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Fragment-based electronic structure methods for
solids

For many years, the Molecular Mechanical (MM) force field (FF) methods have been
classical tools for modeling molecular crystal structures, nanomaterials, and surfaces. Being
computationally inexpensive, the FFmethods are also extensively used in the modeling of the
biological systems. Yet, having a set of approximations and based on many parameters
derived from the experimental data, the conventional FFmethodss are tending to suffer from
deficiencies and contain some restrictions. For example, when the energy difference between
crystal polymorphs does not exceed several kJ/mol the FFs fail to sufficiently describe well the
hydrogen bonding, strong inter/intramolecular interactions, anisotropic electrostatics, or
large dispersion contributions. With the rapid development of polarizable FFs, the
improvement in treatment of molecular interactions can be achieved but computational
cost increases dramatically. Therefore, the dilemma between computational workload and
accuracy has to be resolved.

Nowadays, the majority of electronic structure studies are performed with the aid of
QuantumMechanical (QM) methods, which are based on periodic density functional theory
(DFT). It should be noted that calculations involving periodic DFT with either plane-wave or
atom-centered Gaussian-type basis sets are quite accurate and do not demand high
computational cost, once the dispersion corrections are taken into account. However,
the tasks involving crystal structure prediction are susceptible to the high extend to the
choice of the dispersion correction and type of applied DFT functional.

An alternative approach of electronic structure methods offers a large group array of
fragment-based techniques (Gordon et al., 2012; Richard and Herbert, 2012; Collins and
Bettens, 2015; Dolgonos et al., 2018; Loboda et al., 2018). The fragment-based methods
exploit the idea of divisiondivide the crystal into clusters or individual molecules. Most of the
fragment methods utilize the embedding scheme, which combines the treatment of inter-
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molecular interactions of clusters on a high QM-level with a low-
level computation of the entire periodic structure. It is worthwhile to
mention that the fragment methods may have two kinds of
embedding models: the pure QM:QM and the QM:MM hybrid.
If one considers the first model, the Hartree-Fock (HF) and post-HF
methods like Second-Order Møller–Plesset Perturbation Theory
(MP2) can be used at the high-level (Hofierka and Klimes�, 2021).
In some cases, even coupled cluster methods such as CCSD(T) are
feasible for the high-level calculations. As for the lower-tier method,
the dispersion-corrected density functional theory (DFT-D)
(Grimme, 2011; Grimme et al., 2016) is often the choice of
usechosen. Meanwhile, QM:MM model pairs the QM approach
for the high-level method and classical MM for low-level periodic
calculations.

However, there are some drawbacks that are inevitable upon
fragment partitioning. Fragmentation destroys the hydrogen bond
cooperativity and impacts the dispersion and induction of many-body
interactions. To circumvent this deficiency, the DFT embedding
scheme needs to be introduced to mimic interaction between the
fragments. The embedding formalism is non-trivial, since it implies an
embedding potential common to all subsystems, and therefore it
reflects the influence of the environment of the system’s nearest
neighbors.

This Research Topic of articles will accustom readers with the
leading-edge advances in the performance and development of
fragment-based methods. Topics covered in this issue encompass
a variety of QM-based methods, such as time-dependent density
functionals (TD-DFT), embedded-cluster models, and many-body
molecular interactions in molecular solids.

In the first paper by Hartman et al., a molecular correction (MC)
approach to the gauge-including plane augmented wave (GIPAW)
method is used to calculate electric field gradients (EGF) in molecular
solids. It combines the benefits of periodic calculations and single-
molecule techniques in the context of electric field gradients (EFG)
tensors in molecular solids, which are used to derive nuclear
quadrupolar coupling constants and anisotropy parameters.
Applying molecular corrections to periodic DFT calculations of
NMR parameters of molecular crystals, the authors benchmark the
performance of several basis sets and DFT functionals on a relatively
large set of crystals, which is important for a sufficient statistical
significance of the results. The results of an extensive set of
calculations show a noticeable improvement in the calculated
NMR observables by including the molecular correction, with
minor changes relative to basis set.

In the second paper, Shen et al. tested the performance of
another fragment-based method - the electrostatically embedded
generalized molecular fractionation with conjugate caps (EE-
GMFCC). The efficiency of the EE-GMFCC scheme has been
proven for the excited state description of the fluorescent RNA
aptamer systems. Their results evidenced that EE-GMFCC
calculations, which are one order of magnitude faster, are in
excellent agreement with the properties of excited state obtained
by traditional full-system time-dependent ab initio calculations for

so complicated systems. That allowed to describe properties of
different fluorescent RNA-aptamer systems.

In the third study, Larsson and Veryazov present the
convergence of the electron density with regard to the size of
the embedded clusters of MgO and Ni-doped MgO ionic crystals.
The main focus of the paper is on the quality of an embedding
protocol for ionic oxides and comparison of periodic and cluster
calculations.

The branch of fragment-based electronic structure methods
invoked to treat solid-state materials is very large and diverse,
and this special research selection elucidates only a small part
number of manifold applications and recent developments in this
Research Topic. Nevertheless, we hope that the selected papers will
contribute to further development of fragment-based methods and
lead to relevant insights into the balance between accuracy and
computational cost, serving as a valuable benchmark for the
embedded approaches.
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