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Uncontrolled hemorrhage caused by trauma can easily lead to death. Efficient and
safe hemostatic materials are an urgent and increasing need for hemostatic
research. Following a trauma, wound healing is induced by various cellular
mechanisms and proteins. Hemostatic biomaterials that can not only halt
bleeding quickly but also provide an environment to promote wound healing
have been the focus of research in recent years. Mussel-inspired nanoparticle
composite hydrogels have been propelling the development of hemostatic
materials owing to their unique advantages in adhesion, hemostasis, and
bacteriostasis. This review summarizes the hemostatic and antimicrobial
fundamentals of polydopamine (PDA)-based nanomaterials and emphasizes
current developments in hemorrhage-related PDA nanomaterials. Moreover, it
briefly discusses safety concerns and clinical application problems with PDA
hemostatic nanomaterials.
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1 Introduction

Trauma is the leading cause of death among individuals aged 5–44 years (Krug et al.,
2000; Behrens et al., 2014; Allison, 2019). Uncontrolled bleeding is a major cause of 30–40%
of trauma deaths caused by war, traffic accidents, and natural disasters (Eastridge et al.,
2011); in particular, the bleeding of irregular wounds, such as in the groin, is the weakest link
in first aid. Massive prehospital blood loss also leads to higher mortality and serious
complications later in life (nerve necrosis, amputation, etc.) (Kauvar et al., 2006). Therefore,
new methods and products for effective bleeding control are the focus of research in the field
of prehospital emergency care.

In recent years, many researchers have devoted themselves to the research and
development of products applicable to wound hemostasis. There is a wide variety of
existing hemostasis materials, particularly including polysaccharides, silicon-based
materials, biological products, and self-assembled nano-peptides in various forms
(including sponges, hydrogels, nano-fibers, and particles) (Chen et al., 2018a; Hickman
et al., 2018; Lokhande et al., 2018;Wu et al., 2018; Du et al., 2020; Guo et al., 2021; Liang et al.,
2021; Zhang et al., 2021; Wang et al., 2022a). The toxicity of degradation products, which
induce immune responses and other safety problems, is a common problem with these
materials. In addition, due to increased fluids and blood around the wound, the adhesion and
biocompatibility of current hemostatic materials in moist environments must still be
optimized. Therefore, the ideal hemostatic material is still the focus and difficulty of
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modern materials science research. In existing hemostatic materials,
hydrogels have become the most competitive candidates for wound
dressings due to their good hydrophilicity, biocompatibility, and
three-dimensional (3D) porous structure that resembles
extracellular matrix (ECM). Studies have shown that the
mechanical properties of the hydrogels for wound healing are not
only supported by physical sealing but also by the enrichment of
coagulation factors through the absorption of wound extract (Liang
et al., 2021).

In nature, mussels have excellent underwater adhesion. Byssus
protein secreted by mussels has a fast curing speed, high waterproof
adhesion ability, and excellent properties in water. Its adhesion
diversity makes it a very advantageous and potential hemostatic
material. There are six main mussel foot proteins (mfps) in mussel
byssus, namely, mfp-1 through mfp-6. Phenolic residues including
3, 4-dihydroxyphenylalanine (DOPA), phenylalanine, and tyrosine
have been found to be abundant in mussel byssus protein and play
key roles in wet adhesion and adhesion diversification. Based on
these discoveries, polydopamine (PDA) became the focus of
attention as a novel coating material in 2007 due to its molecular
structure, which is similar to DOPA (Lee et al., 2007). Since then,
polydopamine has not been limited to use as a coating material but
has also been rapidly incorporated into a wide range of applications
across the biomedical field. Polydopamine has undergone intense
interest in its applications and is becoming a material of global
significance. There has thus been great interest in developing
polydopamine-based hemostatic materials that target sites of
wound bleeding to promote hemostasis. Both polydopamine and
its derivative materials have been explored for the development of
hemostatic and wound-healing materials. This review article
provides an overview of polydopamine-based nanomaterial
composite hydrogels used for hemostatic and antimicrobial
fundamentals and emphasizes current developments in

hemorrhage-related PDA nanomaterials. Moreover, it briefly
discusses safety concerns and clinical application problems with
PDA hemostatic nanomaterials.

