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We describe the first classic example of green synthesis of pyrrolo[3,4-c]
quinolones scaffolds by catalyst-free unusual reaction of diketene, isatin, and
primary amines in ethanol in the presence of pyrazole as a promoter for 4 h. The
whole structure of the new product was confirmed by X-ray analysis. The overall
transformation involves the cleavage and generation of multiple carbon-nitrogen
and carbon-carbon bonds. This report represents a simple and straightforward
approach for the synthesis of pyrrolo[3,4-c]quinoline-1,3-diones, which has
significant advantages like readily available precursors, non-use of toxic
solvent, operational simplicity, mild conditions, good atom economy, and
excellent yields; therefore it provides a green and sustainable strategy for
access to a range of interesting N-containing heterocyclic compounds in
medicinal and organic chemistry.
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1 Introduction

Quinolines have received lots of attention from biologists and chemists as they are
significant elements in the synthesis of dyes, fragrances, and natural products with biological
activities (Michael, 2001; Michael, 2002; Michael, 2003; Michael, 2004; Michael, 2005;
Michael, 2007; Michael, 2008; Isaac-Márquez et al., 2010; Cai et al., 2011; Russ et al., 2012). In
pharmaceuticals, they have been outlined as, antibiotic (Mahamoud et al., 2006), anticancer
(Insuasty et al., 2013; Sun et al., 2013), anti-inflammatory (Leatham et al., 1983), antimalarial
(Nasveld and Kitchener, 2005), antihypertensive (Muruganantham et al., 2004), anti-HIV
(Strekowski et al., 1991; Wilson et al., 1992), inhibition of Platelet-derived growth factor
(PDGF) (Maguire et al., 1994), and anti-tuberculosis (Lilienkampf et al., 2009) agents. In
other words, pyrrolidones are also typical buildings in several important categories of
bioactive compounds (Jouyban et al., 2010; Kato and Nagao, 2012). Molecules bearing a
pyrrolidone structure, are used in dye-sensitized solar cells and several natural products with
biologically activeties (Daly et al., 1999; Dewick, 2009; Ikai et al., 2012). For instance, arcyria
rubin A and its derivatives show potent antiviral activities (KIM et al., 1995; Slater et al.,
1995), antimicrobial (Mahboobi et al., 2006), and powerful protein kinase C inhibitors
(Davis et al., 1992).

The merger of these outstanding heterocycles, pyrrolidone, and quinolone is promising
classes of pharmaceutical frameworks with antifungal (Chen et al., 2004), anti-inflammatory
(Kategaonkar et al., 2010), anticancer (Eswaran et al., 2010), anti-tuberculosis (Tseng et al., 2010),
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anti-Alzheimer (Tseng et al., 2009), anti-HIV, anti-hypertension, and
anticancer activities (Camps et al., 2009; Sharma et al., 2018). They also
have inhibitory activities versus hepatitis C virus (HCV) polymerase
(Thomas and Tallman, 1981; Summa et al., 2009), ADAMTS-5 (A
disintegrin and metalloproteinase with thrombospondin motifs 5) and
ADAMTS-4 (A disintegrin and metalloproteinase with
thrombospondin motifs 4) (Sharma et al., 2008; Cappelli et al., 2010).

In this regard, the pyrrolo[3,4-c]quinoline-1,3-dione segment (1)
exhibits a perfect range of pharmacologically and biologically enjoyable
activities (Figure 1) (Okun et al., 2006a; Okun et al., 2006b; Segura-
Cabrera et al., 2011; Mollin et al., 2012). For example, pyrrolo[3,4-c]
quinoline (2) is a potent inhibitor of caspase-3 (Kravchenko et al.,
2005a), which plays a clef role in apoptosis (Porter and Jänicke, 1999;
Hentze et al., 2003). Caspases are interesting goals for therapeutic
intervention in neurodegenerative, cardiovascular and metabolic
disorders (Lockshin et al., 1998; Lockshin and Zakeri, 2004). In
particular, caspase-3 inhibitors have been reported as powerful

hepatoprotectants (Lockshin et al., 1998; Hoglen et al., 2001; Segawa
et al., 2001; Lockshin and Zakeri, 2004; Meki et al., 2004),
cardioprotectants (Chapman et al., 2002; Isabel et al., 2003), and
neuroprotectants (Scott et al., 2003). Also, compound (3) has
inhibitory activity against HCV polymerase (Di Francesco et al.,
2009). Furthermore, alpkinidine (4) has shown potent therapeutic
efficacy in vivo in HCT-116-bearing mice (Valeriote et al., 2012).

