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Medical devices such as Central Venous Catheters (CVCs), are routinely used in
intensive and critical care settings. In the present scenario, incidences of Catheter-
Related Blood Stream Infections (CRBSIs) pose a serious challenge. Despite
considerable advancements in the antimicrobial therapy and material design of
CVCs, clinicians continue to struggle with infection-related complications. These
complications are often due colonization of bacteria on the surface of the medical
devices, termed as biofilms, leading to infections. Biofilm formation is recognized as a
critical virulence trait rendering infections chronic anddifficult to treat evenwith 1,000x,
the minimum inhibitory concentration (MIC) of antibiotics. Therefore, non-antibiotic-
based solutions that prevent bacterial adhesion on medical devices are warranted. In
our study, we report a novel and simple method to synthesize zinc oxide (ZnO)
nanoparticles using ethanolic plant extracts of Eupatorium odoratum. We investigated
its physio-chemical characteristics using Field Emission- Scanning ElectronMicroscopy
and Energy dispersive X-Ray analysis, X-Ray Diffraction (XRD), Photoluminescence
Spectroscopy, UV-Visible and Diffuse Reflectance spectroscopy, and Dynamic Light
Scattering characterization methods. Hexagonal phase with wurtzite structure was
confirmed using XRD with particle size of ~50 nm. ZnO nanoparticles showed a band
gap 3.25 eV. Photoluminescence spectra showed prominent peak corresponding to
defects formed in the synthesized ZnO nanoparticles. Clinically relevant bacterial
strains, viz., Proteus aeruginosa PAO1, Escherichia coli MTCC 119 and
Staphylococcus aureus MTCC 7443 were treated with different concentrations of
ZnO NPs. A concentration dependent increase in killing efficacy was observed with
99.99% killing at 500 μg/mL. Further, we coated the commercial CVCs using green
synthesized ZnO NPs and evaluated it is in vitro antibiofilm efficacy using previously
optimized in situ continuous flow model. The hydrophilic functionalized interface of
CVC prevents biofilm formation by P. aeruginosa, E. coli and S. aureus. Based on our
findings, we propose ZnO nanoparticles as a promising non-antibiotic-based
preventive solutions to reduce the risk of central venous catheter-associated infections.
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1 Introduction

Intravascular catheters are indispensable in modern day critical
care settings (Smith and Nolan, 2013). Annually, in US alone,
implantation of 0.15 billion intravascular catheters has been
witnessed (Shah et al., 2013). Intravascular catheters like
peripherally inserted catheters, central venous catheters and
totally implantable venous access ports (TIVAPs) are implanted
in patients for various applications such as renal dialysis (Agarwal
et al., 2019), nutritional support (Pittiruti et al., 2009),
administration of chemotherapy (Kim et al., 2010) and
hemodynamic monitoring (Huygh et al., 2016). Unfortunately,
the use of central venous catheters is associated with high
infection rates (Marco et al., 2018) besides other complications
such as mechanical failure (Copetti and de Monte, 2005) and
thrombosis (Lebeaux et al., 2014b). In clinics, ~5%–8% TIVAPs
get contaminated by structurally complex microbial biofilm
communities due to microbial adhesion upon their surface
(Lebeaux et al., 2014a; Stressmann Franziska et al., 2017). Hence,
clinicians are challenged with the combined mortality, morbidity
and economic burden associated with the use of central venous
catheters (Marco et al., 2018). Despite adoption of effective frontline
procedures such as prophylactic and therapeutic antimicrobial lock
solutions (Niyyar, 2012), aseptic care bundles (O’Grady et al., 2011)
or use of next-generation catheter designs employing anti-fouling
materials (Ricardo et al., 2020)) deleterious microbial contamination
resulting in central-line associated bloodstream infections
(CLABSIs) remains an unmet problem (Chopra et al., 2013).
CLABSIs originating from biofilm lifestyle of microbes can be
difficult to eradicate due to the multi-factorial recalcitrance of
microbial biofilms (David et al., 2014; Singh et al., 2021). A
recent health-care-associated infection (HAIs) surveillance
network in India found Klebsiella spp., Acinetobacter spp.,
Pseudomonas spp., and Escherichia spp. to be the most important
etiological agents for CLABSI infections indicating an alarming
predominance of Gram-negative bacteria (Mathur et al., 2022).
There is a strong need to develop effective strategies which can
control infections in Central Venous Catheters caused by such
bacterial pathogens, primarily, to avert the risk of bloodstream
infections.

