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Polyvinyl alcohol (PVA) hydrogel is favored by researchers due to its good
biocompatibility, high mechanical strength, low friction coefficient, and
suitable water content. The widely distributed hydroxyl side chains on the PVA
molecule allow the hydrogels to be branched with various functional groups. By
improving the synthesismethod and changing the hydrogel structure, PVA-based
hydrogels can obtain excellent cytocompatibility, flexibility, electrical
conductivity, viscoelasticity, and antimicrobial properties, representing a good
candidate for articular cartilage restoration, electronic skin, wound dressing, and
other fields. This review introduces various preparation methods of PVA-based
hydrogels and their wide applications in the biomedical field.
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1 Introduction

Polyvinyl alcohol (PVA)-based hydrogels are attractive polymeric materials with great
potential for biomedical applications. PVA, a synthetic macromolecular polymer, has
relatively excellent mechanical properties and is biocompatible, inexpensive, and stable
(Wang D. et al., 2023). These advantages make it a prevalent hydrogel preparation material
in bioengineering; it is increasingly used to interface with living organisms and function in
disease treatment, physiological signal monitoring, and others (Liu et al., 2019).

Benefiting from the numerous hydroxyl side chains on PVA, it can be grafted with
different functional groups that may endow it with properties such as elasticity (Fang et al.,
2020), antimicrobial properties (Li et al., 2022e), electrical conductivity (Su et al., 2020b),
self-healing (Pan et al., 2020), environmental sensitivity (Montaser et al., 2019), and 3D
printability (Lim et al., 2018; Abouzeid et al., 2020). Pure PVA hydrogels suffer from
mismatched mechanical properties when used in biomedical applications. Therefore, much
research has controlled and improved the PVA-based hydrogel structure and function by
applying suitable cross-linking methods and adding different component materials to
modify and change the hydrogel structure, allowing PVA-based hydrogels to be adapted to
multiple applications and making them ideal candidates for cartilage scaffold materials (Liu
J. et al., 2020; Yang et al., 2020), electronic sensing (Song et al., 2020; Ye et al., 2020), and
wound dressings (Zhao H. et al., 2020; Zou et al., 2020).

A common problem of using synthetic hydrogels in biomedical applications is the
mechanical strength and toughness insufficiency (Li et al., 2022b). Many scientists have
investigated PVA-based hydrogels with simultaneously improved toughness and ductility
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TABLE 1 The preparation of PVA-based hydrogels and their mechanical properties.

Composition PVA
Concentration

(wt%)

Type
of

Cross-
link

Mathods Tensile
Strength
(MPa)

Tensile
Modulus
(MPa)

Strain
(%)

Toughness
(MJ/m 3)

References

AMPS-QAX
CNC/PVA

20 physical F-T cyclic 0.03 0.01 771 — Liu et al.
(2020b)

starch/PVA/IL-AlCl3 ~15 physical F-T cyclic 0.53 — 567 — Lu et al. (2022b)

PVA/PEI(LiCl) ~18.2 physical F-T 0.60 — 500 — Wang et al.
(2020a)

PVA-TA@talc 15 physical F-T 0.60 — 700 — Pan et al. (2019)

PVA (DMSO/H2O)/
CNF-AlCl3·6H2O

~8 physical F-T cyclic 0.89 0.29 696 3.54 Li et al. (2022b)

LNP/PVA (EG/
H2O)-AlCl3

~12 physical F-T 1.24 — 589 — Wang et al.
(2022e)

HPC/PVA 16 physical F-T cyclic &
Salting-out

1.30 0.59 520 5.85 Zhou et al.
(2019)

PVA-PANI 12 physical Unidirectional
freezing

1.46 4.27 416 3.28 Li et al. (2020a)

PVA/CMC/TA/
MXene

~11.25 physical F-T cyclic 1.80 — 740 6.24 Kong et al.
(2022)

TA@CNC-PVA/
gelatin/EG/Al3+

~10 physical F-T 1.95 — 520 4.15 Yin et al. (2022)

PVA (DMSO/
H2O)-CNF

~8.25 physical F-T cyclic &
Salting-out

2.10 — 400 4.90 Ye et al. (2020)

PVA-HA/PAA/PEG 16 physical F-T &
Annealing

3.71 0.98 381 — Chen et al.
(2018)

PVA/SS/Na3Cit 10 physical F-T &
Salting-out

4.42 3.14 478 13.73 Wang et al.
(2022a)

PVA (DMSO/H2O) — physical F-T cyclic &
Salting-out

13.50 — — 127.90 Duan et al.
(2021)

PVA (Na2SO4) 10 physical Freeze-soak in
salt solutions

15.00 2.50 2,100 15 0 Wu et al. (2021)

BC-PVA-PAMPS 40 physical F-T cyclic 18.00 181.00 — — Yang et al.
(2020)

PVA-agar (AS) 10 physical F-T cyclic &
salting-out

18.00 7.50 545 42.30 Sun et al. (2020)

PVA/HCPE 5 physical HCPE 98.00 — 550 425.00 Liu et al. (2021)

PVA-PB/CNF — chemical Borax 0.00 — 1900 — Jing et al. (2019)

Zn/PVA-PB/NFC ~1.8 chemical Borax 0.02 — 605 — Chen et al.
(2019)

PVA-PB/
PANI@CNF

2 chemical Borax 0.03 0.03 635 — Han et al.
(2019a)

PVA-PB(CNT-CNF) 2 chemical Borax 0.05 — 317 — Han et al.
(2019b)

PVA-PB (CNFs–PPy) 2 chemical Borax 0.06 — 600 262.90 Ding et al.
(2018)

PVA/PEDOT:PSS ~6.7 chemical GA 0.07 — 239 — Zhang et al.
(2020)

Multi CNC-PANI/
PVA-PB

12 chemical Borax 0.17 — 1,085 — Song et al.
(2020)

(Continued on following page)
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by designing the hydrogel molecular structure by enhancing the
crystallinity (Liu J. et al., 2020; Ye et al., 2020), filling nanoparticles
(Jing et al., 2019; Liu et al., 2021), and building double networks (Li
et al., 2019; Li L. et al., 2020). Accordingly, PVA-based hydrogels
with the necessary properties and functions for each application can
be synthesized through the rational selection and combination of
toughening components. This paper reviews the different PVA-
based hydrogel cross-linking methods and the latest research on
their modification for biomedical applications; many superior
mechanical properties of hydrogels are synthesized by combining
multiple cross-linking methods. We also provide an outlook on
further research directions and application prospects (Lu et al., 2020;
Sun et al., 2020; Yang et al., 2020; Zhou et al., 2021).

2 Cross-linking methods of PVA-
based hydrogels

The cross-linking methods of PVA-based hydrogels can
significantly impact the biological and mechanical properties. The
main reason is the difference in the type and amount of interaction
forces between PVA chains in hydrogels synthesized by different
cross-linking methods. Cross-linking methods are divided into
physical cross-linking when the PVA chains are connected by
non-covalent interactions and chemical cross-linking when
connected by covalent bonds. Many hydrogels with superior
properties use both cross-linking methods in combination (Sun
et al., 2020; Pei et al., 2021; Shao et al., 2023). Table 1 summarizes
some attractive preparation methods for PVA-based hydrogels.