Because of broad applications in medicinal chemistry, the
synthesis of these fused interesting heterocycles has specific
importance to the pharmaceutical and organic chemists. Newly,
there has been increasing attentiveness in the construction of
pyrrole-fused-quinolines, and various procedures have been
reported. Main synthetic approaches include Lewis acid-catalyzed
electrophilic cyclization (Aggarwal et al., 2012), copper (Kiruthika
et al., 2014) and palladium-catalyzed (Chai and Lautens, 2009;
Shukla et al., 2012; Kiruthika et al., 2014) reactions, DDQ-
mediated intramolecular cyclization (Wald et al., 1980),

FIGURE 1
Bioactive pyrrolo[3,4-c]quinoline-2-ones.
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allene-based reaction cascades (Baumann and Baxendale, 2015),
photo substituted reactions and flash vacuum pyrolysis. Although
the majority of synthetic plans were applied for the synthesis of
pyrrolo[3,2-c]quinoline and pyrrolo[1,2-a]quinoline analogs. Few
synthetic relate have been released on the synthesis of pyrrolo[3,4-c]
quinolones, and only multi-step synthetic methods are known
to date.

In this matter, there are notable examples based on the cyclo
condensation of b-keto amides and 2-amino-5-fluorophenyl
glyoxylic acid (Ivachtchenko et al., 2003), Pfitzinger reaction
(Mortoni et al., 2004; Kravchenko et al., 2005b), the one-pot two-
component method by DMAP-catalyzed (Avula et al., 2013), the
BF3Et2O-catalyzed isocyanide-based cycloaddition reaction (Li
et al., 2013), and microwave-assisted reaction methods (Xia et al.,
2014), which all are multi-step reactions (Scheme 1). However, these
procedures are limited by low yields, harsh reaction conditions, the
long reaction time, and their complexity.

Multicomponent reactions (MCRs) have become
increasingly popular as a simple and powerful tool for the
rapid formation of new scaffolds from simple starting
materials with structural diversity and molecular complexity
in a convergent manner (Mashayekh and Shiri, 2019; Sedighian
et al., 2021). MCRs are one-pot strategies exploiting three or
more simple substrates where most of the reactant atoms are
incorporated into the final desired product (Chen et al., 2017;
Kurhade et al., 2019; Shiri and Aboonajmi, 2020; Yavari and
Safaei, 2020). In comparison to the traditional multistep
sequential assembly of target compounds, MCRs manifest
several advantages including easy handling, selective bond
formation, time-saving, high atom economy, fewer
purification steps and structural variability (Younus et al.,
2021; Shiri et al., 2022).

Due to our experience and interest in the synthesis of novel
heterocycles, we became engrossed in how Knoevenagel product
obtained from isatine and pyrazole could be in situ trapped by keto
amides resulting from diketene and primary amines to give a
heterocycle product. We considered the utilization of diketene as
starting material and reagent because it is extensively used for the
generation for a diverse range of different heterocycles. For this
purpose, in continuation of our successive attempts towards the
synthesis of heterocycles by multicomponent strategies, (Rezvanian
et al., 2018a; Talaei et al., 2018; Rezvanian et al., 2020a; Rezvanian
et al., 2020b), especially using diketene reactions (Alizadeh et al.,
2012; Rezvanian, 2015; Rezvanian, 2016; Rezvanian et al., 2017;
Rezvanian et al., 2018b; Rezvanian et al., 2019; Rezvanian et al.,
2020c; Rezvanian et al., 2020d; Rezvanian et al., 2020e; Rezvanian
et al., 2021a; Rezvanian et al., 2021b), we herein explain an efficient
approach to synthesize pyrrolo[3,4-c]quinoline-1,3-diones 7 from
the reaction of isatin, diketene, and primary amines based on the
unique reactivity of pyrazole as a promoter in high yields
(Scheme 3).

2 Experimental section

2.1 Instrumentation, analyses, and starting
materials

The diketene, various amines, hydrazine, Hydrate, ethyl
acetoacetate, and isatines were obtained from commercial sources
with high purity. The 1H NMR and 13C NMR spectra were run on a
Bruker spectrophotometer at 300/500 and 75/125 MHz respectively.
Coupling constants are reported in Hz. All mass spectra were
measured on a mass spectrometer (Agilent5973 Network) at the

SCHEME 1
Multi-step; synthesis of pyrrolo[3,4-c]quinoline derivatives.
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ionization potential of 70 Ev. The IR spectra were recorded by
BRUKER TENSOR 27 FT-IR instrument.

2.2 General procedure for the synthesis of 3-
methyl-pyrazole-5-one

Hydrazine hydrate 70% (2 mmol) was added to ethyl
acetoacetate (1.4 mmol) and was treated at room temperature
without solvent. After 30 min, the product was precipitate and
filtered, and washed with a few drops of water, and pyrazole was
obtained as a white crystal dried and used for further steps.