In order to prevent and/or treat CVC-associated bloodstream
infections, there are no fool-proof solutions apart from removal of
contaminated device which increases cost of patient care and
associated trauma (LaBella and Tang, 2012). Clinical practice
guidelines indicate administration of antibiotic lock therapy to
treat catheter-related infections (Mermel et al., 2009). Several
antimicrobial lock solutions like minocycline-EDTA (Ferreira
Chacon et al., 2011), ethanol (Wolf et al., 2013) and vancomycin-
based lock solutions (Safdar and Maki, 2006) are used to salvage
CVCs and also maintain patency. Other than the strategies to treat
biofilm associated occlusions in CVCs, clinicians choose insertion of
the CVC consisting anti-infective surface modification technologies
(Casimero et al., 2020). These surface modifications employ
antibiotics like minocycline (Raad et al., 1996), rifampin (Hanna
et al., 2004), biocides like polyhexanide (Krikava et al., 2011), silver
salts (Corral et al., 2003) or noble metal alloy coating (Björling et al.,
2018). Despite significant success in reduction of CLABSI rate by use
of surface modified CVCs, there are certain limitations to these

coating designs. The drawbacks include the limited release kinetics
of antimicrobials (Walder et al., 2002; Wang et al., 2018), emergence
of antimicrobial resistance (Sampath et al., 2001), and regulatory
and safety issues (Guleri et al., 2012).

ZnO shows high biocompatibility to human organs, recognized
as safe and approved by FDA as food additive (Puspasari et al.,
2022). ZnO NPs are well known for their anti-quorum sensing
(Husain et al., 2020), broad spectrum antimicrobial and antibiofilm
activity (Mahamuni-Badiger et al., 2020). ZnO NPs of different
morphologies have been utilized as antibacterial coating materials in
textile fibers (Verbič et al., 2019), anticorrosion coating for metals
(Qing et al., 2015), protection coatings for heritage buildings
(Cinteză and Tănase, 2020)and antifouling coatings for dental
(Moradpoor et al., 2021) and orthopedic implants (Memarzadeh
et al., 2015). Although silver NPs are used to develop antibacterial
surfaces of CVCs, reports of limited efficacy (Antonelli et al., 2012)
and bacterial resistance against Ag NPs (Stabryla et al., 2021)
warrant for better solutions. Urinary catheters were
functionalized using ZnO NP based formulations (Ivanova et al.,
2021), however, there are no reports on development of antifouling
coatings on central venous catheters. In this study, we report a novel
and facile-green synthesis of ZnO Nanoparticles (ZnO NPs) using
extract of Eupatorium odoratum, a traditional medicinal plant used
by local tribal population of Tripura (Debbarma et al., 2017). We
used ZnO NPs, synthesized using phyto-assisted precipitation
method, to develop coatings on luminal and outer surfaces of
Totally Implantable Venous Access Port (TIVAP, a type of
CVC). Green synthesized ZnO NPs conferred antifouling
characteristics to the modified surfaces of TIVAP against
Escherichia coli, Proteus aeruginosa (Gram-negative) and
Staphylococcus aureus (Gram-positive) bacterial species using
in vitro CVC continuous flow model system (Chauhan et al., 2012).

2 Material and methods

2.1 Collection of plant leaves and
preparation of ethanolic extract

The plant leaves of E. odoratum were collected, washed with
distilled water and subsequently dried at room temperature in dark
conditions. After this, the dried leaves were ground to powder and
10 g of powder sample was mixed with 100 mL of ethanol for
continuous stirring at 150 rpm for 24 h. In order to remove solid
sediments, the mixture was then centrifuged at 10,000 rpm for
10 min. The supernatant was filtered using Whatman filter paper
No. 1 and later, concentrated using rotary evaporator to obtain
crude extract which was further lyophilized and stored at 4°C.