2.1 Physical cross-linking

Molecular linkages between physically cross-linked PVA-based
hydrogels are mainly conducted by physical entanglement,
hydrogen bonds, and hydrophobic and electrostatic interactions.
Hydrogels synthesized through weak interaction forces are generally

soft, flexible, and self-healing, with no toxic cross-linker residues;
therefore, they are favored in the biomedical field. The common
physical cross-linking methods of PVA-based hydrogels are mainly
freeze-thawing (F-T) cyclic, salting-out, and gradient low-
temperature.

2.1.1 F-T method
Since Stauffer and Peppast (1992) proposed the PVA-based

hydrogel preparation by F-T cyclic in 1991, the method has been
widely used in biomaterials, such as wound dressings (Kumar et al.,
2020), electronic skin (Zhou et al., 2021), flexible sensors (Yin
et al., 2022), and bio-capacitors (Li L. et al., 2020). When hydrogels
are prepared with F-T cyclic, PVA chains are discharged due to
water molecule crystallization during the freezing process, forming
a high-concentration aggregation zone in which the PVA
molecular chains are in close contact with each other, forming
microcrystalline regions, with physical entanglement and
hydrogen bonding between the PVA chains (Holloway et al.,
2011). The loose water molecules between the PVA chains are
precipitated, increasing the physical entanglement number and
hydrogen bonds during thawing and refreezing. This process is
repeated, forming a hydrogel filled with water molecules in a three-
dimensional mesh structure. The number of F-T cycles, freezing
temperature, and time affect the hydrogel molecular structure and
mechanical properties (Stauffer and Peppast, 1992), allowing for
the control of these properties. The increasing F-T cycle number
increases the hydrogel crystallinity, toughness, and tensile
properties while decreasing the swelling coefficient (Figure 1A).
Our previous studies showed that after about six F-T cycles, the
mechanical properties do not change with increasing the F-T cycle
number (Hou et al., 2015).

2.1.2 Salting-out method
The salt precipitation method is based on the Hofmeister effect

when the hydrogel precursor is immersed in salt solutions such as
sodium chloride (Gao et al., 2020), sodium citrate (Duan et al., 2021;
Yan G. H. et al., 2022), and ammonium sulfate (Sun et al., 2020), the

TABLE 1 (Continued) The preparation of PVA-based hydrogels and their mechanical properties.

Composition PVA
Concentration

(wt%)

Type
of

Cross-
link

Mathods Tensile
Strength
(MPa)

Tensile
Modulus
(MPa)

Strain
(%)

Toughness
(MJ/m 3)

References

Ag/TA@CNC/
PVA-PB

10 chemical Borax 0.25 — 4,106 — Lin et al. (2019)

PVA-TA-
GaIn(NaCl)

~8 physical &
chemical

F-T & Borax 1.13 — — 1.90 Zhou et al.
(2021)

PVA-PMR-NaCls 10 physical &
chemical

Chemical cross-
linkers & Salt
immersion

5.61 2.16 600 15.92 Han et al. (2022)

PVA/GO-TA-CaCl2 ~16 physical &
chemical

F-T &
Annealing &

Borax

14.38 — 450 27.93 Cao et al.
(2022b)

Abbreviations mentioned on the table: AMPS, 2-acrylamido-2-methylpropane sulfonic acid; QAX, quaternary ammonium xylan; CNC, coated cellulose nanocrystals; IL, ionic liquid (1-ethyl-3-

methyl imidazolium acetate); PEI, polyethyleneimine; TA, tannic acid; DMSO, dimethyl sulfoxide; CNF, cellulose nanofiber; HA, hydroxyapatite; LNP, lignin nanoparticle; EG, ethylene glycol;

HPC, hydroxypropyl cellulose; PANI, polyaniline; CMC, carboxymethyl-cellulose; PAA, polyacrylic acid; PEG, polyethylene glycol; SS, silk sericin; Na3Cit, sodium citrate; BC, bacterial

cellulose; PAMPS, propanesulfonic acid sodium poly (vinyl salt); AS, ammonium sulfate; HCPE, small multi-aminemolecules; PB, borax; NFC, nanofibrillated cellulose; CNT, carbon nanotube;

PPy, polypyrrole; PEDOT:PSS, poly (3,4-ethylenedioxythiophene): polystyrenesulfonate; GaIn, gallium-indium; PMR, 4-(methacryloyloxy) ethyl-1- phenylene acid and 1,4-(5-hexenyloxy)

benzene.
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solvent in the hydrogel precursor is replaced by the salt precipitation
effect, aggregating the PVA chains and forming extensive physical
cross-linking sites. The high ionic strength of the salt ions reduces
the polymer solubility (Baldwin, 1996), further aggregating the PVA
chains and causing more hydrogen bonds to form between the PVA
chains. The approach enhances the hydrogel mechanical strength
and fatigue fracture resistance due to the increased PVA-based
hydrogel crystallinity that forms a dense polymer network (Gao
et al., 2020). According to Wu et al. (2021), changing the salt type
and concentration can adjust PVA hydrogel mechanical properties
on a large scale. The higher the anion valence, the better the gelation
and toughening effect promotion, while the opposite is true for the
cation. The mechanical properties of PVA hydrogels after treatment
with different salt solutions show a pattern that follows the
Hofmeister effect. He et al. also demonstrated that PVA
hydrogels treated with a saturated Na2SO4 solution showed
highly tough and stretchable properties (Figure 1B).

Due to the increase in cross-linking density, the movement
and crystallization of water molecules bound in the hydrogel are
inhibited, so the hydrogel prepared by this method tends to have
better anti-freezing and moisturizing ability. Furthermore, as salt
ions are introduced into the PVA network, they can impart ionic
conductivity to the hydrogel (Sun et al., 2020; Wang et al., 2021;
Han et al., 2022). Many researchers have combined the
application of binary solvents to overcome the limited use of
ion-conductive hydrogels under low-temperature conditions,
preparing cold-resistant electronic skins and sensors with
superior performance (Ye et al., 2020; Duan et al., 2021).

2.1.3 Directional freezing
Directional freezing is a common and simple method to

prepare anisotropic biomaterials (Hua et al., 2021; Mredha
and Jeon, 2022) by applying a gradient low temperature to a
hydrogel precursor in a certain way that causes the ice crystals to

