbpAsp588,Thr586 and important locking contact
is reinforced by its high correlation values. The same analysis was
performed for the simulations of Bbp complexed with the elongated
Fgα peptide (Supplementary Figure S2). The pattern of contacts is very
similar, reinforcing the importance of FgαGln563, and we observe the
absence of new contacts made by the extra residues, corroborating that
the short peptide contains the key residues responsible for holding the
complex tight at the DLL configuration.

3 Discussion

During infection, Gram-positive bacteria are frequently exposed to
high mechanical stress. These bacteria have evolved an intricate host-
binding mechanism to efficiently form colonies under the most
inhospitable conditions. Key for the maintenance of the colonies,
biofilms are an important virulence factor developed by S. aureus
among other bacteria. In the initial steps of infection and biofilm
formation, MSCRAMMS adhesins have an important role in clinging
the bacteria to their human hosts Otto (2009); Latasa et al. (2006).
Staphylococcus aureus isolated from patients suffering from septic
arthritis and osteomyelitis specifically interacts with bone sialoprotein,
present at bone and dentine extracellular matrix. This interaction is
mediated by an specific adhesin protein, namely Bbp Ryden et al.
(1987); Ganss et al. (1999); Tung et al. (2000).

Here we have explored the interaction of Bbp with Fgα by using an
in silico SMFS approach that relies on aa- and CG-SMD simulations.
CG-SMD simulations have proven to bridge the force-loading gap
between in vitro SMFS data with in silico data obtained from aa-SMD
simulations, distanced by orders of magnitude Gomes D. E. et al.
(2022). In addition, CG-SMD simulations require much less
computational power Liu et al. (2021); Poma et al. (2019), enabling
us to explore pulling speeds unfeasible to simulate via aa-SMD Gomes
D. E. et al. (2022). Using an approach previously described Souza et al.
(2019), we combined GõMartini approach Poma et al. (2017) with
Martini 3 Souza et al. (2021) obtaining sensible results. The higher
spread of rupture force at faster pulling rates suggests that force-
induced extensions may result in lost of relevant interactions between
CG-bead pairs, indicating that further optimization of the contact map
or redefinition of the native contacts is necessary to improve the results
Mahmood et al. (2021).

Here, we showed that Bbp: Fgα complex can withstand forces even
higher than the previously investigated SdrG: Fgβ complex Milles et al.
(2018), overcoming the 2 nN force range for rupture forces, equivalent
to breaking covalent bonds, demonstrating the high mechanostability
of the Bbp: Fgα complex. We revealed that the force propagation
pathway between the anchoring and pulling points of the Bbp: Fgα
complex goes beyond the interactions between the latch and the
peptide, passing through an intricate network involving several
amino acids of the Bbp N2 domain (Figure 4). We were also able
to point the key residues H-bonds responsible for keeping the complex
stable at such high mechanical stress, highlighting important
backbone-backbone interactions between BbpLeu584, Thr582, Thr586 and
FgαThr565, Ser567,Thr586 but also side-chain connections, such as BbpAsp334:
FgαThr565, BbpSer333:FgαPhe564 and BbpAsp588:FgαGln563 (Table 1). The
latter being an important contact to lock the peptide N-terminus
Zhang et al. (2015). FgαGln563 has also revealed to be a key network hub,
being highly correlated with several residues on the complex interface

such as BbpAsp588,Ser585,Thr586,Thr587 (Figure 5). We also showed that the
short Fgα peptide is able to hold the key interactions responsible for its
mechanostability by probing an elongated Fgα in complex with Bbp
(Supplementary Figures S1 and S2).

By probing the Bbp: Fgα complex under high mechanical load, we
discovered the molecular mechanism that triggers Bbp’s unique resilience
to shear forces. The high force-loads that can be found during initial stages
of bacterial infection stabilize the interconnection between the protein’s
amino acids, particularly along the β-sheets that, due to their force-loading
geometry, cannot be “peeled” like other β-sheet-rich proteins, such as
green fluorescent protein (GFP) Hughes and Dougan (2016); Dietz et al.
(2006) and human filamins Seppälä et al. (2017); Haataja et al. (2019). Our
results build on previous knowledge of host-microbial interactions,
supporting the idea that anti-adhesion therapies might be fundamental
in our fight against nosocomial bacteria infections.