2.2 Synthesis of zinc oxide nanoparticles
(ZnO NPs)

Zinc Oxide nanoparticles were prepared using phyto-assisted
precipitation (Ranpariya et al., 2021) method using highly
concentrated Zn precursor, ZnCl2. Briefly, 0.2 M ZnCl2 was
prepared with total reaction mixture volume as 100 mL. Initially,
only 80 mL distilled water was mixed with ZnCl2 powder using
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magnetic stirring at 150 rpm at 70°C. After complete dissolution of
ZnCl2 crystals, the ethanolic extract of E. odoratum (10 mg/mL
concentration) was added to the reaction mixture with a total
volume of 5 mL and later, pH was adjusted to 6. After 1 h of
continuous stirring, the mixture was transferred to centrifuge
tubes for centrifugation at 15,000 rpm for 10 min at 4°C. The
supernatant was discarded and the pellet was transferred to fresh
tube and mixed with 50% ethanol (v/v in distilled water). The
centrifugation cycle is repeated twice and the obtained pellet was
kept in oven to dry for 12 h at 80°C.

2.3 Determining physico-chemical
properties of synthesized nanoparticles by
different characterization techniques

The crystallographic phase of NPs was confirmed by X-ray
diffraction analysis (PANalytical, EMPYREAN). The operating
volage and current during XRD were 45 kV and 45 mA,
respectively and, the diffraction pattern was recorded across the
2θ range of 20°–80° with Cu Kα source (1.5406 Å). The peaks
obtained in XRD analysis was corroborated with JCPDS database
to determine the phase formation of ZnO nanoparticles. The surface
morphological analysis of ZnO NPs was done by FE-SEM
microscopy (FE-SEM, Sigma-300, Carl Zeiss) and elemental
composition was investigated by EDAX spectroscopy. In order to
find the band gap of synthesized ZnO NPs, diffuse reflectance
spectroscopy was done (Lambda-365 UV-Vis Spectrophotometer
Perkin Elmer) with the reflectance of light in 200–800 nm range. The
photoluminescence emission spectrum was recorded at laser
wavelength of 355 nm and 285 µW incident power using Witech
Alpha 300 RA system. The hydrodynamic size and zeta potential of
NPs was measured using Litesizer 500 (Anton Paar GmbH). ZnO
NPs suspension in distilled water was passed through 0.22 µm nylon
syringe filter and sonicated for 30 min at RT in ultrasonic cleaner
(LMUC-3, Labman Scientific Instruments Pvt. Ltd., India) operating
at 40 kHZ.

2.4 Development of ZnO NP based coatings
on totally implantable venous access ports
(TIVAP)

The coating suspension consisted of 0.2% (w/v) HPMC and 5%
(w/v) ZnO NPs in 81.25% ethanol. The coating solution was infused
inside the lumens of TIVAP (2005ISP, Vygon, Ecouen, France) with
the help of syringe and immersed in the coating solution. The
tubings of TIVAP were in contact with coating solution for 6 h at
60°C under continuous orbital shaking at 150 rpm. After this, the
excess solution was removed by immersing the catheter in 1x PBS,
flushing the lumen of TIVAP by 1x PBS and therefore, ensuring no
occlusion inside the lumen of TIVAP. The coated TIVAP was dried
in oven at 80°C for 16 h. In order to confirm the coating of ZnO NPs
on surfaces of TIVAP, FE-SEM and EDAX analysis was done
(Sigma-300, Carl Zeiss) to further compare uncoated and coated
TIVAP surfaces in terms of surface morphology and elemental
composition. The catheters were sterilized as described elsewhere
(Chauhan et al., 2014) in absolute ethanol.

2.5 Bacterial strains and growth media

S. aureus MTCC 7443 was grown in Tryptic Soy Broth (TSB)
and Gram- E. coli MTCC 119 and P. aeruginosa PAO1 (kind gift
received from Dr. Mohan C. Joshi, Jamia Milia Islamia, N. Delhi,
India) were grown in Luria-Bertani broth (LB) at 37°C. For
enumerating bacterial cell viability, serially diluted culture was
spotted on sterile TSB agar (S. aureus) or LB agar (E. coli or P.
aeruginosa) plates and kept for incubation at 37°C for 12–16 h.

