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A new class of liquid crystalline materials, 4-(2,5-dioxo-2,5-dihydro-1H-pyrrol-1-
yl)phenyl 4-(alkoxy)benzoates (Mn), derived from maleic anhydride, was
synthesized and studied for mesomorphic and optical properties. These
materials consist of three derivatives with varying terminal flexible chain
lengths (6–12 carbons) linked to the phenyl ring near the ester bond. The
study employed differential scanning calorimetry and polarized optical
microscopy (POM) to characterize the mesomorphic properties. Molecular
structures were elucidated using elemental analysis, FT-IR, and NMR
spectroscopy. The findings reveal that all the synthesized maleic anhydride
derivatives exhibit enantiotropic nematic (N) mesophases. The insertion of the
heterocyclic maleic anhydride moiety into the molecular structure influences the
stability and range of the N phase. Additionally, entropy changes during
N-isotropic transitions are of small magnitude and exhibit non-linear trends
independent of the terminal alkoxy chain length (n). This suggests that the
ester linkage group does not significantly promote molecular biaxiality, and the
clearing temperature values are relatively high. By comparing the investigated
materials with their furan derivatives found in existing literature, it was established
that the substitution examined in this study induces the formation of nematic
phases.
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1 Introduction

Today, all types of display devices, including computer and laptop displays, TVs, clocks,
visors, and navigational systems, use liquid crystals. When a substance is in a liquid crystal
state, it possesses characteristics of both liquids and crystals. Their novel optical, electrical,
and mechanical features have garnered a lot of interest. Each liquid crystal assembly that
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makes up a display pixel is governed by its own electromagnetic
field. The field modifies the liquid crystals’ orientation, which alters
how much light can pass through them and result in the images you
see on a screen (Alamro et al., 2021; Gomha et al., 2021; Abdou et al.,
2022; Alamro et al., 2022; Chi et al., 2022; Uchida et al., 2022; Wang
et al., 2022; Yin et al., 2022; Behera et al., 2023; Ma et al., 2023).

The greater coast and lower conversion efficiency of solar energy
now restrict its application. One of the most crucial areas to
investigate for cutting costs and boosting conversion efficiencies
in solar systems is the performance of several basic organic
derivatives (Zhang et al., 2018; Li et al., 2019). Solar energy
applications such catalytic photodegradation of dyes, solar
hydrogen generation, photo-electrochemical water splitting, and
solar cells rely heavily on band gap engineering and optical
property management (Ahmed et al., 2020).

In recent times, maleimides have gained recognition as significant
pharmacophores and have assumed a crucial role as medicinal agents,
exhibiting diverse biological activities. These activities encompass
antibacterial properties (López et al., 2003), analgesic effects (Mahle
et al., 2010), antistress attributes (Badru et al., 2012), antiprotozoal
capabilities (Dürüst et al., 2012), antiangiogenic functions (Acero et al.,
2012), as well as cytotoxicity, DNA binding, and apoptotic inducing
activity (Alaa, 2007a). Various derivatives of maleimides have been
identified as selective inhibitors of specific enzymes, including
monoglyceride lipase (Matuszak et al., 2009), GSK-3a (Sivaprakasam
et al., 2006), Cdc25B (Chen et al., 2010), Bfl-1 (JCashman et al., 2010),
and DNMT-1 (Suzuki et al., 2010). The synthesis and biological
evaluation of N-aryl maleimide analogs have been extensively
explored. N-aryl maleimides serve as the structural framework for
numerous natural products such as polycitrin (Burtoloso et al., 2006)
and camphorataimides (Stewart et al., 2007). Maleimide and its
derivatives are synthesized from maleic anhydride through a process
involving treatment with amines followed by dehydration (Birkinshaw
et al., 1963). Maleimide derivatives exhibit significant appeal in terms of
their chemical reactivity. They participate in fascinating reactions like
Diels–Alder reactions with dienes and nucleophilic Michael-type
additions of thiols or amines to the vinylene moiety. The
unsaturated imide serves as a crucial building block in organic
synthesis. Moreover, maleimide encompasses a group of derivatives
derived from the potent maleimide, wherein the NH group is
substituted with alkyl or aryl groups such as methyl or phenyl,
respectively. Additionally, the vinylene group within the maleimide
moiety, featuring a 1,2-disubstituted ethylene structure, can undergo
polymerization with radical or anionic initiators. This process yields a
polymer with exceptional thermostability or heat-resisting properties,
which can be further copolymerized with vinyl acetate (A et al., 2014).