2 Mechanism of hemostasis and wound
healing promoted by mussel-inspired
materials

The tissue-adhesive properties of mussel-inspired materials are
mainly attributable to mussel adhesion in the wet state. Mussels
adhere to wet surfaces, and polyphenol compounds on mussel foot
proteins play key roles (Maier et al., 2015; Guo et al., 2021).
Polyphenol compounds contain large numbers of catechol
groups, which act as adhesive reagents. Catechol functional
groups contribute to tissue adhesion not only by participating in
the formation of various reversible, non-covalent bonding forces
(such as hydrogen bonding, π–π stacking, cation–π interaction, and
coordination with metal oxides) (Ejima et al., 2013; Rodriguez et al.,
2015; Gebbie et al., 2017; Waite, 2017; Patil et al., 2018), as shown in
Figure 1 (Chen and Zeng, 2022), but also because polyphenol
compounds are easily oxidized to quinone structures and have
Schiff base bonds or Michael addition reactions with amino or
sulfhydryl groups in histones. Catechol groups can also undergo
coordination chelation reactions with metal ions such as Fe3+, form
dynamic borate bonds with boric acid groups, and undergo
disproportionation reactions to produce coupling to increase
adhesion strength.

Moreover, blood coagulation is accelerated by the interaction of
catechol groups and the active residues of proteins or
polysaccharides in the blood (Gopalakrishnan et al., 2014; Chen
et al., 2018b; Geng et al., 2020a; Guo et al., 2021). In addition, the
large amount of negative charge in the polyphenols can activate

FIGURE 1
Phenolic residues of major mussel foot proteins (mfps) and typical, reversible mussel-inspired interactions (Chen and Zeng, 2022).
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coagulation factor XII in the body, thus triggering its own
coagulation cascade reaction and improving its hemostatic ability
(Choi et al., 2014; Li et al., 2018a; Patil et al., 2018; Zhang et al.,
2021). It was found that mussel polyphenol gel not only has strong
adhesion but also forms a protective physical barrier through the
high combination of polyphenol and protein, which prevents the
invasion of foreign microorganisms and the normal growth of
bacteria, thus playing a protective antibacterial function, as was
confirmed by a preparation study of tannic acid–silk
fibroin–diclofenac potassium (TA-SF-DP, TSD) hydrogels (Zhu
et al., 2022). The TSD hydrogels effectively isolated ambient
pollution, and the anti-inflammatory drug diclofenac potassium
(DP) could be effectively released in the early traumatic stage to
suppress local inflammation. Similar studies about the mechanisms
of hemostasis and wound healing of polyphenol compounds in an
M2 macrophage-polarized anti-inflammatory hydrogel (HTHE-
M@D), combined with mild heat stimulation, were designed for
DFU treatment, as shown in Figure 2 (Yuan et al., 2022). The
HTHE-M@D hydrogel was prepared by the enzymatic cross-linking
of epigallocatechin gallate dimer-grafted hyaluronic acid (HA-
EGCG) and tyramine-grafted human-like collagen (HLC-TA),
integrated with deferoxamine-loaded mesoporous polydopamine
nanoparticles (M@D). The hydrogel exhibited a prominent
enhancement of angiogenesis, which was attributed to the
combination of mild heat stimulation via photothermal effects
and angiogenic drugs (deferoxamine) released from the hydrogel.
The hydrogel also promoted the transformation of macrophages
from the M1 to the M2 phenotype and exhibited good anti-
inflammatory, antibacterial, antioxidant and hemostatic

properties, and biocompatibility. Additionally, the combination of
hydrogel and mild thermal stimulation promoted skin regeneration
in diabetic wounds and shortened the healing time to 13 days. This
indicates that mussel-inspired materials have potential applications
in the field of antibacterial hemostasis and wound healing.

3 Mussel-inspired nanoparticle
composite hydrogels

Based on the mechanism of catechol groups, DOPA, dopamine
(DA), 3,4-dihydroxyphenyl-propionic acid, and other compounds
can form complex hemostatic materials with natural
biomacromolecules including chitosan (Ryu et al., 2011; Shou
et al., 2020), synthetic polymers such as polyethylene glycol (Bu
et al., 2019; Zhao et al., 2020), and inorganic nanomaterials such as
graphene oxide (Han et al., 2017a; Li et al., 2019). Mussel-inspired
hemostatic hydrogels based on catechol groups can not only help
stop bleeding but also keep the wound moist and contribute to
wound healing (Wang et al., 2022b; Su et al., 2023). The amount,
type, and activity of coagulation factors adsorbed on the surface of
mussel-inspired hemostatic hydrogels determine the progress and
efficiency of coagulation reactions. The unique properties of
hemostatic nanomaterials are deeply attractive to researchers
hoping to enhance availability and improve hemostatic
effectiveness. Hemostatic nanomaterials have a larger surface area
and produce nanoscale effects that promote blood absorption and
cell adhesion; this is because hemostatic nanomaterials with large
surface areas can quickly absorb a large amount of liquid such that