FIGURE 1
Physical cross-linking methods for PVA-based hydrogels. (A) PVA hydrogel prepared by F-T method, the number of F-T cycles can affect the
structure and properties of the hydrogel (Stauffer and Peppast, 1992); (B) Principle of salting method (Wu et al., 2021); (C) Principle of directional freezing
method (Hua et al., 2021); (D) Cross-linking by hydrogen bonding cross-linker (Liu et al., 2021).
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grow directionally along the temperature gradient; the PVA is
discharged into the space between the ice crystals. The lamellar
structure of ice crystals is used as a template to form an ordered
microcrystalline structure (Zhao et al., 2017) (Figure 1C).
Directional freezing facilitates PVA chain alignment and
folding into the microcrystalline region, increasing PVA
molecular structure ordering and forming a stronger hydrogel
network, which can simultaneously improve the hydrogel
mechanical strength and properties (Li L. et al., 2020). Most
natural biomaterials exhibit anisotropic structures (Yan M. Z.
et al., 2022), such as cellulose, lignin, etc. While artificial
polymers are mostly isotropic. Therefore, increasing research
aims to fabricate anisotropic hydrogels by various methods.
Anisotropic hydrogels have excellent properties such as strong
mechanical strength, cell guidance, tissue regeneration, and
anisotropic mechanical/electrical/magnetic/thermal properties
(Mredha and Jeon, 2022), allowing their applicability in many
fields; stiffness gradient PVA hydrogels prepared with gradient
cryogenics can be a tool for basic research on cell adhesion and
migration behavior (Kim et al., 2015). The cyclic durability and
specific capacitance of ordered polyaniline (PANI)-PVA
capacitors prepared by directional freezing are much higher
than those of the disordered version (Li W. et al., 2020; Chen
Q. et al., 2021). Directional freezing is also important in tissue
engineering, as it enables obtaining scaffold materials with
unidirectional porous structures of controlled pore size (Yeon
et al., 2022). Unidirectional micron-sized pores allow cells to
grow inward and spread across the scaffold, while nanopores
within the polymer walls of the scaffold allow cell signaling,
nutrient delivery, excretion removal, and other vital activities. In
addition, the stratified tissue porosity obtained by cryocasting the
scaffold facilitates in vivo neovascularization and
hydroxyapatite-rich cement line formation in the early
osteoconduction stages (Zhao N. F. et al., 2020). Zhao et al.
(2017) developed a bidirectional freezing scheme by introducing
a low thermal conductivity polydimethylsiloxane wedge. This
polymer forms a dual horizontal and vertical temperature
gradient during cooling, controlling the ice crystal nucleation
and growth toward the monolayer direction; the group prepared
graphene oxide/PVA films with superb mechanical strength and
toughness by this method. Directional freezing is widely used to
prepare biomaterials due to the high operability and the obvious
optimization of synthetic material properties. In addition,
mechanical training was shown to enable hydrogels to acquire
anisotropy (Yan M. Z. et al., 2022; Wang Q. et al., 2022).

2.1.4 Hydrogen bonding cross-linker
Dynamic hydrogen bonding substantially connects PVA

chains in physically cross-linked hydrogels; hydrogen bonding
cross-linkers can increase the hydrogen bonding donors and
acceptors in the hydrogel and act as bridging points between
the PVA chains. Therefore, the PVA chains are connected and
entangled with each other through the hydrogen bonds, resulting
in a dense polymer chain network. Typical hydrogen bonding
cross-linkers include carbon nanofibers (Li et al., 2022b), tannins
(Li et al., 2022c), dopamine, and polyamine molecules (Liu et al.,
2021); they are characterized by possessing high strength and
abundant hydroxyl binding sites, which can enhance the

interactions between the chains through many strong
hydrogen bonds and lead to polymer chains with a high
surface density. PVA-based hydrogels prepared with potent
hydrogen-bonding cross-linkers provide high toughness,
ductility, and tensile strength simultaneously (Liu et al., 2021;
Li et al., 2022b) (Figure 1D) due to the dynamic fracture and
reorganization of hydrogen bonds in the hydrogel network when
they are subjected to tensile stress, which effectively dissipates
energy and endows these hydrogels with good self-healing
properties (Lin et al., 2020). The hydrogels prepared by this
cross-linking method are biocompatible, only require simple
mixing to form a gel, facilitate customizing and integrating
special functions such as anti-freezing and electrical
conductivity (Liu X. et al., 2022), mass production, and
processing, besides being used in manufacturing electronic
skin (Wen et al., 2021; Zhou et al., 2021), flexible sensors (Li
et al., 2022c), wound dressings [35], and other tissue engineering
materials (Pei et al., 2021).

2.2 Chemical cross-linking

Chemical cross-linking connects the molecular chains of
PVA hydrogels by covalent or metal-ligand bonds; chemical
hydrogels have better stability and toughness than physical
hydrogels (Xiang et al., 2020). Cross-linking chemical agents
facilitate the hydrogel insolubility in water (Ebhodaghe, 2020)
and can be glued quickly in situ (Yuan et al., 2019; Chen Y. et al.,
2021; Wang R. B. et al., 2022), enhancing hydrogel applications in
tissue engineering. This is because in situ gel formation allows
hydrogels to be used as filler materials and bioinks for fine
surgical procedures and 3D printing of bionic scaffolds that
need adaption to the wound surface (Abouzeid et al., 2020;
Wu et al., 2022). Therefore, chemical cross-linking methods
are favored by researchers despite the difficulty of completely
removing the residual cross-linking agents (Peppas et al., 2006;
Zhang et al., 2020; Chen Y. et al., 2021).

2.2.1 Chemical cross-linkers
Three main types are the most commonly used chemical cross-

linking agents for preparing PVA-based hydrogels. The first is Aldol
reaction initiation using aldehydes or ketones with α hydrogen
atoms, such as glutaraldehyde, modified starch double aldehyde
starch (DS) (Guo et al., 2020; Cao J. L. et al., 2022) (Figure 2A). The
hydroxyl group (-OH) of PVA reacts with the aldehyde group
(-CHO) of glutaraldehyde in acidic solutions [e.g., sulfuric (Guo
et al., 2020) and phytic acids (Wei et al., 2021)] to form acetals or
hemiacetals. This method can obtain a hydrogel with good structural
stability under relatively mild conditions. Moreover, it possesses
mechanical properties such as superior toughness and elasticity
(Zhang et al., 2020) and has promising applications in flexible
sensing and wound dressing (Hosseini and Nabid, 2020; Wei
et al., 2021). However, glutaraldehyde affects cellular activity
(Amiri et al., 2022); therefore, the non-toxic, biodegradable, and
widely used chemically active modified double aldehyde starch (DS)
is proposed as a substitute for glutaraldehyde (Cao J. L. et al., 2022).

The second common cross-linking agent is borates, which
polymerize PVA chains through borate ester bonds (Songfeng
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et al., 2020; Hamd-Ghadareh et al., 2022) (Figure 2B). Borax
hydrolysis yields B(OH)4

-, which forms diol-borate bonds with
the widely present intermolecular hydroxyl groups of PVA. The
reversible covalent bond can be broken and regenerated reversibly
when damaged. Such dynamic bonds give PVA/borax hydrogels
excellent self-healing properties, super-elongation, and plasticity (Ke
et al., 2023). When the hydrogel pH value changes or in a sugar-
containing environment (e.g., glucose and fructose), the borate ester
bond is reversibly dissociated and reorganized. Monosaccharides
such as glucose and fructose are rich in diol units that competitively
break the borate ester bond between PVA and borate ions; sugar
concentration regulates this destruction degree. Therefore, PVA
hydrogels synthesized by this method possess a pH/sugar
responsiveness (Yi et al., 2023). Finally, the hydrogel possesses
underwater self-healing and conductive properties because the
borate ions produced by borate ionization can move in the
aqueous medium. These superior properties make PVA/borax
hydrogel promising for wearable device applications (Zhang Z.
et al., 2022; Li et al., 2022d).

In addition, multivalent metal ions such as Ca2+, Mg2+, Fe3+, etc.,
Have been used as cross-linkers for PVA-based hydrogels. The metal
ions can form coordination bonds with the hydroxyl groups in PVA,
constraining the PVA chains, and stabilize the network of PVA-
based hydrogels (Shen et al., 2022). The mechanical strength and
toughness of PVA-based hydrogels were increased due to the
sacrificial breaking of the coordination bonds (Han et al., 2023;
Li et al., 2023). In addition, the introduction of metal ions restricts
the crystallization behavior of water molecules in the PVA-based
hydrogel at low temperatures, thus the hydrogel acquires antifreeze
properties (Shen et al., 2022).