The addition of a fused-heterocycle moiety to the molecular structure
has been thoroughly examined in the quest to create new mesogenic
cores, and the results show a variety of novel mesomorphic features
(Han, 2013; Ghosh and Lehmann, 2017). In addition to increasing the
species of liquid crystals, the addition of heteroatoms like nitrogen,
sulphur, and oxygen also has a significant impact on the thermal and
geometrical properties of the materials under investigation (Seed, 2007;
Ha et al., 2010; Tariq et al., 2013; Merlo et al., 2018; Yeap et al., 2018;
Weng et al., 2019a; Weng et al., 2019b; Ren et al., 2019). Insertion of
fused-aromatic rings into a central or terminal structural shape alters
the dielectric constant, polarizability, geometry, and mesophase
transition temperatures (Seed, 2007; Ha et al., 2010; Tariq et al.,
2013; Merlo et al., 2018; Yeap et al., 2018; Weng et al., 2019a; Weng
et al., 2019b; Ren et al., 2019; Nafee et al., 2020a). Compounds contain
imide groups, whether small molecules or macromolecules, display
impressive electrical properties, favorable solubility in polar substances,
resistance to hydrolysis, and high thermal stability (Bharel et al., 1993;
Iijima et al., 1995; Langmuir et al., 1995; Hamper et al., 1996; Ohkubo
et al., 1996; Bojarski et al., 2004; Alaa, 2007b; Mohammed and
Mustapha, 2010a). These exceptional characteristics have prompted
significant efforts to develop various imide-containing compounds
composed of two carbonyl groups bonded to a nitrogen atom. The
conventional method for synthesizing cyclic imides without
substitutions involves heating dicarboxylic acids or their anhydrides
with reactants such as ammonia, urea, formamide, lithium nitride, or
primary amines (Handley et al., 1960; Gordon and Ehrenkaufer, 1971;
Połoński et al., 2000; Wu et al., 2003). However, this reaction
necessitates high temperatures to ensure efficient ring closure.

New classes of materials, liquid crystalline thermosets (LCTs)
bring together the best qualities of thermotropic LC polymers and
traditional thermosets. The network structures of these materials are
made up of rigid-rod or extended chain segments that are cross-
linked in three dimensions. Increased processability, higher glass
transition temperatures, greater dielectric strength, and less
shrinkage during curing are only a few of the benefits of LCTs
(Lee et al., 2002; Jang and Bae, 2005; Cho et al., 2006). Additionally,
they exhibit noteworthy qualities such as extremely low dielectric
constants and dissipation factors, exceptional performance at high
temperatures, chemical resistance, inherent flame retardance (Lee,
2006; Wang and Jiang, 2006), and low coefficients of thermal
expansion (CTEs). These unique properties make LCTs highly
desirable for advanced electronic applications. Moreover, efforts
have beenmade to reduce the CTEs of LCT films in order to mitigate
thermal stress in electronic laminates used in microelectronic
applications (Hasegawa and Tominaga, 2005; Hasegawa et al.,
2006; Morita et al., 2006). Functionalized rigid-rod oligomers or
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monomers are cross-linked in the mesophase to form either an
isotropic or anisotropic network structure; these materials are
known as thermotropic liquid crystals (LCs). Some thermotropic
LCTs have been reported to possess cross-linkable units as end
groups. Various functional units have been utilized as such end
groups, including maleimide (Hoyt et al., 1990a), nadimide (Hoyt
et al., 1990b), epoxy (Domszy and Shannon, 1990; Mallon and
Adams, 1993; Carfagna et al., 1994a; Carfagna et al., 1994b; Carfagna
et al., 1997), isocyanate (Mormann and Zimmermann, 1995), and
acetylene (Langlois et al., 1994; Benicewicz et al., 1997; Gavri et al.,
2001). Due to the importance of intermolecular interactions between
mesogens in formation the liquid crystal phase, this characteristic is
essential for the production of ordered structures in liquid crystals.
Additionally, the aromatic rings also engage in - stacking
interactions, which further improve the mesogen’s ordering
capacity.