FIGURE 2
Schematic representation of the design strategy of the mussel-inspired hydrogel and mechanism of diabetic wound healing (Yuan et al., 2022).
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the coagulation factor forms the reaction center surface on its
surface, thus accelerating the blood coagulation process.
Additionally, the adjustability of physical and chemical properties
of hemostatic nanomaterials, such as size, surface, shape, and
flexibility, make the hemostatic nanomaterials easier to customize
for hemostatic devices in a variety of scenarios (Parani et al., 2016;
Makabenta et al., 2021). The nanomaterials can promote wound
healing, forming a kind of scaffold for cell growth. With the rapid
development of nanotechnology and polymer materials science,
inorganic or polydopamine nanoparticles could be dispersed into
polymer networks through physical or chemical reactions to build
mussel-inspired nanoparticle composite hydrogels with unique
rheological properties of gel materials and nanomaterial
functions, which could be adjusted to meet special mechanical
requirements and have become an extremely important class of
mussel-inspired hemostatic materials (Geng et al., 2020b; Guo et al.,
2021; Wang et al., 2022a; Li et al., 2023). The PDA coating was used
to assist in the synthesis of prominent antibacterial nanoparticles,
silver nanoparticles (AgNPs), on the surface of the double-layer
hydrogel (Li et al., 2022). The catechol group on PDAmolecules can
supply metal-binding sites and reduce Ag+ ions as a mild AgNP-
reducing agent for unique chemical structures. The AgNP composite
hydrogels exhibited high near-infrared (NIR) absorption at 808 nm,
resulting in high temperature and NIR-enhanced peroxidase
(POD)-like activity producing hydroxyl radicals (•OH), which
endowed the hydrogels with excellent antibacterial properties
when combined with released Ag+. At present, the mussel-
inspired nanoparticle composite hydrogels that have been most
studied include polyphenol–inorganic nanomaterial composite
hydrogels and polydopamine nanoparticle composite hydrogels.

3.1 Polyphenol–inorganic nanomaterial
composite hydrogels

Reversible, dynamic covalent and non-covalent linking
interactions mediated by catechol groups have been optimized
and used in the development of hemostatic materials. Graphene
oxide (GO) and other nanomaterials are excellent combination for
preparing polyphenol composite nanogels. To date, GO, carbon
nanotubes (CNTs), nano-clay, hydroxyapatite, metal and metal
oxide nanoparticles, and silicon-based nanomaterials have been
reported to form nanocomposite hydrogels with dopamine and
other analogs for hemostatic materials.

Nanomaterials such as GO nanosheets were reported to
activate platelets and cause them to strongly aggregate to stop
bleeding because the nanosheets were rich in oxygen-containing
functional groups (Singh et al., 2011). GO can carry numerous
other hemostatic factors when platelets are activated, adhere to
wounds, and trigger clotting pathways. This property is similar to
that of coagulants such as chitosan and thrombin (Howe and
Cherpelis, 2013). However, previous studies on cross-linked
graphene sponges have shown that these sponges lose their
GO function to stimulate platelets due to the original GO
being reduced under harsh reaction conditions (Li et al.,
2018b). Compared with the cross-linked strategy, the mild
self-polymerization of DOPA can retain the oxygen groups in
the GO-based composite sponge. PDA cross-linked with GO

using mild wet chemistry could retain oxygen-containing
groups to further improve the hemostatic performance of GO
sponges (Li et al., 2019). Furthermore, due to the random
distribution and easy aggregation of nanomaterials in polymer
networks, the hemostatic efficiency of nanomaterials can be
reduced (Han et al., 2017a). Polyphenol compounds have an
excellent binding ability with a variety of nanomaterials, which is
conducive to the uniform distribution of nanomaterials in the
hydrogel network, thus forming a new nanocomposite hydrogel
(Wang et al., 2022b). Moreover, the successful deposition of
compounds on the surface of nanomaterials could improve the
antibleeding of the materials, such as for CNTs, the
hydrophobicity limited their application in biomedical science
(Shi et al., 2013; Wang et al., 2014). The polymer shell promoted
the formation of uniform dispersion of CNTs in the aqueous
medium, whereas ordinary carbon nanotubes were hindered by
the strong van der Waals forces (Lynge et al., 2015).