2.2.2 Ultraviolet (UV) radiation, electron beam, and
gamma irradiation

The cross-linking process by UV radiation, electron beam, or
gamma irradiation generates free radicals and induces covalent bond
formation between functional groups (Jin, 2022). Cross-linking in
these ways requires no chemical cross-linking agent (Nasef et al.,
2019), with the advantages of chemically cross-linked hydrogels,
i.e., stable structure, superior mechanical properties, and
controllable shape. The PVA-based hydrogels prepared by
electron irradiation possess high fracture strength, but their
cytocompatibility and tissue affinity are relatively lacking;
therefore, it is commonly used to manufacture industrial
conductive materials (Wang Z. Y. et al., 2023). The PVA-based
hydrogels cross-linked by UV and gamma radiation possess
significant advantages over the other chemical cross-linking
methods mentioned above. Cross-linking is characterized by a
mild reaction temperature, pH, and controlled reaction time and
space (Eghbalifam et al., 2015; Vo et al., 2022). The properties of
hydrogels synthesized by this method have a large scope for
adjustment, and various parameters can be used to modify the
hydrogel polymerization behavior (e.g., radiation dose, UV
exposure, photo-initiator concentration, monomer chain length,
and various biomolecule conjugation) (Montaser et al., 2019;
Nasef et al., 2019). The PVA-based hydrogels prepared by this
cross-linking method possess good mechanical toughness and
biocompatibility. The tensile fracture strength, elastic modulus,
and toughness reached 1.28 MPa, 426.4 kPa, and 2.53 MJ m–3.
Hydrogel cross-linking increased the breaking stress, modulus of
elasticity, and toughness of the hydrogel by 23, 20, and 25 times,
respectively (Pei et al., 2021). PVA-based hydrogels can obtain

FIGURE 2
(A) PVA-based hydrogel cross-linked by glutaraldehyde (Pei et al., 2021); (B) PVA-based hydrogel cross-linked by borax (Songfeng et al., 2020); (C)
PVA-SA copolymer hydrogel (Shen et al., 2022).
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controlled biodegradation rates by photopolymerization, enabling
their wide use in various fields of tissue engineering.

2.3 Multi-network copolymerization

Multi-network copolymerization is an attractive strategy for
hydrogel synthesis (Ding et al., 2018; Shen et al., 2022; Qin et al.,
2023) (Figure 2C). The mechanical and biological features of a
single PVA network are constrained by its loose structure,
limiting its hydrogel capabilities. Cross-interconnection of
multiple networks can enhance the hydrogel structure stability
and mechanical properties (Wang et al., 2021; Li et al., 2022a).
During macromolecular polymer copolymerization, the hydrogel
structure is reinforced by electrostatic interactions, physical
entanglement between chains, and extensive hydrogen
bonding between functional groups (Wen et al., 2020).
Preparing hydrogels by mixing with natural polysaccharides
such as sodium alginate (SA) (Shen et al., 2022), chitosan
(Shamloo et al., 2021), and starch (Lu L. et al., 2022) can
overcome the natural polysaccharide hydrogel brittleness and
improve the PVA hydrogel swelling properties and mechanical
strength (Qing et al., 2021; Cao J. L. et al., 2022). This allows
PVA-based hydrogels to have advantages over natural
polysaccharide polymers, such as biocompatibility,
biodegradability, and self-healing properties (Ounkaew et al.,
2020; Cao J. L. et al., 2022). PVA-based hydrogels achieve
excellent electrical conductivity when copolymerized with
conductive materials such as acrylic acid (Dai et al., 2022) and
PANI (Jing et al., 2019). Therefore, PVA-based hydrogels have
potential applications in flexible sensing. Copolymerization with
natural polysaccharide derivatives, such as modified double-
formaldehyde starch and chitosan, can replace chemical cross-
linking agents. In these methods, tough multi-network hydrogels
are obtained by esterification or Schiff base reactions; such PVA-
based hydrogels are more suitable for biomedical applications
than cross-linking by glutaraldehyde (Altaf et al., 2020; Ounkaew
et al., 2020; Takacs et al., 2022).

3 PVA-based hydrogels for biomedical
applications and their construction

3.1 Artificial cartilage

Articular cartilage is a crucial lubricating and weight-bearing
structure in the body. The lack of vascular tissue to transport
nutrients makes it difficult for damaged articular cartilage to self-
heal. Traditional treatments to promote cartilage self-healing, such
as chondrocyte transplantation and microfracture, have low
treatment efficiency and long recovery times (Ye et al., 2022;
Zhao et al., 2022). Therefore, artificial joint cartilage replacement
has become an important treatment modality. An alternative
approach is localized articular surface replacement with
conventional orthopedic materials (cobalt-chromium alloy,
ultrahigh-molecular-weight polyethylene), but these implants
have a high degree of stiffness that may ultimately result in
abnormal stress and wear on the joints (Yang et al., 2020). The

PVA hydrogel is an ideal candidate for preparing bionic articular
cartilage (Hu et al., 2022; Oliveira et al., 2023) because of its similar
porous structure to that of articular cartilage. Besides the advantages
of non-toxicity and good biocompatibility (Figure 3G), it has good
permeability and low friction (Figure 3D). The unique physical
cross-linking method makes blending with other polymers or
functional components possible by simple mixing, as it enables
PVA-based hydrogels to have themechanical strength and necessary
biological properties as load-bearing materials.

3.1.1 Mechanical properties enhancement
Articular cartilage has extreme strength (4–20 and 0.8–25 MPa

compressive and tensile strengths, respectively (Li et al., 2022a)),
toughness (fracture energy of 1,000–15,000 J m-2), and elasticity
(fracture strain of 60%–120%), and can transmit 7–9 times the
body weight, while the very low coefficient of friction (0.001–0.04)
makes it possible to load the human body with flexible life activities
for a long time (Cao J. L. et al., 2022). In contrast, the ultimate tensile
strength of the pure PVA hydrogel was 0.6 MPa, the compressive
strength was 24 MPa, and the strain at break was 400% (Ye et al.,
2020). And the low compression modulus (0.31–0.8 MPa) of PVA
hydrogels causes them to exhibit substantial deformation (>20%).
This significant deformation suggests that using PVA alone as
synthetic cartilage in the knee joint will cause forces to be
transferred to the surrounding bone and cartilage (Yang et al.,
2020). Consequently, insufficient mechanical properties are the
main obstacle to applying pure PVA hydrogels in bionic joints.
Therefore, many studies have developed PVA-based hydrogels with
mechanical strength and low friction coefficient (Cao J. L. et al.,
2022; Ye et al., 2022). Ye et al. (2022) introduced polyethylene glycol
(PEG) into PVA hydrogel and prepared PVA/PEG composite
hydrogel by blending the physical cross-linking method; the
mechanical properties of the hydrogel were 21.2 MPa, and the
friction coefficient was only 0.12.

The PVA-based hydrogels applied to bionic cartilage are mainly
formed by the physical cross-linking method through F-T cycles.
Consequently, the hydrogel mechanical properties can be effectively
enhanced by increasing the hydrogel crystallinity and constructing
multi-network hydrogels.