Antiadhesion therapies are attractive since they would not target
essential processes and have the potential advantage of eliciting less
and slower resistance aquisition. Some of the approaches using
peptides have been reviewed elsewhere Dufrêne and Viljoen (2020).
Our findings support that a short peptide is capable of holding the
essential interactions to keep the protein locked in the DLL
configuration. This could be explored on the design of small
peptidomimetic compounds that can mimic these interactions.
Moreover, peptidomimetics overcome the poor pharmacokinetic
profile and low selectivity associated with peptide therapies, the
main drawback for this kind of approach Li Petri et al. (2022).
Another possible strategy would be to replace the peptide backbone
for a small drug-like molecule with substituents that could mimic the
bioactive conformation of the native peptide Spiegel et al. (2012).

Due to the good agreement between our in silico SMFS protocol and
experiments, we could use our simulations as a platform to study
structure-activity relationships and not only screen the early potential
drug candidates, but also decipher their mechanisms of action. The best
candidates can be later probed by SMFS experiments. In summary, our
work presents a key step in creating a intelligent design for a new class of
antibiotics that act on the initial stages of bacterial infection.

4 Methods

4.1 Structure preparation

The structure of Bbp in complex with Fgα has been previously solved
by means of X-ray crystallography at 1.45 Å resolution Zhang et al. (2015)
and deposited at the Protein Data Bank (PDB ID: 5CFA). Here we
retrieved this structure and prepared it for molecular dynamics (MD)
simulations using VMD Humphrey et al. (1996) and its plugin QwikMD
Ribeiro et al. (2016). To investigate the loading rate dependency on the size
of the peptide, we used Modeller v.10.1 Webb and Sali (2016) to create an
additional structure of the complex where the Fgα was elongated by nine
residues at its C-terminal end, in respect of the crystal structure, following
the sequence of Fgα fromHomo sapiens (Uniprot ID: P02671). The model
followed the same preparation as described for the crystal structure.

4.2 All-atom molecular dynamics simulations

The complexes between BBP and Fgα in its short or longer
configuration were solvated using the TIP3P water model
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Jorgensen et al. (1983), with the net charge of the protein neutralized
using a 150 mM concentration of sodium chloride. Steered molecular
dynamics (SMD) simulations were carried out using NAMD 3 Phillips
et al. (2020), with the CHARMM36 force field Best et al. (2012). The
simulations were performed assuming periodic boundary conditions
in the isothermal-isobaric ensemble (NPT) with temperature
maintained at 300 K using Langevin dynamics for temperature and
pressure coupling, the latter kept at 1 bar. A distance cut-off of 11.0 Å
was applied to short-range non-bonded interactions, whereas long-
range electrostatic interactions were treated using the particle-mesh
Ewald (PME) Darden et al. (1993) method. Taking advantage of a
hydrogen-mass repartitioning method implemented in VMD’s
autopsfgen, the time step of integration was chosen to be 4 fs for
all production aa-MD simulations performed. Before the SMD
simulations, the system was submitted to an energy minimization
protocol for 1,000 steps. An MD simulation with position restraints in
the protein backbone atoms was performed for 1 ns, with temperature
ramping from 0 K to 300 K in the first 0.5 ns at a timestep of 2.0 fs in
the NVT ensemble, which served to pre-equilibrate the system. In an
in silico single-molecule force spectroscopy (SMFS) strategy Verdorfer
et al. (2017); Bernardi et al. (2019), SMD simulations were carried out
in several replicas, using a constant velocity stretching protocol at
three different pulling speeds (Supplementary Table S1). SMD was
employed by harmonically restraining the position of the amino acid
at the C-ter of Bbp and moving a second restraint point at the C-ter of
Fgα peptide with a 5 kcal/mol Å2 spring constant, with constant
velocity in the z-axis. The force applied to the harmonic spring is
then monitored during the time of the SMD. The pulling point was
moved with constant velocity along the z-axis and due to the single
anchoring point and the single pulling point the system is quickly
aligned along the z-axis. The number of replicas for each velocity is
indicated at Supplementary Table S1.