2.6 Effect of Eupatorium odoratum
mediated and chemically synthesized ZnO
NPs on exponentially growing bacteria

The efficacy of E. odoratummediated or chemically synthesized
(kind gift from Dr. Khanuja, Jamia Milia Islamia, N. Delhi, India)
ZnO NPs in inhibiting growth of S. aureus, E. coli or P. aeruginosa
was checked by recording OD 600 nm at different time intervals
using Shimadzu UV-Vis Spectrophotometer. Each treatment was
replicated thrice and each experiment was carried out 3 times. The
exponentially (OD600 ≈ 0.3–0.5) grown bacterial culture of S.
aureus, E. coli or P. aeruginosa was given treatment of different
concentrations of ZnO NPs and allowed to incubate for 24 h at 37°C
with continuous shaking at 150 rpm. The untreated wells were kept
as controls. After the incubation, the colony forming units were
estimated by plating the serial dilutions on LB agar or TSB agar
media plates for Gram-negative and Gram-positive bacteria
respectively, and incubated at 37°C for 12–16 h (Lebeaux et al.,
2014a).

2.7 Evaluation of in vitro antibiofilm efficacy
of surface modified TIVAP using continuous
flow system

The antibiofilm efficacy of surface modified TIVAP was
evaluated using continuous flow system described previously
(Chauhan et al., 2012) with few modifications. Briefly,
bacterial biofilms of S. aureus, E. coli or P. aeruginosa were
allowed to form on the ZnO NPs coated, HPMC coated and
uncoated TIVAP. Under sterile conditions in laminar airflow, the
catheters were supplied with fresh media from reservoir bottles.
The intraluminal sections of TIVAP were filled with S. aureus,
E. coli or P. aeruginosa at a cell density 100 cells/50 µL and
allowed to adhere on catheter’s internal surface at 37°C for 3 h.
Later, non-adherent bacteria were removed by flushing out 1x
PBS for a duration of 10 min followed by continuous supply of
media at a speed of 300 μL/min for 48 h. The non-adherent cells
and spent media were collected in the discard bottle from the
catheters. After 48 h, the biofilm bacterial cells from intraluminal
section of TIVAP were harvested by a vigorous process as
described previously (Chauhan et al., 2012). The TIVAP
catheter surface was wiped using 70% ethanol to remove any
contaminants present on the outer lumen of the TIVAP catheter.
Under sterile conditions, the lumen of the catheter was cut cross
sectionally in small pieces followed by transversal cuts to expose
the inner lumen of the catheter. The cut sections were immersed
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in 1 mL 1xPBS containing tube and vortexed for 1 min. This was
followed by sonication for 5 min using water bath ultrasonic
cleaner (LMUC-3, Labman Scientific Instruments Pvt. Ltd.,
India) operating at 40 kHZ followed by vortex mixing for
1 min. Later, the bacterial cells in the 1xPBS suspension were
diluted serially and plated on TSB agar (S. aureus) or LB agar
(E. coli or P. aeruginosa) for viable cell count estimation.

3 Results and discussion

3.1 Phyto assisted ZnO NPs show hexagonal
phase with wurtzite structure

The phase of the ZnO NPs synthesized using ethanolic extracts
of E. odoratum was identified with the help of X ray diffraction
pattern as shown in Figure 1. A series of diffraction peaks due to
(100), (002), (101), (102), (110), (103), (200), (112), (201), (004),
(202) planes were observed from the synthesized ZnO NPs. A
JCPDS file 36-1451 was used to identify the hexagonal phase
with wurtzite structure in the synthesized ZnO NPs. Spurious
low intensity peaks were also observed specifically between 20°

and 35°. These peaks could be due to the intermediate product or
impurities. Confirmation of multiphase or impurity was done by
EDAX measurements. Only “Zn” ad “O” signals were observed in
sample indicating that unidentified peaks in observed XRD pattern
corresponds to the intermediate phase only. Similar observation has
been reported by Luković Golić et al. (2011), and others (Tokumoto
et al., 2002).

Average crystallite size of the ZnO NPs have been determined
from the Williamson-Hall plot (W-H plot) (βCosθ versus 4Sinθ)
(Jeffery, 1957) after determining the FWHM of the XRD peaks and
considering instrumental broadening.

βTotal � βSize + βStrain �
0.9λ
t cos θ

+ 4 Δd( ) Sin θ
dCosθ

βTotal cos θ � 0.9λ
t

+ 4 Δd( ) Sin θ
d

(1)

Where, θ denotes the Bragg angle, t represents the crystal or
particle size of ZnO NPs synthesized using ethanolic extracts of E.
odoratum, d represents interplanar lattice spacing, βSize and βStrain
represent the FWHM contributions pertaining to the size and strain,
respectively. Δd/d is the measure of strain. FWHM was obtained by
fitting individual XRD peak to Lorentzian peak. Figure 2 shows the
W-H plot yielding ZnO particle size = 50.4 nm.