The purpose of this research, which is a continuation of our
earlier work, is to create new derivatives of the terminal heterocyclic
moiety, specifically 4-(2,5-dioxo-2,5-dihydro-1H-pyrrol-1-yl)
phenyl 4-(alkoxy)benzoates, Mn. An ester linkage with a phenyl
ring connected to various lengths of alkoxy groups and the other
terminal is the maleic anhydride moiety. The project also aims to
examine the mesomorphic and optical characteristics of the current
system and investigate the impact of changing the flexible chain’s
terminal length on their mesomorphic interaction.

2 Results and discussion

2.1 Synthesis

The process used to create the titled Mn compounds involves
two sequential steps. It begins with synthesizing 1-(4-
hydroxyphenyl)-1H-pyrrole-2,5-dione 3 by combining 4-
hydroxyaniline 2 with maleic anhydride 1 as previously reported
(Mohammed and Mustapha, 2010a). Next, compound 3 is
transformed into the desired 4-(2,5-dioxo-2,5-dihydro-1H-pyrrol-
1-yl)phenyl 4-(alkoxy)benzoates by reacting it with 4-alkoxybenzoic
acid 4 in dry methylene chloride, along with N,N′-
dicyclohexylcarbodiimide (DCC) and catalytic amounts of 4-
dimethylaminopyridine (DMAP) (Scheme 1). The structure of
compounds Mn was confirmed using elemental analyses and
spectral data, including IR, 1H NMR, 13C NMR and MS.

2.2 Spectroscopic analysis

The 1H-NMR data provided essential structural information
about the synthesized compounds Mn, confirming the successful
synthesis of the intended product and the presence of characteristic
functional groups. The 1H-NMR spectrum (300 MHz, CDCl3) of
compoundM6 exhibited distinct peaks at δ/ppm values. The signals
at 0.73–0.80 ppm were attributed to a triplet (t) representing the
presence of three equivalent methyl protons (CH3). Additionally, a
multiplet (m) pattern between 1.22 and 1.43 ppm indicated six
protons arising from the aliphatic chain (CH3(CH2)3CH2CH2O-).
Two more protons of this chain resonated as a multiplet in the range
of 1.70–1.76 ppm. A triplet at 3.79–4.04 ppm corresponded to two

protons associated with the methylene group of the aliphatic chain
(CH3(CH2)3CH2CH2O-). In the aromatic region, three distinct
doublets (d) were observed at 7.15, 7.24, and 7.37 ppm, each
representing two protons of the aromatic ring. Additionally, a
sharp singlet (s) appeared at 7.74 ppm, indicating the presence of
two protons from the pyrrole moiety. Finally, another doublet at
8.12 ppm accounted for two protons of the aromatic ring.

Moreover, the 13C-NMR data provided valuable insights into the
structural features of the unknown compounds, confirming the
successful synthesis of the desired molecule and supporting its
potential application in various biological and chemical studies.
The 13C-NMR spectrum (75 MHz, CDCl3) of compound M6
exhibited distinct peaks at various chemical shifts. The signal at
14.0 ppm were assigned to the methyl (CH3) group, while the peaks
at 23.8, 25.6, 29.57, 31.0, and 68.2 ppm corresponded to the
methylene (CH2) groups in the molecule. The resonances
observed at 116.2, 121.5, 123.0, 127.9, 130.2, 131.5, 136.0, and
147.5 ppm were attributed to the aromatic carbon atoms (Ar-C)
and the carbon-nitrogen (C=N) groups present in the structure.
Additionally, signals at 161.6 ppm indicated the presence of
conjugated double bonds involving aromatic carbons and C=N.
Moreover, the signals at 163.1 and 166.3 ppm were attributed to the
two carbonyl (C=O) carbon atoms.