3.1.1.1 Increasing crystallinity
Increasing the number of F-T cycles and annealing

treatments can significantly enhance the PVA-based hydrogel
mechanical strength (Cao J. L. et al., 2022). Chen et al. (2018)
showed that annealing treatment can significantly increase PVA-
based hydrogel crystallinity, reduce water content, and form a
more dense and stable three-dimensional mesh structure. This
treatment substantially increased the tensile strength and elastic
modulus of the PVA hydrogel (Oliveira et al., 2023). Annealed
PVA-based hydrogels have a low friction coefficient advantage
due to dual-phase lubrication and fluid loading support (Chen
et al., 2018; Branco et al., 2022). Solvent impregnation was used to
enhance the crystallinity of PVA-based hydrogels. This method
can effectively improve the mechanical and tribological
properties of hydrogels; impregnation with acetone (Hu et al.,
2022) and PEG (Branco et al., 2022) reinforced the structure of
PVA-based hydrogels, bringing the hydrogels closer to the
flexibility of natural cartilage.
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3.1.1.2 Building a secondary network
Introducing a flexible second network enhances hydrogel

mechanical strength primarily through electrostatic interactions
and many hydrogen bond formations that increase the hydrogel
cross-link density (Nie et al., 2020). Meanwhile, the sacrificial
fracture of the second network can effectively dissipate energy
and enhance hydrogel toughness (Yang et al., 2020; Branco et al.,
2022) (Figure 3A). Biomaterials such as chitosan (Luo et al., 2022)
and bacterial fibers (Yang et al., 2020; Zhu C. K. et al., 2022; Oliveira
et al., 2023) are widely used in the second network of PVA-based
hydrogels, as they have enhanced the hydrogel structure (Figure 3F).
Ye et al. (Cao J. L. et al., 2022) introduced graphene oxide-tannic
acid (TA) sub-network structure into PVA-based hydrogels. The
tensile strength and fracture toughness of the constructed composite
hydrogels reached 11–26 times that of pure PVA hydrogels
(14.38 MPa/27.93 MJ m-3).

Additionally, a study combined hydrogel with titanium alloy to
prepare a “soft (hydrogel)-hard (Ti6Al4V)" integrated material,

revealing a very high interfacial toughness (3900 J m-2) with a
high load-bearing capacity and excellent tribological properties
(Ye et al., 2022).

3.1.2 Improvement of other performance
The effects of wear and tear are one of the main problems posed

by artificial joints. To ensure the service life of artificial joint
cartilage, a wear-resistant hydrogel with a low friction coefficient
has become a current research direction. The main methods
currently used to improve the tribological properties of hydrogels
are lubricants, organic solvent impregnation, and hydrogel surface
modification. Hu et al. (2022) encapsulated carbon quantum dots
(CDs) in PVA hydrogels and significantly reduced the PVA-based
hydrogel friction coefficient. Organic solvent dehydration treatment
can also improve the hydrogel abrasion resistance. Ye et al. (2022)
showed that the PVA/PEG composite gel could be made to have
lubrication and high load-bearing capacity by acetone impregnation
to maintain a low COF of 0.12 even under dry friction, and the wear

FIGURE 3
(A) Schematic diagram of PVA-based hydrogel synthesis (Branco et al., 2022); (B) PVA-based hydrogel has good flexibility; (C) Annealing can
enhance the mechanical strength of hydrogel (Chen et al., 2018); (D) PVA-based hydrogel can be used as articular cartilage contact surface with good
tribological properties (Liu J. et al., 2020); (E)Organic solvent impregnation can significantly reduce the friction coefficient of hydrogel (Hu et al., 2022); (F)
PVA-based hydrogel has good compression resistance and has the potential to be used as a load-bearing joint (Yang et al., 2020); (G,H) PVA-based
hydrogel has good biocompatibility (Zhu C. K. et al., 2022).
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rate was reduced to the original 27.4%. Chen et al. (2018) showed
that annealing treatment could reduce the PVA-based hydrogel
friction coefficient by about 40% (Figure 3C). Constructing
microtextures by laser ablation improved the PVA-based
hydrogel surface tribological properties (Zhou et al., 2022).

Introducing bioactive components (such as magnetic composite
nanoparticles hydroxyapatite (Hou et al., 2015), hydroxyapatite
(Abouzeid et al., 2020), and polysaccharides (Hou et al., 2013))
can promote cell adhesion and proliferation and improve the
biological properties of PVA-based hydrogels (Nie et al., 2021).
In previous studies, our group has designed nano-hydroxyapatite/
PVA composite hydrogels, revealing that hydroxyapatite enhanced
the nanocomposite hydrogel compressive strength and promoted
cell adhesion and proliferation (Hou et al., 2015). Biodegradable
glass (BGF) enhances the mechanical properties of PVA-based
hydrogels and promotes cell proliferation and differentiation due
to spontaneous BGF degradation, promoting cartilage repair (Zhu
C. K. et al., 2022). Additionally, hybrid hydroxyapatite with high
osteoconductive properties coated on the surface of PVA hydrogel
promotes in situ osteogenesis (Luo et al., 2022).

3.2 Electronic skin

Wearable medical and health devices have received much
attention recently. Polymer hydrogels with sensing properties are
widely used in electronic skin and human-computer interaction;
they work in health monitoring and disease diagnosis and treatment
processes (Qin et al., 2022). PVA-based hydrogels are viable strain
and temperature sensors (Chen S. Y. et al., 2022; Liu H. D. et al.,
2022) (Figure 5A).

3.2.1 Sensing characteristics
The conductive hydrogel changes its resistance when it is

deformed by pressure or when the temperature or environment
changes, which is the basis of its function as a sensor. The main
sensors designed based on PVA-based hydrogels are pressure,
chemical (Qin et al., 2022) (Figure 5D), and temperature (Liu H.
D. et al., 2022). Pure PVA hydrogels showed a low conductivity of
4.24 × 10−5 S cm–1 (Fan et al., 2020). To enhance the electrical
conductivity of hydrogels, researchers have introduced conductive
components such as carbon nanoparticles (graphene (Pan et al.,
2020), carbon nanotubes (Song et al., 2020) and MXenes (Zhang
et al., 2019; He et al., 2020)), nanometallic particles, charged ions
(Zhou et al., 2019), and conductive active polymers (PANI (Li L.
et al., 2020), and polypyrrole (Abodurexiti and Maimaitiyiming,
2022)) into the hydrogel matrix. Enhanced with improved
conductivity sensitivity and stability, PVA-based hydrogels have
emerged as exceptional candidates for sensor materials. However,
their versatility surpasses expectations. By incorporating directional
freezing and incorporating natural anisotropic elements, conductive
hydrogels gain the ability to respond deliberately to the direction of
stimuli, thus expanding the range of applications for these
extraordinary materials.