The lattice parameters of synthesized ZnO NPs were obtained
using an interactive powder diffraction data interpretation and
indexing program (Wu, 1989). The indexing program yields
lattice parameters by least square fitting to the positions of x ray
diffraction peaks in 20–80° range. Lattice parameters a = 3.25500 ±
0 Å and c = 5.21459 ± 0.00091 Å were fitted at figure of merit, F =
33.9 and R = 0.00011. The low value of the R-factor (~10−3) and high
value of F > 10 were indicative of the satisfactory estimate of the
lattice parameters.

3.2 FE-SEM and EDAX spectroscopy analysis

The morphology of ZnO NPs was investigated using FE-SEM
microscopy. The spherical and hexagonal morphologies were
observed (Figure 3). The SEM micrographs reveal particle
aggregation and homogenous morphology distribution in
agreement with earlier reports (Chaudhuri and Malodia, 2017;
Naseer et al., 2020; Faisal et al., 2021; Iqbal et al., 2021).
However, in the previous studies green synthesis procedure has
also resulted in irregular crystal growth of ZnO NPs (Ogunyemi
et al., 2019; Priyadharshini et al., 2022). The average grain size of E.
odoratum leaves’ ethanolic extract mediated ZnO NPs was 34 ±
7.98 nm in our study which is in close agreement with XRD findings.
As per previous findings, using SEM analysis different size ranges of
bio-fabricated ZnO NPs have been reported such as 45–150 nm
using cell free extract of Bacillus megaterium (Saravanan et al., 2018),
25–87 nm using fruit, seed and pulp extract of Citrullus colocynthis
(Azizi et al., 2017), 10–20 nm (Doan Thi et al., 2020) using

FIGURE 1
XRD pattern for the synthesized ZnO NPs.

FIGURE 2
Williamson-Hall plot for the ZnO NPs, particle size was
determined from the intercept.
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orange fruit peel extract, 30–43 nm using Withania somnifera root
extract (Prasad et al., 2021), etc. In EDAX spectroscopy, the
synthesized nanoparticles showed presence of Zn (65.35 wt%), O
(28.13 wt%) and Au (6.53 wt%, due to gold sputter coating prior to
SEM microscopy) indicating successful synthesis of ZnO
nanoparticles.

3.3 UV-visible absorption and diffuse
reflectance spectroscopy (DRS) analysis

DRS spectra for synthesized NPs showed strong reflection
above 365 nm. Absorption spectra for the ZnO NPs
synthesized using ethanolic extracts of E. odoratum is shown

in inset of Figure 4. The absorption peak for synthesized ZnO
NPs was observed at 380.5 nm. Researchers have presented
reports of both, the red shift due to defect incorporations with
extended localized states within the band gap region (Marotti
et al., 2006; Kamarulzaman et al., 2015) and the blue shift of Eg
(Tan et al., 2005; Debanath and Karmakar, 2013).

The bandgap energy of ZnO NPs is calculated using Kubelka-
Munk (KM) relation as described in Wetchakun et al. (2012) and
Yan et al. (2021).

K

S
� 1 − R∞( )2

2R∞
� F R( ) (2)

Where, F(R) is the remission or Kubelka-Munk (KM) function.
In parabolic band structure,

αh] � C h] − Eg( )
1/2

(3)

where, α denotes linear absorption coefficient of the material; h]
denotes photon energy; C denoted proportionality constant.

For constant scattering coefficient (S) with wavelength, and
using Eqs 1, 2,

F R( )h][ ]2 � B h] − Eg( ) (3a)

Eg was measured by extrapolating the linear portion of modified
KM function and hν, as shown in Figure 4. The optical bandgap for
the synthesized NPs was found to be 3.25 eV. The smaller bandgap
value as compared to bulk ZnO (~3.3 eV) may be attributed to
defects including, dislocations, stacking faults, zinc and oxygen
vacancies, Zn and oxygen interstitial.