Additionally, the infrared spectrum (IR) spectral data provide
valuable insights into the molecular structure and functional groups
present in the compound, aiding in its characterization and potential
application in various fields. The infrared spectrum of compound M6
recorded in KBr disc displayed characteristic vibrational bands at
v3041 cm-1, corresponding to (=C-H) stretching vibrations, and at
2928 cm-1, attributed to (-C-H) stretching vibrations. Additionally, two
prominent peaks were observed at 1686 cm-1 and 1729 cm-1, indicating
the presence of two carbonyl groups (2 C=O) within the molecule.
Furthermore, a peak at 1605 cm-1 was observed, which can be
attributed to the stretching vibration of the carbon-nitrogen double
bond (C=N), while a band at 1571 cm-1 signifies the presence of
carbon-carbon double bonds (C=C).

Finally, the MS data provides valuable insights into the
fragmentation pattern and molecular structure of compound Mn,
aiding in its characterization and identification for further studies
and potential applications. The results of the mass spectrometry (MS)
analysis of compound M6 revealed a molecular ion peak at m/z 393,
corresponding to the intact molecular weight of the compound (M+).
Another significant peak at m/z 307 was observed with 100% relative
intensity, likely resulting from the loss of the hexyl group (C6H13) from
the parent molecule. Moreover, the peak at m/z 292 (71%) suggests the
further fragmentation of the compound. Other notable peaks included
m/z 231 (63%) indicating possible fragmentation involving the phenyl
pyrrole moiety, m/z 189 (38%) suggesting the loss of both the hexyl and
phenyl pyrrole moieties, and m/z 162 (81%) representing a common
fragment found in the MS analysis.

2.3 Mesomorphic examinations

DSC and POMmeasurements have been used to examine the phase
transitions and optical properties of the synthesized Mn derivatives
under investigation. Figure 1 shows an example of a representative DSC
thermogram for the proposed compound M12 after heating and
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cooling cycles. It is clearly shown that upon heating, the compound
M12 showed two endotherms characteristic of the crystal–N and
N–isotropic transitions. While, during the cooling cycle, the
compound exhibits nematic phase but its freezing transition
temperature is shifted to lower temperature. DSC measurements
show two transition peaks that change depending on the Mn
structural form of the produced materials. Additionally, for all chain
lengths (n), the mesomorphic transfers from Cr to N upon heating and
N to I upon cooling. According to the attached terminal flexible chain
length moiety, which is associated with the mesomorphic interaction,
significant endothermic and exothermic peaks were seen, and the
cooling cycle corroborated those peaks when the temperature was
lowered. The results of the DSC were verified by optical textures
under POM. The POM measurements revealed textures which
confirmed N mesophases. Figure 2 showed how the M12 images
were derived. Table 1 provides an overview of the mesomorphic
transition temperatures and corresponding enthalpies for all the
synthesized maleic anhydride derivatives, Mn, as determined by
DSC analysis. Figure 3 shows their relationships in order to explore
how the length of the terminal alkoxy chain (n) affects the
mesomorphic behavior of produced compounds. Table 1 and
Figure 3 showed that the mesomorphism of all synthesized
members of the maleic anhydride derivatives Mn, as well as their
high mesomorphic thermal stability and good mesophase range, are
reliant on the length of their terminal flexible chains. Additionally, all
investigated molecules of Mn series have a pure N phase and are
enantiotropic. Additionally, Table 1 and Figure 3 show that the melting
point of compounds varies arbitrarily with chain length (n). The
member with the shortest terminal length (M6) has the highest
nematic thermal stability and enantiotropic N phase at temperatures
of 153.9 and 46.4°C, respectively. While the range and nematic stability
of the compound M8 are around 144.6 and 27.4°C, respectively.
Enantiotropic N mesophase with nematogenic stability and a range
of nearly 132.9 and 20.2°C is also present in theM10 derivative. Finally,
compared toM8 andM10, the derivative with the greatest chain length