2.3 General procedure for the synthesis of
structurally diverse pyrrolo[3,4-c]quinoline-
1,3-diones 7

To a round-bottom flask (25 mL), the following were added;
pyrazole (1.0 mmol), isatin 5 (1.0 mmol), diketene (1.0 mmol),
primary amine 6 (1.0 mmol); and the reaction mixture was
stirred at reflux for approximately 4 h and monitored by TLC
until the substrates were wholly consumed. Upon the formation
of the desired product 7, the product was precipitated, filtered,
and washed with a few drops of EtOH, and the target compound 7
was obtained as a yellow solid with excellent yield (73%–90%).
Post separating product 7, the reaction mixture was cooled to
20°C–25°C, and upon cooling the reaction mixture and
evaporation of the solvent, the sediment solid was filtered and
washed with ethanol, and finally the pyrazole was obtained again
with 81% yield.

3 Results and discussion

At the outset of our investigation, the reaction of hydrazine,
ethyl acetoacetate, isatine 5, diketene, and primary amine 6 in the
lack of any catalyst at room temperature was designed. To study
this new process, isatin 5a, ethyl amine 6a, and ethyl acetoacetate
were selected as model reactions (Scheme 2). In this route, firstly,
hydrazine (1 mmol), ethyl acetoacetate (1 mmol), and isatin 5a
(1 mmol) in ethanol (4 ml) were stirred at room temperature for
1 h, which afforded the Michael adduct 8a. Next, ethylamine 6a
(1 mmol) and diketene (1 mmol) were added to the reaction
mixture. The advance of the reaction was followed by TLC

(1-6 ethyl acetate-hexane). Unfortunately, no product was
obtained at room temperature after 48 h (Table 1, entries 1).
However, when the mixture reaction was heated at 70°C
gratifyingly, we observed that the acceptable product was
formed in an isolated yield of 84% within 5 h (Table 1, entry
2). Upon the construction of the desired outcome, immediately the
precipitated solid was filtered off, washed with ethanol, and
crystallized from hot ethanol in excellent yield. Amazingly,
instead of the expected spiro pyridine product 11 (Scheme 4),
we observed an unanticipated process leading to pyrrolo[3,4-c]
quinolone 7a in excellent yield (Scheme 2). On the other hand,
post-workup product 7a, the solvent was evaporated. We observed
the precipitated white solid of pyrazole (from hydrazine and ethyl
acetoacetate) slowly settling in which it was filtered and washed
with water. The absolute structure of the newly synthesized
product 7a was explicitly confirmed by X-ray analysis.

Then, in a controlled testing, the reaction of this five-
component manufacturing process proceeds in the absence of
pyrazole resulting from hydrazine and ethyl acetoacetate in
which the effect of pyrazole was evaluated for this reaction.
We concluded that the response could not advance without
pyrazole under these conditions, and when the reaction
mixture was carried with pyrazole (1 mol), the objective
compound 7a obtained an 84% yield. Also, the change in
amounts of pyrazole was explored for the reaction. The best
result (90%) of the product was formed when (1 mol) of the
pyrazole was exploited. By decreasing the amount of pyrazole to
(0.7 and 0.5 mol), the development was accomplished at 35% and
27%, and it was observed that increasing the pyrazole loading had
a considerable effect on the formation product. However, without
using pyrazole, the reaction failed to develop even after 48 h.

Thus, to increase the yield of pyrrolo[3,4-c]quinoline-1,3-dione
7a and minimize reaction time, four-component reactions between
isatin 5a, pyrazole, diketene, and ethylamine 6a were designed
(Table 1), because of the success achieved using pyrazole
promoted response. We found pyrrolo[3,4-c]quinoline-1,3-dione
7a as the only product when the reaction mixture was composed
of a 1:1:1:1 variety of compounds.

In this reaction, solvent and temperature were examined to
optimize the reaction conditions. Due; to the impossibility of
carrying out the reaction at ambient temperature, the response
was performed under reflux conditions. Also, it was observed
that increasing the temperature above 70°C has no significant
effect on the product yield. Despite obtaining good results,
organic solvents did not improve much compared to water,

SCHEME 2
Synthesis of pyrrolo[3,4-c]quinoline-1,2-dione 7a.
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including acetonitrile, methanol, water, water/ethanol, and
tetrahydrofuran). Therefore, all reactions were performed under
reflux conditions at 70°C in water to give satisfactory and excellent
results.