4.3 Coarse-grained molecular dynamics
simulations

The atomistic model of Bbp: Fgα was modeled onto the Martini
3.0 Coarse-grained (CG) force field (v.3.0.b.3.2) Souza et al. (2021)
using martinize2 v0.7.3 Kroon (2020). A set of native contacts, based
on the rCSU + OV contact map protocol, was computed from the
equilibrated all-atom structure using the rCSU server Wołek et al.
(2015) and used to determine Gö-MARTINI interactions Poma et al.
(2017) used to restraint the secondary and tertiary structures with the
effective depth ϵ of Lennard-Jones potential set to 9.414 kJ.mol−1. All
CG-MD simulations were performed using GROMACS version
2021.5 Abraham et al. (2015). The Bbp: Fgα complex was centered
in a rectangular box measuring with 10.0, 10.0, 25.0 nm to the x, y, and
z directions. The anchor (Bbp C-terminal) and pulling (peptide
C-terminal) backbone (BB) atoms were used to align the protein to
the Z-axis. The box was then solvated with Martini3 water molecules.
Systems were minimized for 10,000 steps with steepest descent,
followed by a 10 ns equilibration at the NPT ensemble using the
Berendsen thermostat at 298K, while pressure was kept at 1 bar with
compressibility set to 3e−4bar−1, using the Berendsen barostat. A time
step of 10 fs was used to integrate the equations of motion. Pulling
simulations were subsequently done at the NVT ensemble with a time
step of 20 fs the temperature was controlled using the v-rescale
thermostat Bussi et al. (2007) with a coupling time of 1 ps for all

CG-MD simulations, the cutoff distance for Coulombic and Lennard-
Jones interactions was set to 1.1 nm De Jong et al. (2016), with the
long-range Coulomb interactions treated by a reaction field (RF)
Tironi et al. (1995) with ϵr = 15. The Verlet neighbor search Verlet
(1967) was used in combination with the neighbor list, updated every
20 steps. The LINCS Hess et al. (1997) algorithm was used to constrain
the bonds and the leapfrog integration algorithm for the solution of
the equations of motion. Several replicas of CG-SMD simulations were
performed at a range of speeds described at Supplementary Table S1.

4.4 Simulation data analysis

All analysis presented at the main text correspond to the Bbp:
Fgα original complex. Force loading rate and mean correlation
values for Bbp complexed with the elongated Fgα peptide are
found on the Supplementary Information material. H-bonds
occupancy between Bbp and Fgα were calculated and averaged
for aa-MD simulations 1 ns before the main rupture event, using
VMD Humphrey et al. (1996) with standard parameters for the
calculation: residue pairs; donor-acceptor distance of 3.0 Å; angle
cutoff of 20°. Mean correlation and dynamical network pathways
were calculated using the generalized dynamical network analysis
Melo et al. (2020) and VMD for aa-SMD at pulling velocity of 2.5 ×
10−4 nm/ps. In this analysis, a network is defined as a set of nodes
that represent amino acid residues, and the node’s position is
mapped to that of the residue’s α-carbon. Edges connect pairs of
nodes if their corresponding residues are in contact, and two non-
consecutive residues are said to be in contact if they are within 4.5 Å
of each other for at least 75% of analyzed frames. The interface
residues between Bbp: Fgα were defined in a radius of 10 Å between
nodes in each molecule. A representative for the full-network,
optimal and suboptimal paths and communities was rendered
using one of the SMD trajectory replicas. The mean correlation
analysis was carried out 1 ns before the first rupture event using a
cutoff of 0.35 for the mean correlation coefficients. All charts were
generated using in-house python scripts. The protein image was
rendered using VMD.
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