(M12) has a higher mesomorphic range (33.5 C) and weaker thermal N
stability (126.8°C). In general, the electronic properties of the terminal
substituents have a significant influence on the molecular architecture,
polarizability, and dipole moment of the proposed materials.
Additionally, an increase in the polarity and/or polarizability of the
molecular mesogenic cores has an impact on the mesomorphic nature.
The examined homologue’s mesomorphic range expanded in the
following order: M6 > M12 > M8 > M10. How molecular-
molecular interactions affect the mesomorphic behavior of rod-like
molecules depends on the geometrical form of the polar terminal
groups and the heterocyclic moieties in the molecule (Nafee et al.,
2020b). The present prepared group exhibited purely N mesophases,
and the N phase stability decreased with n. The interaction between the
mesogenic units was reduced as the chain length increased, lowering the
N-I transition temperature. The observations of mesomorphic qualities
are the result of the sharing of these factors to various degrees. The kind
of the observed mesophase is mostly determined by the end-to-end
aggregation caused by the oxygen of the alkoxy chain, the ester carbonyl
moiety, and the side-by-side cohesive interactions between molecules
(Gray, 1962; Luckhurst and Gray, 1979). In general, mesophase stability
is enhanced by increasing the polarizability and/or polarity of the entire
mesogenic component of the molecule. Although the rod-shaped
molecule is less rigid, the increased anisotropic features improve
mesophase stability (Yelamagg et al., 2007; Pradhan et al., 2017;
Nayak et al., 2019; Sunil et al., 2020). An increase in the alkoxy
terminal chain is also projected to reduce stability by diluting the
mesogenic core.

2.4 Entropy changes

Entropy is a crucial factor that must be taken into account while
engineering phase transition temperatures. As a result, it is essential
to concentrate more on thermodynamic factors in order to create
alternative plans for lowering melting and clearing temperatures to

SCHEME 1
Synthesis route of title compounds Mn.
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levels that complex mesogens can tolerate. Since G = 0, phase
transitions are often order-disorder transitions for which H = TS.
As a result, the transition entropies can be obtained from the
estimated transition enthalpies obtained using differential
scanning calorimetry. These are undoubtedly produced as a
result of interaction energy attenuation.

Sorai and Saito observed, The alkyl chain can acquire a
substantial amount of entropy during disordering, which changes
the relative thermodynamic stability of aggregated states (Sorai and

Saito, 2003). These chains are incredibly mobile in liquid crystals
and act as a sort of solvent. They also explained how the type of
phase affects how ordered aliphatic chains are. For instance, the
chains have a tendency to be more ordered in lamellar phases
compared to cubic bicontinuous phases, whereas the mesogen
cores are more disordered in lamellar phases and ordered in
cubic phases. Entropy from the chain reservoir can therefore be
transported to the core in the scenario where cubic bicontinuous
phases change into a lamellar phase. In general, phase transition
temperatures can be engineered using the substantial entropy
change that results from increasingly ordered chains sequentially
increasing entropy until they reach their full degree of freedom in
the isotropic phase. Low melting temperatures were ensured by the
significant entropy changes at the crystal-liquid crystal transitions of
various kinds of mesogens.

Table1 lists the normalized transition entropy changes, or ΔSN-I/
R, of the currently studied homologues (Mn). The results

FIGURE 1
DSC thermograms of M12 recorded from the second heating and cooling scans at rate ± 10°C/min.

FIGURE 2
Textures observed under POM for compoundM12 of (a) N phase
at 120.0°C upon heating and.

TABLE 1 Phase transition temperatures, oC (enthalpy of transition ΔH, kJ/
mole), mesomorphic range (ΔT, oC) and the normalized entropy of transition,
ΔS/R, for present series Fn.

Comp TCr-N ΔH Cr-N TN-I ΔH N-I ΔTN ΔSN-I/R

M6 107.5 51.60 153.9 2.76 46.40 0.78

M8 117.2 47.82 144.6 2.64 27.40 0.76

M10 112.7 41.93 132.9 2.10 20.20 0.62

M12 93.3 44.10 126.8 2.15 33.50 0.65

Cr-N, solid—nematic transition.

N-I = nematic—isotropic liquid transition.