Some studies indicate that using a polyphenol polymer layer as a
coating could induce interfacial component synergy, change the
interface properties of inorganic nanoparticles, and improve the
adhesion of the materials to platelets and erythrocytes. For example,
using PDA as a linker to immobilize thrombin on the surface of
diatom biosilica diatom (DB-diatom) could maintain thrombin
activity for a longer time (Mu et al., 2021), with thrombin
activity being maintained at 67% for 30 days at room
temperature. The composite materials quickly formed a fibrin
network in situ and accelerated blood clot formation and
strength to form a physical barrier at the wood. This was because
the polyphenol structure forms highly active quinone structures that
promote the covalent cross-linking between molecules and lead to
irreversible and rapid curing. Similarly, PDA was inserted into the
layers of two-dimensional layered nano-clay to form nanoaggregates
and was crosslinked in situ with acrylamide monomer to form
super-strong PDA–clay–PAM hydrogel (Han et al., 2017b). The
PDA chains oxidized in the nano-space between the nano-clay
layers maintained sufficient catechol groups to allow the adhesion
of the hydrogel to persist for a long time. The hydrogel was reusable
and durable, with adhesion remaining even under long-term storage
conditions. Hydrogels could adhere to the surface of human skin
and be non-irritating to the skin. Better yet, they peel off easily
without causing any damage or pain to the skin during the peeling
process.

Laponite (LAP) was reported as an effective hemostatic agent
(Dawson and Oreffo, 2013). Incorporation of LAP nanoplates
into the hydrogel could improve its properties and make it
suitable for usage in hemorrhage. Mussel-inspired materials
consisting of DOPA or PDA have been used to modify nano-
clays in the composition of adhesive hydrogels to improve long-
term mechanical stability as wound dressings (Liu et al., 2017;
Rajabi et al., 2020; Ma et al., 2022a). The physical force between
catechol and LAP could dissipate energy and improve the
strength and toughness of nanomaterial composite hydrogels.
Hydrogels have excellent malleability, and different shapes can be
designed according to the needs of the wound. With the
extension of time, the mussel-inspired materials part of the gel
will form a covalent cross-linked structure to fix the shape of the
tissue sealer, which is conducive to promoting healing of
irregular wounds.
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3.2 Polydopamine nanoparticle composite
hydrogels

Synthetic melanin, often known as PDA, has good
biocompatibility and can be biodegradable in vivo. Polydopamine
nanoparticles (PDA-NPs) were reported to have excellent adhesion.
PDA could be obtained by spontaneous oxidation or polymerization
under alkaline conditions of DOPA, dopamine (DA), 5,6-
dihydroxyindole (DHI), or other monomers (Liu et al., 2014).
The size of PDA can be adjusted precisely by controlling
experimental conditions such as reaction time, reaction
temperature, reaction concentration, and reaction system
pH value. Many PDA-based nanomaterials for hemostasis have
been designed and synthesized in recent years (Liu et al., 2014; Qi
et al., 2019; Tao et al., 2021; Ma et al., 2022b; Wang et al., 2022c; Sun
et al., 2022), and PDA has been used as a bio-template, coating, or
raw material to synthesize PDA-based nanomaterials.

PDA with multiple catechol groups could be used as a
convenient component for preparing anti-bleeding and self-
healing materials. The unique properties of PDA-based
nanomaterials were ascribed to the great balance between the
reversible interactions (hydrogen bonding, π–π stacking, and

hydrophobic interactions) and covalent bonds. Recently, a
multifunctional near infrared (NIR) laser-induced hydrogel for
infected wound healing was composed of dibenzaldehyde-grafted
poly(ethylene glycol) (PEGDA), lauric acid-terminated chitosan
(Chi-LA), and curcumin (Cur)-loaded mesoporous polydopamine
nanoparticles (PDA@Cur) via Schiff base and/or Michael addition
reaction, as shown in Figure 3 (Tao et al., 2021). NIR irradiation
could activate the photothermal PDA NPs in Gel-PDA@Cur
hydrogel and generate local hyperthermia for antibiosis. In vivo
treatment of staphylococcus aureus infection in a full-layer skin
defect model showed that the Gel-PDA@Cur hydrogel had a good
hemostatic function and excellent wound healing ability.