3.2.1.1 Electrical conductivity
The current strategies for synthesizing conductive hydrogels

include two main directions: Ionic conductive hydrogels prepared

by adding electrolytes and electronic conductive hydrogels prepared
by filling them with nanoparticles. PVA-based hydrogels possess a
three-dimensional porous structure that provides a natural
transport channel for the rapid migration of ions in the material.
Therefore, introducing metal ions [e.g., Al3+(Fan et al., 2020; Lu L.
et al., 2022), Ca2+ (Gan et al., 2021), Mg2+ (Guo et al., 2022), and Fe3+

(Merhebi et al., 2020)] in PVA-based hydrogels can form ion-
conductive hydrogels (Figure 4A). The electrical conductivity of
hydrogels can be improved by enhancing the crystal arrangement
orderliness in the hydrogel and improving the migration efficiency
of ions in the hydrogel. Ionic conductive hydrogels possess good
electrical conductivity, water retention, and frost resistance (Wen
et al., 2021). However, the conductive sensitivity (gauge factor value,
GF) is relatively low (Lu et al., 2020; Pan et al., 2020). Introducing
some metal ions, such as Al3+ and Mg2+, can enhance the electrical
conductivity of hydrogels and make them possess antibacterial
properties. The main principles are electrostatic interactions
between ions and negatively charged surfaces of bacterial
populations and Ph reduction due to Al3+ hydrolysis (Lu L. et al.,
2022). Introducing various mineral ions can enhance the hydrogel
conductivity; Shen et al. (2022) introduced colloidal and amorphous
polyionic biominerals (Mg-ACCP, containing Mg2+, Ca2+, CO3

2-

and PO4
3-) into a biocompatible PVA and sodium alginate network

to construct novel hydrogels with abundant mineral ions. This
hydrogel has high ionic conductivity and is highly sensitive even
to small applied pressures and strains, and its conductivity reaches
1.7 S m-1 at a frequency of 105 Hz.

Brine immersion is one of the main methods to impart ionic
conductive properties to hydrogels (Han et al., 2022). The all-wood
conductive hydrogel obtained by Yan M. Z. et al. (2022) by soaking
in ammonium sulfate solution has excellent flexibility, electrical
conductivity, and sensitivity. It can accurately distinguish
macroscopic or subtle human movements, including finger
flexion, pulse, and swallowing behavior, facilitating accurate
human motion monitoring. Currently, ionic liquids are receiving
great attention due to their high chemical and thermal stability,
electrical conductivity, and solubility. Ionic liquids are used to
prepare PVA-based hydrogels with high electrical conductivity
and frost resistance (Lu L. et al., 2022). Furthermore,
copolymerization with conductive polymers, including polyaniline
(Qin et al., 2022) and polypyrrole (Abodurexiti andMaimaitiyiming,
2022), can yield excellent conductivity and sensitivity. For example,
in 2020, Li et al. achieved an impressive conductivity of 20.5 S/m in a
Polyvinyl Alcohol/Polyaniline hydrogel (Li L. et al., 2020).

Zhan et al. (2022) further designed a bilayer Janus conductive
hydrogel with conductive and negative or weakly conductive
layers, overcoming the mismatch between the mechanical
properties of elastomer, the conductive hydrogel, and the lack
of strong interfacial adhesion, eliminating the need for insulating
elastomers, and making hydrogels more suitable for biomedical
applications.

3.2.1.2 Anisotropy
Direction recognition is another important aspect of electronic

skin that realistically mimics human skin, allowing a more accurate
determination of the stimulus source. Anisotropic hydrogels are
constructed to enable finer and more bionic reading of biosignals by
electronic skin; directional freezing is one of the most prominent
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methods for forming anisotropic biomaterials. Another effective
approach is introducing naturally anisotropic components such as
cellulose nanofibrils (Yan M. Z. et al., 2022) and lignin (Yan G. H.
et al., 2022). The currently proposed direction recognition still has
limitations: it can only recognize motions in the same plane,
including forward and reverse directions, and more complex
motions are difficult to distinguish by electrical signals (Peng
et al., 2020) (Figure 5E). Therefore, advanced materials with 3D
orientation recognition capability still need to be further explored. It
is possible to design the structure of anisotropic hydrogels to obtain
three-dimensional woven receptors and then encode the readers to
achieve three-dimensional perception.

3.2.2 Mechanical properties
PVA-based hydrogels offer significant versatility in terms of

their mechanical properties, enabling adjustment over a wide range.
By modifying factors such as the concentration of PVA, the
composition of the hydrogel, and the synthesis methods, the
mechanical performance of PVA-based hydrogels can be
extensively tailored. Therefore, PVA-based hydrogels are well-
suited for applications in electronic skin, as they exhibit
flexibility, stretchability, and anti-fatigue characteristics. This
adjustability allows these hydrogels to meet the diverse
requirements of electronic skin (Wu et al., 2021). Progress has
been made in toughening hydrogels by forming double networks
(Zhang et al., 2023), adding nanofilms, and mechanical training. The
main idea is to introduce an energy dissipation mechanism to
enhance the fatigue fracture resistance of hydrogels using
dynamic bonding, ligand bonding, or sacrificial fracture of the
second network (Zheng et al., 2021).

3.2.2.1 Improving the mechanical strength of hydrogels
through improved cross-linking methods

The first method to improving the mechanical strength of
hydrogels uses a binary solvent. Water is used as a dispersant in
conventional PVA-based hydrogels to create high water percentage
hydrogels, which leads to loose cross-linking of hydrogels; therefore,
reducing the water content enhances the mechanical strength of
hydrogel. However, the inherent low solubility of PVA does not
support preparing low-water-content hydrogels. Therefore, mixing
organic solvents such as ethylene glycol (Wen et al., 2021; Dai et al.,
2022), glycerol (He et al., 2020; Ma et al., 2020), and dimethyl
sulfoxide with water in a certain ratio can overcome this issue by
reducing the water content. Moreover, the strong hydrogen bonds
formed between organic solvents and water molecules can enhance
the hydrogel flexibility.

The second method Is to add a F-T cycle or a thermal annealing
step. As mentioned above, increasing the number of F-T cycles
increased physical entanglements and hydrogen bonds in PVA-
based hydrogels, producing a stronger PVA-based hydrogel.
Thermal annealing could also enhance the mechanical strength
of hydrogels prepared by F-T cycles, significantly improving
mechanical properties, including fracture toughness and tensile
strength (Cao J. L. et al., 2022); hydrogels are subjected to
50°C–120°C and constant humidity for several hours to increase
their crystallinity (Chen J. D. et al., 2022).

The third is the salting method that effectively enhances
hydrogel mechanical strength and toughness (Wu et al., 2021;
Yan G. H. et al., 2022) (Figure 6A). Higher concentrations of salt
solutions would further enhance the effect on the mechanical
properties of hydrogels. Accordingly, the mechanical properties

FIGURE 4
(A,B) PVA-based hydrogel doped with Al3+ or Ca2+, the metal ions can make the hydrogel have good ionic conductivity (Gan et al., 2021; Lu L. et al.,
2022); (C) The application of organic solvents enables the hydrogel to maintain good electrical conductivity in low-temperature environments and
underwater. The concentration of NaCl solution affects the conductivity, and this hydrogel possesses sustained conductivity (Li et al., 2022c).
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of PVA hydrogels can be adjusted on a large scale by changing the
salt type and concentration. The interaction between ions, water
molecules, and polymer chains induces different degrees of
aggregation of polymer chains, resulting in significantly different
mechanical properties. The saturated Na2SO4 solution-treated PVA
hydrogels exhibit considerable strength (15 ± 1 MPa), toughness
(150 ± 20 MJ m-3), and elongation (2,100% ± 300%) (Wu
et al., 2021).

3.2.2.2 Improving the mechanical strength of hydrogels by
enhancing PVA networks

The most common approach to improve the hydrogel
mechanical strength is to build multiple networks (Figure 6B).
The porous structure of PVA-based hydrogels allows them to act
as a flexible backbone, and the interpenetrating network
increases hydrogen bonding and electrostatic interactions in
the material. The multi-network design can effectively
improve the mechanical properties of hydrogels (Lu L. et al.,
2022). For example, the double network of PVA and sodium
alginate has excellent mechanical properties due to chelation
between mineral ions and organic matrices (Shen et al., 2022).
Additionally, the multi-network synergistic PVA/sodium
carboxymethylcellulose/TA/MXene hydrogels show good
mechanical strength (1.8 MPa/6.24 MJ m–3) (Yan G. H. et al.,
2022) (Figure 6A).