3.4 Photoluminescence (PL) spectroscopy
analysis

To study the possible defects in the synthesized ZnO NPs, PL
spectra was investigated at room temperature. PL spectra of the

FIGURE 3
SEM and EDAX Analysis. Field Emission-Scanning Electron Microscopy Images of Zinc Oxide Nanoparticles synthesized using green synthesis
showing spherical, hexagonal structures of ZincOxide. EDAX spectra reveals presence of Zn andO confirming pure synthesis of ZincOxide nanoparticles.

FIGURE 4
Kubelka- Munk function (KM) versus photon energy for ZnONPs.
Inset- Absorption spectra for synthesized ZnO NPs.
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synthesized sample was recorded using excitation wavelength at
355 nm wavelength with 285 µW power. Emission signal was
recorded with CCD (charge Coupled Detector). Optical
properties of synthesized ZnO NPs were investigated for its
use as coatings in central venous catheter. The nanoparticle
size (Choopun et al., 2005; Wang et al., 2005) and surface
morphology (Ye et al., 2005; Zhao et al., 2016) as well as
defects and synthesis process (Kumar Jangir et al., 2017) affect
the PL properties of ZnO. Generally, room temperature PL of
ZnO exhibits sharp transition in UV range and a broad transition
in visible range. The sharp transition in UV range corresponds to
optical transition between electrons in conduction band (CB) and
holes in valence band (VB), including excitonic effect (band to
band transition). PL originates due to recombination of surface
states (Chestnoy et al., 1986). The broad emission is related to
dopant/impurities or point defects such as zinc interstitial and
oxygen vacancies (Kumar Jangir et al., 2017), etc. Figure 5A
shows PL spectra of ZnO nanomaterial. The UV emission at
381.8 nm is attributed to near bandgap excitonic emission (band
to band transition). Free exciton in ZnO occur when electron hole
pair forms between CB and VB. Second observed peak
corresponding to crystalline defects in PL spectra was fitted to
Gaussian peak function to obtain corresponding energy level and
to access types of defects present in the synthesized sample and
their influence on the optical properties.

The number of fitted peaks (Figure 5A) indicate the presence
of defect states. The parameters obtained from fitted peaks
including peak position, FWHM, area under the curve, are
shown in the Figure 5A. Figure 5B shows energy band diagram
for the synthesized ZnO NPs. The PL spectra of NPs show intense
red emission at 669.85 nm, along with orange and green emission
at 599.3 nm and 541.3 nm, respectively. Green emission is
attributed transition from surface traps (ST) to oxygen
vacancy level (VO). Orange emission is due to transition from
Zni level to Oi level and red emission is attributed to transition
from ex Zni level to VO level.

3.5 Dynamic Light Scattering

The particle size distribution of green synthesized zinc oxide
nanoparticles is moderately multimodal with polydispersity
index as 0.26 and the hydrodynamic diameter is 142.82 nm.
Moreover, d90, i.e., 69.95 nm (Figure 6A) represents the size of
90% of particles in the suspension to be below the d90 value which
is larger than the average particle size, i.e., 34 nm observed in
SEM. This is possibly due to the bias of the characterization
technique to measure bigger size particles or aggregates (Modena
et al., 2019).

The correlogram of ZnO nanoparticles samples decays
rapidly (Figure 6B) indicating the composition of NPs
suspension by small sized particles, therefore, changing their
relative positions rapidly and also, bringing about rapid
intensity fluctuations (Figure 6C). The colloid suspensions
with ζ-potential in range ∈ (∞, −15] + [15, ∞) are known to
be stable (Modena et al., 2019). The colloids are strongly stable if
ζ-potential modulus is greater than 25 governed by adequate
mutual repulsive forces (Zhou, 2012; Morais et al., 2013). The ζ-
potential of ZnO NPs is −15.61 mV (Figure 6D), possessing
anionic surface charge and can form a moderately stable
colloid. There is a close relationship between the plant extract
metabolites and ζ-potential (Lynch et al., 2009). Moreover, the
presence of negative charge on NPs due to adsorption of plant
extract metabolites reduces aggregation among particles making
it a stable dispersion (Vimala et al., 2014).