R is the universal gas constant.
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demonstrated that extremely modest entropy variations were found,
which were primarily dependent on the type of terminal substituents
and msogenic cores. Because of their decreased anisotropy as a result
of their molecular geometry and molecular biaxiality, the observed
modest values can be explained (Yeap et al., 2011; Henderson et al.,
2005; Yeap et al., 2015; Attard et al.). The creation of the mesophase
and the molecular organization depend on the molecular
orientation, which is influenced by the induction, conjugation
forces, particular dipolar contacts, and - stacking interactions
(Yeap et al., 2011; Henderson et al., 2005; Yeap et al., 2015;
Attard et al.). An increase in dipolar ordering and a decrease in
dipolar entropy arise from applying an electrical field to a polar
insulator. The dielectric material will return to a less ordered dipolar
state once the field is withdrawn, increasing the dipolar entropy
(Shanker and Yelamaggad, 2011). In addition, it is more likely to
realize a high the electrocaloric effect if the dipolar materials are
operated near dipolar order-disorder transitions, where a dipolar
ordered state can be created from a dipolar disordered state.

2.5 Comparative analysis with related
derivatives

It is important to compare the examined materials to analogous
ones that have been previously reported with another moiety having
the furan substitution as terminal moiety (Fn) (Alshabanah et al.,
2021) in order to understand the effect of the terminal maleic
anhydride moiety on the phase behavior of the materials. Across
all parallel series, the maximum allowed number of carbon atoms in
the terminal chain (n) was 6, 8, or 12. According to recent findings
(Alshabanah et al., 2021), the Fn series are intrinsically
mesomorphic, exhibiting high mesomorphic thermal stability and

a decent mesophase range that varies with the terminal flexible chain
length.While molecules F6 and F10 are enantiotropic and have pure
N phases, the longer chain derivative F12 contains two
mesomorphic transitions (SmA and N phases). The dimorphic
characteristics of F12 demonstrate the existence of an
enantiotropic N mesophase and a monotropic SmA phase.
However, the nematic phases of the maleic anhydride
compounds Mn cover all side chain lengths. It is evident that the
kind of LC phase has a substantial influence on the terminal
replacement. Because only N phases were seen in the maleic
anhydride derivatives, the mesomorphic properties were changed
when the terminal side by the furan moiety, and the SmA phase
developed for lengthy terminal side chain members.

3 Experimental

3.1 Synthesis

The process used to create the titled Mn compounds involves
two sequential steps (Scheme 1):

3.1.1 Synthesis of 1-(4-hydroxyphenyl)-
1H-pyrrole-2,5-dione, 3

P-Aminophenol (1.637 g, 0.015 mol) and maleic anhydride
(1.471 g, 0.015 mol) were separately dissolved in 5 mL of DMF,
resulting in solutions A and B, respectively. Solution B was slowly
added to solution A, forming solution C. Solution C was then stirred
at 20°C in a water bath for 2 h. Next, P2O5 (1.2 g) was dissolved in a
mixture of 1 mL of H2SO4 and 7 mL of DMF. This mixture was
gradually added to solution C while stirring, and the entire solution
was further stirred for 2 h at 70°C. To cool the mixture, it was placed

FIGURE 3
Effect of terminal side alkoxy chain length (n) on mesomorphic characteristics of the Mn derivatives of maleic anhydride studied.
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in an ice bath and then poured into cold water. Upon precipitation, a
solid formed, which was subsequently filtered, washed with distilled
water, and finally recrystallized from 2-propanol. The resulting
crystals were dried in a vacuum oven at 65°C for 24 h. Yield:
84%; m. p. 184°C–186°C (Lit. m. p. 182°C–184°C (Mohammed
and Mustapha, 2010b)).

3.1.2 General procedure for synthesis of 4-(2,5-
dioxo-2,5-dihydro-1H-pyrrol-1-yl)phenyl 4-
(alkoxy)benzoates, Mn

Amixture consisting of 1-(4-hydroxyphenyl)-1H-pyrrole-2,5-dione
3 (1.89 g, 10 mmol) and the appropriate derivatives of 4-alkoxy benzoic
acid (10 mmol for each) was prepared in dry methylene chloride
(25 mL). To this mixture, N, N′-dicyclohexylcarbodiimide (DCC,
10 mmol) and a small amount of 4-dimethylaminopyridine (DMAP)
catalyst were added. The reaction mixture was then stirred continuously
at room temperature for 72 h. Afterward, the solid that formed was
filtered out, and the solution was evaporated. The resulting solid residue
was purified by recrystallization from ethanol, resulting in the
production of products with high purity as confirmed by thin-layer
chromatography (TLC). TLC sheets coated with silica gel (EMerck) and
CH2Cl2/CH3OH (9:1) as the eluent were used, and only one spot was
detected under a UV lamp. The structures assigned to the compounds
were confirmed by 1H-NMR and elemental analyses, which showed
consistent results. The 1H-NMR data revealed the expected ratios of
integrated aliphatic to aromatic protons for all investigated compounds.
The physical data for the products, denoted as Mn, are listed below:

3.1.2.1 4-(2,5-Dioxo-2,5-dihydro-1H-pyrrol-1-yl)phenyl 4-
(hexyloxy)benzoate M6

Yield: 91.0%; mp 108°C, 1H-NMR (500 MHz, CDCl3): δ/ppm:
0.87–0.91 (t, 3H, CH3), 1.29–1.43 (m, 6H, CH3(CH2)3CH2CH2O-),
1.72–1.74 (m, 2H, CH3(CH2)3CH2CH2O-), 3.89–3.95 (t, 2H,
CH3(CH2)3CH2CH2O-), 7.11–7.03 (d, 2H, Ar−H), 7.30–7.38 (m,
4H, Ar−H), 7.79 (s, 2H, Pyrrole-H), 8.10–8.16 (d, 2H, Ar−H).
13C-NMR (125 MHz, CDCl3): δ/ppm: 14.1 (CH3), 26.0, 29.3, 29.6,
31.9, 68.3 (CH2), 121.5, 121.8, 122.4, 132.3, 132.4, 134.9, 143.0,
149.2, 159.6 (Ar-C and C=N), 163.5, 165.0 (C=O); IR (KBr): vcm-1

3041 (=C-H), 2928 (-C-H),1686, 1729 (2 C=O), 1605 (C=N), 1571
(C=C); MS,m/z (%) 393 (M+, 12), 307 (100), 292 (71), 231 (63), 189
(38), 162 (81), 86 (49), 76 (71). Anal. Calcd. for C23H23NO5 (393.44):
C, 70.21; H, 5.89; N, 3.56. Found: C, 70.04; H, 5.73; N, 3.39%.

3.1.2.2 4-(2,5-Dioxo-2,5-dihydro-1H-pyrrol-1-yl)phenyl 4-
(octyloxy)benzoate M8

Yield: 89.0%; mp 117°C, 1H-NMR (500 MHz, CDCl3): δ/ppm:
0.86–0.90 (t, 3H, CH3), 1.28–1.44 (m, 10H, CH3(CH2)5CH2CH2O-),
1.78–1.80 (m, 2H, CH3(CH2)5CH2CH2O-), 3.88–3.91 (t, 2H,
CH3(CH2)5CH2CH2O-), 7.08–7.14 (d, 2H, Ar−H), 7.31–7.49 (m,
4H, Ar−H), 7.81 (s, 2H, Pyrrole-H), 8.11–8.13 (d, 2H, Ar−H);
13C-NMR (125 MHz, CDCl3): δ/ppm: 14.0 (CH3), 22.5, 25.3, 25.7,
29.1, 29.3, 29.6, 29.7, 29.8, 29.9, 31.7, 68.4 (CH2), 121.5, 121.9, 122.2,
123.0, 130.7, 133.8, 142.6, 148.9, 159.1 (Ar-C and C=N), 163.3, 164.8
(C=O); IR (KBr): vcm-1 3037 (=C-H), 2923 (-C-H), 1683, 1726
(2 C=O), 1601 (C=N), 1568 (C=C); MS, m/z (%) 421 (M+, 25),
307 (100), 248 (52), 173 (80), 162 (38), 97 (53), 76 (66). Anal. Calcd.
for C25H27NO5 (421.49): C, 71.24; H, 6.46; N, 3.32. Found: C, 71.04;
H, 6.28; N, 3.23%.