Increasing the coordination or reversible bond type and number
in the hydrogel network can also enhance its structural stability
(Figure 6D). As mentioned previously, carbon nanofibers (Li et al.,
2022b), tannins (Mredha and Jeon, 2022; Zhan et al., 2022),
dopamine and polyamine molecules (Liu et al., 2021) are widely
used as hydrogen bonding cross-linkers for PVA-based hydrogels.
F-T-crosslinked hydrogels are more biocompatible than chemically
crosslinked ones, although their structure is less stable. Hydrogen
bonding is a physical interaction force that allows for tight junctions
between PVA molecules–due to the abundant hydrogen bonds–and
does not impair the bio-friendly properties of PVA materials.
Therefore, the hydrogen bonding cross-linkers enhance the
mechanical properties of physically cross-linked PVA-based
hydrogels. Using hydrogen bonding cross-linkers can significantly
enhance the strength and toughness of hydrogels. For example, Liu
et al. (2021) prepared a PVA/HCPE (small multi-amine molecules)
composite hydrogel using polyamine molecules, showing excellent
fracture strength and strain to 98 MPa and 550% (Figure 6C).

3.2.3 Self-healing and self-adhesive
3.2.3.1 Self-healing

Self-healing materials have attracted a great deal of interest from
researchers. The ideal self-healing material should be able to restore
the mechanical properties and electrochemical functions relatively
quickly. PVA-based hydrogels achieve self-healingmainly relying on

FIGURE 5
Properties and applications of PVA-based hydrogels in flexible sensing. (A) Ionically conductive PVA-based hydrogels can sensitively and
reproducibly convert motion signals into electrical signals (Zhang L. et al., 2022); (B) Sweat sensors prepared using PVA-based hydrogels can respond to
Na+, K+, Ca2+ and their concentrations in sweat (Qin et al., 2022); (C). Anti-freezing and water-preserving design of PVA-based hydrogel can in realizing
sensing underwater (Lu L. et al., 2022); (D) PVA-based hydrogel monitors the movement process of human body (Qin et al., 2022); (E) Anisotropic
PVA-based hydrogel can differentiate the movement signals in different directions (Peng et al., 2020); (F) PVA-composite hydrogel possesses excellent
anti-freezing properties and can realize stable electrical signal conduction at −60°C (Dai et al., 2022).
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the reversible breakage and reconstruction of dynamic covalent
bonds and supramolecular interactions (Peng et al., 2020). So far,
reversible chemical bonds (including disulfide bonds (Li et al.,
2022e; Ling et al., 2022), borate ester bonds (Qin et al., 2022),
Diels–Alder reactions, and reversible free radical reactions) and
non-covalent interactions (including hydrophobic interactions,
host-guest interactions, hydrogen bonds, and various weak
molecular interactions) have been used to make self-healing
hydrogels (Cao J. L. et al., 2022) (Figure 7A). When the material
is stressed, dynamic bonds break and reorganize reversibly.
Consequently, the material can have beneficial properties such as
self-healing, shape memory, and better adaptability, leading to
several applications of hydrogels in biomedicine, such as pressure
sensors, wound dressings, and tissue adhesives (Takacs et al., 2022).
Many polymers connected by non-covalent interactions can also
achieve self-healing. However, high temperature or F-T are often
required, which prolong self-healing time. Therefore, they can be
used for material recycling but do not meet the need for immediate
self-healing as electronic skin.

3.2.3.2 Self-adhesive
The tissue adhesion ability of hydrogel is attributed to the

chemical/physical bond formed between the hydrogel and the
tissue. The amide bond is a usual chemical bond between
bonding materials and tissues. The attachment between the

aldehyde group of the hydrogel and the amino group of the
surrounding tissue occurs because of the abundant presence of
amino groups on the tissue surface (Gao et al., 2019). The main
way to obtain tissue adhesion in PVA-based hydrogels is by
introducing catechol groups or copolymerization with acrylic acid
with abundant carboxyl groups (Su et al., 2020a; Zhu H. et al., 2022;
Huang et al., 2023) (Figure 7C).

Some technical obstacles limit the development of underwater
tissue adhesion hydrogels. First, current underwater adhesives rely
mainly on surface patterning (Rao et al., 2018), dense interfacial
physical bonding (Wang Z. et al., 2020), surface water absorption
with nanocrystal formation or self-hydrophobicity to produce
greater physical adhesion to various solid surfaces (Han et al.,
2020). Most current underwater adhesives have a higher affinity
for non-biological materials such as glass and metal. The second is
the difficulty of rapid tissue adhesion and self-healing underwater.
Unlike inorganic hydrophilic materials (e.g., glass and metals),
animal tissues often contain oils or other hydrophobic
substances, greatly reducing the adhesive capacity of most
bonded hydrogels (Shao et al., 2018). Hydrophilic groups on the
surface of hydrogels and tissues tend to form hydrogen, electrostatic
bonds, or both with water molecules and organic components (e.g.,
glycine) underwater. This can further weaken the hydrogel-tissue
and hydrogel-hydrogel interactions (Zhong et al., 2014). The third
obstacle is the large swelling rate of most viscous hydrogels in water,

FIGURE 6
Methods to enhance the mechanical properties of conductive PVA-based hydrogels; (A) Salt precipitation, especially immersion in Na2SO4 solution
can substantially enhance the toughness of hydrogels (Wu et al., 2021); (B) Starch/PVA dual-network hydrogels possess good tensile properties and
tensile strength (Lu L. et al., 2022); (C) Small multi-amine molecules enable the formation of dynamic nanoconfinement in the hydrogel, allowing the
hydrogel to have excellent mechanical strength (Liu et al., 2021); (D) Composite PVA-based hydrogels formed with the introduction of a large
number of metal-ligand and reversible bonds possess good mechanical strength (Cao J. L. et al., 2022).
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which causes significant swelling and embrittlement of the hydrogel
network in an aqueous environment. When swelling occurs, the
adhesion usually decreases sharply due to the significant decreases in
the bonding functional group density.

He et al. reported PVA/tannic acid/carbon nanotubes
hydrogel had the ability to adhere pigskin underwater. Due to
the presence of a large number of catechol and o-phenyltriol
groups in tannic acid, it can endow hydrogel with self-adhesive
properties through the formation of hydrogen bonds,
electrostatic interactions, and hydrophobic interactions (He
et al., 2022). The starch/PVA-borax/tea polyphenol/ethylene
glycol hydrogel reported by Tao et al. also showed underwater
adhesion properties. The adhesion of this hydrogel is mainly
accomplished through the polyphenol chemistry of tea
polyphenol, i.e., hydrogen bonding, hydrophobic interactions,
metal coordination, and physical interactions (Ke et al., 2023).
Other non PVA-based hydrogels, such as acrylamide composite
hydrogels, also use hydrophobic properties to obtain underwater
adhesion (Han et al., 2020).