3.6 SEM-EDAX analysis of ZnO NP-coated
CVCs

The surface of TIVAP showed functionalization of ZnO
nanoparticles using SEM-EDAX analysis (Figures 7A, B). The
zinc oxide nanoparticles along with HPMC form polymer
encapsulated nanoparticles coatings on catheter surfaces as

FIGURE 5
(A) Photoluminescence spectra measured at room temperature for green synthesized ZnO NPs. Dotted curve shows the fitted Gaussian peaks to
obtain defect states in the ZnO NPs. (B) Energy level diagram of synthesized ZnO NPs showing defect states (Vempati et al., 2012) and the possible
transition corresponding to observed defect states in PL spectra.
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observed in SEM micrograph (Figure 7A). Recently, HPMC based
films were developed incorporated with ZnO Nanoparticles for
antibacterial wound dressing application (Pitpisutkul and
Prachayawarakorn, 2022). Further, more detailed investigations
are required to find exact mechanism of chemical interaction
between HPMC, ZnO and PDMS surfaces.

3.7 ZnO NPs efficiently kill clinically relevant
bacteria

ZnO exhibits improved antibacterial activity at the nanoscale
(Padmavathy and Vijayaraghavan, 2008). The antibacterial
properties of ZnO nanoparticles have been reported as a function
of its characteristic features. ZnONanoparticles when doped with Fe
results in significant antibacterial activity against Gram-negative
bacteria like P. aeruginosa, E. coli (Kayani et al., 2018). ZnO
nanoparticles consisting flower like morphology (hierarchical
structures) make Gram-positive bacteria more susceptible than
Gram-negative bacteria (Babayevska et al., 2022). The differential
antimicrobial activities of ZnO NPs are due to influence of physical
and chemical properties of ZnO NPs obtained by varying synthesis
methods, modification of NP surface using doping with metals or
capping agent (Gudkov et al., 2021; da Silva et al., 2019). To assess

the antibacterial efficacy of ZnO NPs synthesized using ethanolic
extracts of E. odoratum or chemically synthesized ZnO NPs,
exponentially growing bacteria were treated with different
concentrations (50 μg/mL to 750 μg/mL) of ZnO NPs for 24 h at
37°C. The viable cell count was estimated by plating the S. aureus on
TSB agar plates, and E. coli and P. aeruginosa on LB agar plates.
Untreated cultures were used as controls (Figures 8A–F;
Supplementary Figure S1). Although a concentration dependent
killing was observed upon exposure of all the bacterial strains to
either E. odoratum mediated or chemically synthesized ZnO NPs,
there was no significant difference in the antibacterial activity
between the ZnO NPs synthesized by two methods. Although the
growth of both Gram-positive as well as Gram-negative strains was
inhibited significantly with increasing concentration, growth of S.
aureus was inhibited up to 99.9% at a concentration of 250 μg/mL E.
odoratummediated ZnO NPs. Maximum killing of 99.98% was seen
in case of S. aureus at 500 μg/mL ZnO NPs whereas 99.9% killing
could be achieved only at higher concentration of 750 μg/mL in case
of Gram-negative bacteria. This could be due to presence of
secondary metabolites (rich in phenols, saponins and tannins)
(Inya-agha et al., 1987) in E. odoratum extracts, as previously
reported, maybe specifically active against Gram-positive bacteria.
The literature suggests broad spectrum antibacterial and antifungal
activity of E. odoratum plant extract. Venkat Raman et al. (Venkata

FIGURE 6
Dynamic Light Scattering Characterization of ZnO synthesized using Green Synthesis. (A) Particle Size Distribution, D10 = 32.19 nm, Median
Diameter, D50 = 48.36 nm, D90 = 69.95 nm. (B) Correlogram. (C) Intensity Fluctuation Plot. (D) Zeta Potential distribution upon nanoparticles.
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FIGURE 7
SEM and EDAX Analysis of surface morphology of coated and uncoated catheters. (A) Coated Surface of CVC. (B) Uncoated Surface of CVC.