Reaction conditions: pyrazole (1.0 mmol), isatine 5a (1.0 mmol),
diketene (1.0 mmol), ethyl amine 6a (1.0 mmol), solvent (4.0 ml).
[b] Isolated yield.

Having identified the best available conditions, to explore the
efficiency and generality of this approach, the reactions between
another isatine 1 and primary amines 2 were conducted, and the
outcomes are shown in Scheme 3. The corresponding
functionalized pyrrolo[3,4-c]quinoline-1,3-diones 7 were
obtained in excellent yields at 70°C in ethanol in the presence

of pyrazole (1 mmol) as a promoter. Various primary amines (6a-
f) reacted with isatines to generate corresponding pyrrolo[3,4-c]
quinoline-1,3-diones 7a-h.

The skeleton of all synthetic compounds 7a-h was elucidated
by ESI-MS, IR, 1HNMR, 13CNMR spectroscopy, and X-ray
analysis. FTIR of 7a exhibited absorption bands in 1764, 1705,
and 1622 due to the two CO and C=N stretching frequencies. In
the 1H-NMR spectrum of 7a, triplet and quartet in δ = 1.31
(3JH-H = 7.2 Hz) and δ = 3.77 (3JH-H = 7.2 Hz) ppm are due to CH3

and CH2 groups. The Singlet peak in δ = 3.01 is due to the CH3

group. Also the signals in the aromatic section confirmed the
presence of the four aromatic hydrogens of the aromatic ring.
The presence of 14 apparent signs in the 13C-NMR spectrum is in

SCHEME 3
Scope; of the reaction.a,b.a[a] The reaction was performed at 70°C with 1 equivalent of substrates. [b] The new pyrrolo[3,4-c]quinoline-1,3-diones
were afforded (see the Supporting Information).
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accordance with the suggested structure of 7a. The highlighted
areas in the 13C NMR are due to two CH3, two CH2, and two C=O
groups, which are evident at δ = 13.94, 22.03, 33.01, 168.06,
168.33 ppm. Single crystal X-ray crystallography structure of 7b
was certified as the product structure (Figure 2).

This reaction is a particular case, and a probable tool is
illustrated in Scheme 4 for the generation of compound 7. It
is advisable to suggest that the first stage starts via a
Knoevenagel-type condensation of isatine and pyrazole to
provide the intermediate 8 as the Michael acceptor. Then,

SCHEME 4
A plausible mechanism for the formation of the product 7.
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nucleophilic attack of the amine to diketene and ring-opening of
diketene pursue by proton transfer to give β-ketoamide 9. After
the formation of adduct 8, nucleophilic addition enol form 10 on
the Michael acceptor 8 afforded intermediate 11 via Michael
addition. At this stage, attending to the preceding articles, we
expected adduct 11 with O-cyclization, attacking the carbonyl
group, and tautomerization to give the desired heterocyclic
compound 13. But contemplating X-ray diffraction and 1H
and 13C NMR spectra, product 12 was not formed, and

another extraordinary incident happened. In truth, in this
step, nucleophilic addition of the enol form 10 is followed the
elimination of pyrazole to give 14 via proton transfer. Then, in
intermediate 14, with an intramolecular cyclization via
N-nucleophilic attack of the amide group and proton transfer
to form middle 15, ring opening and proton transfer gives the
medium 17. Finally, nucleophilic attack of the amine 17 to C=O
bond, intramolecular cyclization to form middle 18, elimination
of H2O, and deprotonation product 7 are created.

FIGURE 2
ORTEP; diagram of 7b.

TABLE 1 Examining; optimum reaction conditions.

Entry Solvent Temp. (˚C) Time (h) Yield (%)b

1 Ethanol (4 mL) r.t. 48 -

2 Ethanol (4 mL) 70 4 90

3 Ethanol (4 mL) 80 4 90

4 Acetonitrile (4 mL) 70 12 45

5 Methanol (4 mL) 70 8 33

6 Water (4 mL) 70 8 52

7 Water/ethanol (4 mL) 70 5 60

8 Tetrahydrofuran(4 mL) 70 12 30
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4 Conclusion

As a result, we have described an unusual three-component
reaction to construct novel molecules containing a pyrrolo[3,4-c]
quinoline-1,3-dione core from readily available reagents of pyrazole,
isatine, diketene, and primary amine in ethanol. The most significant
aspects of the process are the accessibility of the starting precursors,
mild reaction conditions, short reaction times, high yields of the
synthesized products, and easy operation at the manufacturing scale.
The overall process of reaction includes all the aspects of green
chemistry and has new portals for the growth of more sustainable
multicomponent reactions. This category of heterocycles with several
pharmacophores may be interesting for medicine and pharmacology.
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