Other nanoparticles that, like PDA, have a controlled size were
combined with mussel-inspired hyaluronic acid (HA) hydrogels to
form a nanocomposite (Qi et al., 2019). Compared with other
nanoparticles such as f poly (lactic-co-glycolic acid) (PLGA) and
PLGA-(N-hydroxysuccinimide) (PLGA-NHS) nanoparticles, the
optimal lap shear strength (47 ± 3 kPa d) was achieved by
combining PDA nanoparticles of 200 nm (12.5% w/v) with an
HA hydrogel (40% w/v); increased adhesion strength was
induced by including PDA nanoparticles in nanocomposites.
Here, the multi-functional mussel-inspired nanoparticles

FIGURE 3
ynthesis route of Gel-PDA@Cur hydrogel and schematic representation of the fabricated hydrogel with NIR irradiation for bacterial inactivation to
promote wound healing (Tao et al., 2021).
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composites hydrogels were fabricated via in-situ polymerization by
using PDA-NPs and N-isopropylacrylamide (NIPAM) (Nikhil et al.,
2022). PDA-NPs were attached to the hydrogel surface as a coating.
The strong tissue adhesion of hydrogels was due to a large number of
catechol groups. The experimental results showed that the hydrogels
had a synergistic ability to promote wound healing. It has been
reported that the stability of hydrogels can be enhanced at low
temperatures by decreasing their temperature sensitivity.

4 Conclusion and outlook

Compared with natural hemostatic components, mussel-
inspired nanoparticle composite hydrogels can more easily form
tissue adhesion and promote wound healing. Results from a
bacteria-infected skin defect remolding experiment showed that
the PDA @AgNP-based composite hydrogels thicken granulation
tissue due to the hydrogel providing a satisfying wound environment
(Geng et al., 2020b). Something like that the gelatin was firstly
functionalized by dopamine to form dopamine-grafted gelatin
(GelDA) and mixed with 1,4-phenylenebisboronic acid and
graphene oxide (GO) to obtain GelDA/GO hydrogels (Han et al.,
2016). The adhesion strength of hydrogels was higher than that of
commercial dressings (about 5 kPa) and was strong enough to close
the wound and stop the bleeding. The reversible molecular
interaction of polyphenols gives mussel-inspired materials
universal adhesion and self-healing behavior. With
comprehensive studies on compounds with polyphenols,
reversible interactions (including hydrogen bonding,
metal–catechol coordination, metal–histidine coordination,
hydrophobic interactions, and cation–π, anion–π, and π–π
interactions) mediated by catechol or other groups have been
discovered and elucidated (Han et al., 2021). PDA and other
natural polyphenols with multiple phenolic groups have great
research value and application prospects as building blocks for
hemostatic and self-healing materials.

The adhesion of polyphenol hydrogels is significantly affected
by the content of free phenol hydroxyl groups in the hydrogels.
The phenol hydroxyl group moieties would be oxidized by high
temperatures or free radicals, tremendously reducing the
adhesion of the hydrogels (Liang et al., 2021). In practical
application, the long-term stability of adhesives and the
change of color and adhesion strength caused by oxidation
should be considered. It is very important to establish a
simple and effective method of incorporating PDA or
polyphenols into other materials and retaining their properties
for the preparation of novel polyphenol hemostatic agents. On
the other hand, the hemostasis of polyphenol composite
hydrogels is a synergistic process, and how to find appropriate
methods and determine the interactions of different groups is
extremely important for understanding the synergistic effects of
different interactions in mussel-inspired nanoparticle composite
hydrogels (Yan et al., 2021). In addition, the size of
polydopamine nanoparticles is critical in the design of delivery
systems with specific targets in wound healing. In recent years,
studies on the size, structure, and biological applications of PDA
nanoparticles, especially hemostasis, have been ongoing
(Lemaster et al., 2019; Salomaki et al., 2019; Vasileiadis et al.,

2022). Meanwhile, the adhesive ability of hemostatic hydrogels is
also a disadvantage for wound healing. The principal problem is
how to remove hydrogels that adhere strongly to wounds without
causing secondary pain and bleeding (Guo et al., 2021; Liang
et al., 2021). The swelling rate of the hydrogel affects the ability of
the wound dressing to absorb the wound exudate, thereby
reducing the risk of bacterial infection forming (Qi et al.,
2019). The swelling ratio of PDA @AgNP-based hydrogels was
228% ± 9.44%, indicating that these hydrogels exhibit a suitable
water-absorbing ability. With the development of science and
technology, there have been numerous indicators for evaluating
the efficiency of hydrogels, including tensile mechanical
properties and rheological behavior, shear-thinning
performance and adhesiveness, photothermal properties and
antibacterial activity, hemocompatibility, and in vivo
hemostatic performance and cytocompatibility. Mussel-
inspired nanoparticle composite hydrogels, as hemostatic
materials integrating adhesion, antibleeding, and
bacteriostasis, will be improved and developed more in the
field of hemostasis and will realize clinical applications.
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