FIGURE 8
Antibacterial Efficacy of Eupatorium odoratum mediated ZnO NPs. Inhibition of: (A) Staphylococcus aureus, (B) Escherichia coli, and (C) Proteus
aeruginosa growth in the presence of different concentrations of ZnO NPs; Percentage killing of: (D) Staphylococcus aureus, (E) Escherichia coli, and (F)
Proteus aeruginosa, after 24 h of exposure to different concentrations of ZnO NPs.
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raman et al., 2012) have shown broad spectrum antibacterial activity
against Gram-negative and Gram-positive bacteria including
MTCC736 Bacillus subtilis, MTCC2807 Corynebacterium
glutamicum, MTCC1572 E. coli, MTCC7028 Klebsiella
pneumonia, MTCC733 Salmonella typhi, MTCC87 S. aureus,
MTCC1938 Streptococcus thermophilus, MTCC1771 P. vulgaris,
MTCC451 Vibrio parahaemolyticus. E. odoratum extract shows
significant (p < 0.001) antibacterial activity against all bacterial
species excluding Proteus vulgaris and S. typhi. Besides, E. odoratum
also show antifungal activity (Ramesh and Subramani, 2018).
Chromolaena odorata (synonym of E. odoratum) extract in
combination with antibiotics inhibit growth of P. aeruginosa isolated
from wound infections. Moreover, E. odoratummediated ZnONPs are
able to kill efficiently both the both the Gram-positive and Gram-
negative bacteria, indicating the broad-spectrum activity of these NPs
and further warrants the evaluation for probable application in clinical
settings. Furthermore, as suggested by other research groups, focused
studies are needed to compare the antibacterial efficacies of metal and/
or metal oxide NPs using optimized techniques more relevant to
nanoparticles (Kourmouli et al., 2018; Masri et al., 2022).

3.8 ZnO NPs coating on totally implantable
venous access ports (TIVAP) reduce biofilm
formation

Zinc oxide nanoparticles are well recognized antibacterial (Liu et al.,
2009; El-Masry et al., 2022) and antibiofilm agents, and used to develop
antifouling surfaces of medical devices, for example, modifying dental
resins (Wang et al., 2019) and denture bases in dental implants (Cierech
et al., 2019) and deposition (Wang et al., 2021) and patterning of ZnO
NPs on titanium (Ye et al., 2022) for orthopedic implants. We have
developed coating of ZnO NPs, synthesized using ethanolic plant
extract of E. odoratum, on silicone elastomer-based surface of the
commercial TIVAP with help of hydroxypropyl methylcellulose
(HPMC) as binding agent. ZnO-HPMC based coatings result in
formation of hydrophilic surfaces (Rao et al., 2014). The ZnO NPs

coated CVCs showed more than 97% inhibition of S. aureus biofilm
formation and up to 90% inhibition of E. coli and P. aeruginosa biofilm
formation (Figure 9). Hydrophilic surfaces are known to reduce
bacterial adhesion and biofilm formation (Lorenzetti et al., 2015;
Verhorstert et al., 2020). ZnO NPs based coatings can be tuned to
attain hydrophilic surfaces reducing bacterial colonization and
inhibiting biofilm formation upon the surfaces (Yong et al., 2015;
Kusworo et al., 2021). Our results demonstrated the application of
ZnO NPs for the first-time and successful reduction in bacterial
formation which can successfully reduce risk of central venous
catheter associated infections. Further, in vivo studies would validate
the antifouling ability in the presence of trilateral interaction between
host, device and bacteria.

4 Conclusion

HPMC and ZnO are well recognised as safe materials and
applied in coatings of food packaging products and wound
applications. Zinc oxide nanoparticles were synthesized using
plant extract of medicinal plant E. odoratum that showed
excellent antibacterial activity up to 99.99% killing efficacy. ZnO
NPs were coated on commercial TIVAPs using HPMC polymer.
The coated CVCs prevented the bacterial biofilm formation of
clinically relevant bacteria, viz., E. coli, P. aeruginosa and S.
aureus in an in situ continuous flow system. Based on our
findings, we propose application of green synthesized ZnO NPs
(a non-antibiotic based) surface coatings on Central Venous
Catheter which has immense potential of improving the patient
outcome in clinical settings.
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FIGURE 9
Antibiofilm Efficacy of ZnO NP coated CVCs. (A) Biofilm formation of Staphylococcus aureus is inhibited by >97%. (B) Biofilm formation of
Escherichia coli is inhibited nearly by 90%. (C) Biofilm formation of Proteus aeruginosa is inhibited by >90%. ZnO-NPs Coated: ZnO NPs-HPMC
composite coating. Statistical analysis was done by 1-way analysis of variance (unpaired t-test with Welch’s correction) using GraphPad Prism software
(version 8.0.1). Differences were considered significant at p < 0.05*, p < .0005 ***; p < 0.0001 ****.
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