3.1.2.3 4-(2,5-Dioxo-2,5-dihydro-1H-pyrrol-1-yl)phenyl 4-
(decyloxy)benzoate M10

Yield: 92.0%; mp 113°C, 1H-NMR (500MHz, CDCl3): δ/ppm:
0.79–0.81 (t, 3H, CH3), 1.21–1.41 (m, 14H, CH3(CH2)7CH2CH2O-),
1.71–1.75 (m, 2H, CH3(CH2)7CH2CH2O-), 3.81–3.96 (t, 2H,
CH3(CH2)7CH2CH2O-), 7.13–7.20 (d, 2H, Ar−H), 7.29–7.42 (m,
4H, Ar−H), 7.79 (s, 2H, Pyrrole-H), 8.10–8.13 (d, 2H, Ar−H).
13C-NMR (125MHz, CDCl3): δ/ppm: 14.1 (CH3), 22.7, 25.9, 29.1,
29.3, 29.5, 29.6, 29.7, 31.9, 68.3 (CH2), 121.1, 121.4, 121.8, 122.4, 132.3,
134.9, 143.0, 149.2, 159.6 (Ar-C and C=N), 163.5, 164.2 (C=O); IR
(KBr): vcm-1 3039 (=C-H), 2920 (-C-H), 1680, 1722 (2 C=O), 1603
(C=N), 1568 (C=C); MS,m/z (%) 449 (M+, 21), 307 (100), 276 (47), 173
(63), 142 (55), 76 (61). Anal. Calcd. for C27H31NO5 (449.55): C, 72.14;
H, 6.95; N, 3.12. Found: C, 72.03; H, 6.79; N, 3.00%.

3.1.2.4 4-(2,5-Dioxo-2,5-dihydro-1H-pyrrol-1-yl)phenyl 4-
(dodecyloxy)benzoate M12

Yield: 90%; mp 93°C, 1H-NMR (500 MHz, CDCl3): δ/ppm:
0.73–0.75 (t, 3H, CH3), 1.10–1.35 (m, 18H, CH3(CH2)9
CH2CH2O-), 1.59–1.69 (m, 2H, CH3(CH2)9CH2CH2O-),
3.85–3.92 (t, 2H, CH3(CH2)9CH2CH2O-), 7.10–7.13 (d, 2H,
Ar−H), 7.40–7.48 (m, 4H, Ar−H), 7.81 (s, 2H, Pyrrole-H),
8.13–8.17 (d, 2H, Ar−H); 13C-NMR (125 MHz, CDCl3): δ/ppm:
14.1 (CH3), 22.7, 25.6, 25.9, 29.3, 29.5, 29.6, 29.7, 29.7, 29.8, 31.9,
68.3 (CH2), 121.1, 121.4, 122.4, 123.2, 132.2, 134.9, 143.0, 149.4,
159.6 (Ar-C and C=N), 163.5, 165.0 (C=O); IR (KBr): vcm-1 3025
(=C-H), 2917 (-C-H), 1681, 1719 (2 C=O), 1600 (C=N), 1545
(C=C); MS, m/z (%) 477 (M+, 18), 307 (100), 247 (52), 173 (46),
97 (83), 76 (51). Anal. Calcd. for C29H35NO5 (477.60): C, 72.93; H,
7.39; N, 2.93. Found: C, 72.82; H, 7.31; N, 2.85%.

4 Conclusion

In this study, 4-(2,5-dioxo-2,5-dihydro-1H-pyrrol-1-yl)phenyl 4-
(alkoxy)benzoates (Mn), a novel optical liquid crystalline homologue
based on the maleic anhydride molecule, was created and
mesomorphically examined using DSC and POM. Mesomorphic
and optical characterizations showed that all of the studied set’s
produced compounds are monomorphic and display enantiotropic
liquid crystalline N mesophases. A wide range of N stability has also
been provided by the addition of a heterocyclic moiety to the molecular
structure. The entropy increases associated with the N-isotropic
transitions are minor in magnitude and follow an erratic trend that
is independent of the terminal alkoxy chain length (n). This may be due
to the comparatively high clearing temperature values and the smallest
promotion of molecular biaxiality by the ester linkage group. Finally, it
was established that the substitution under investigation causes the
formation of nematic phases by contrasting the materials under
investigation with their related furan compounds described in the
literature.
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