3.2.4 Other characteristics
3.2.4.1 Frost resistance and durability

Conventional conductive hydrogels consist mainly of water and
are susceptible to environmental factors due to the crystallization of
water molecules below zero degrees, which results in a precipitous

drop in the hydrogel conductivity at low temperatures. Conversely,
hydrogels tend to dehydrate and become dry and hard when
exposed to high temperatures. During the working process, the
hydrogel gradually loses its original mechanical properties,
flexibility, and ionic conductivity due to water loss. Applying
binary solvents is one of the main methods to achieve freeze
resistance and durability of PVA-based hydrogels. The organic
solvents ethylene glycol, glycerol, and dimethyl sulfoxide were
introduced into the gel to replace some water molecules (Li et al.,
2022c) (Figure 4C). The formation of strong hydrogen bonding
interactions between organic solvent and water molecules effectively
inhibits forming ice crystals at low temperatures and dehydration at
high temperatures. For example, GPPD (Graphene oxide–- PVA/
polyacrylamide–- double network) hydrogel was prepared using a
binary solvent system of ethylene glycol/water. The device possesses
excellent cold resistance and moisture retention properties; it can
work stably at very low temperatures of–50°C to–80°C and has a
moisture retention duration of 100 days (Dai et al., 2022)
(Figure 5F). Strong hydrogen bonding improves the gel stability
for use in harsh environments and greatly slows the drying.
Chelation between metal ions and organic matrices can also give
hydrogels excellent antifreeze properties (Zhu X. Q. et al., 2022; Shen
et al., 2022). For example, Mg2+ and Ca2+ composite hydrogels
prepared by Shen et al. demonstrate excellent freeze resistance
performance (Shen et al., 2022).

FIGURE 7
Reversible chemical bonding and non-covalent interactions can confer good self-healing properties to PVA-based hydrogels. (A) Self-healing
photographs and pattern diagrams of PVA-based hydrogels enriched with borate ester bonding and hydrogen bonding (Qin et al., 2022); (B) Schematic
illustration of the principle of self-healing in PVA-based hydrogels, and their energy storagemodulus and loss modulus before and after self-healing (Cao
J. L. et al., 2022); (C) Copolymerization with poly (dopamine) enabled the PVA-based hydrogel to obtain excellent adhesion properties, and showed
a certain adhesion strength to different substrates (Zhu H. et al., 2022); (D) Repeatable interfacial adhesion of the PVA-based hydrogel to the pig skin
exhibit (Huang et al., 2023).
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3.2.4.2 Self-powered capability
The self-powered capability allows hydrogel sensors to be

adapted to multiple uses, acting as an intrinsic power source and
a functional component (Han et al., 2022). Some interesting designs
address the energy issues when applying PVA-based hydrogels as
flexible sensors. The main designs for flexible wearable devices to
achieve self-power are solar cells, friction nanogenerators (Xu et al.,
2017; Xu et al., 2023), thermoelectric generators (Khan et al., 2016),
and moisture generators (Hu et al., 2021). Among them, friction
nanopower (Luo et al., 2021) and water vapor power (Hu et al.,
2021) have been practiced in PVA-based hydrogels. Frictional
nanogenerators use the friction between the hydrogel and the
skin when the joint moves to convert the bending behavior into
a voltage signal. Moisture generators are instead implemented by a
polymer with ionization groups that spontaneously absorb water
molecules from moist air and release positively/negatively charged
ions (Luo et al., 2021). For example, Qin et al. (2022) designed a self-
powered sweat sensor that enables real-time health monitoring by
detecting soluble biomarkers such as electrolytes or metabolites.

3.3 Wound dressing

The ideal wound dressing must have passive and active protection
to promote wound healing. Passive protectionmeans it fits flexibly over
the affected area, insulates the wound from contact with airborne dust
and bacteria, and prevents secondary damage from external physical
friction. The stretchability of human natural skin is 60%–75%, and the
elastic modulus is 5–1,000 kPa in smaller strains (Chen, 2017; Qu et al.,
2018), but it can even reach 4.1–18.8 MPa in larger strains (Joodaki and
Panzer, 2018). Thus most of the PVA-based hydrogels are suitable for
skin applications in terms of tensile properties and elastic modulus.
Active protection means equipped with antibacterial and anti-
inflammatory features that can slow-release drugs to kill bacteria or
promote wound healing. The PVA-based hydrogel structure is similar
to that of a natural extracellular matrix, with high water content,
flexibility, loose porosity, and other characteristics, representing an
ideal candidate for wound dressing materials. The high water content
allows the hydrogel to provide a moist environment to the wound and
prevent dehydration (Luo et al., 2021). The porous structure and
biodegradability of hydrogels facilitate drug delivery, oxygen
transport, and slow drug release (Khorasani et al., 2018; Montaser
et al., 2019). Accordingly, PVA-based hydrogels are commonly used as
wound dressings. The main research directions are to promote the
antibacterial and anti-inflammatory effects and achieve conditionally
responsive drug release.

3.3.1 Antibacterial and anti-inflammatory
Bacterial infection and inflammation play a crucial role in the

development and persistence of chronic wounds. Consequently, it is
essential to consider these factors when utilizing hydrogels as wet
dressings. PVA-based hydrogels exhibit antimicrobial activity
primarily through copolymerization with natural antimicrobial
agents, incorporation of antimicrobial components, and application
of near-infrared light (NIR) irradiation. The synergistic effect of these
various antimicrobial mechanisms has demonstrated notable efficacy.

The first method is copolymerization with natural antibacterial
ingredients. Natural polymers such as chitosan (Shamloo et al., 2021;

Cao J. L. et al., 2022; Liu et al., 2023), silk protein (Eivazzadeh-
Keihan et al., 2020), and sodium alginate (Abbasi et al., 2020) possess
antibacterial activity. Its copolymerization with PVA can give the
wound dressing a better healing promotion function and improve its
weak mechanical properties (Figure 8B). For example, chitosan-
PVA hydrogels have been widely used as trauma dressings, and this
composite material possesses excellent antimicrobial activity, and
promotes wound healing (Liu et al., 2018). The NH3

+ in chitosan can
interact with negatively charged cell membranes, leading to
cytoplasmic extravasation. Low molecular weight chitosan can
penetrate bacteria and destroy DNA. High molecular weight
chitosan can cover the cell surface and inactivate bacteria by
depriving them of nutrient supply (Khorasani et al., 2019).

The second method is to load inorganic antimicrobial ingredients.
Many inorganic antimicrobial materials have been successfully
incorporated into PVA-based hydrogels to synthesize various
antimicrobial hydrogels (Wang et al., 2020). It mainly includes metal
nanoparticles, metal ions, and carbon nanomaterials. These materials
had three main antibacterial mechanisms: the first is that nanomaterials
in photocatalysis can produce singlet oxygen (1O2) and hydroxyl
radicals (·OH) to achieve sterilization through catalytic
oxidation–photodynamic therapy (PDT) (Wang et al., 2019; Su
et al., 2023); nanomaterial Ti3C2Tx (MXene) (Su et al., 2023), gold
nanorods (Qin et al., 2023), and graphene oxide (Wang J. H. et al., 2022)
have been widely used for preparing photocatalytic antibacterial
dressings (Figure 8C). The second is the use of metal ions to disrupt
cell membranes, resulting in the leakage of intracellular substances.
Some of these smaller-sized metal elements can pass through the cell
membrane and act on the cytoplasm, damaging the bacterial DNA and
proteins. Many metallic materials [metallic nanoparticles such as silver
(Song et al., 2021; Mojally et al., 2022; Qi et al., 2022; Ke et al., 2023),
gold (Qin et al., 2023), cerium oxide (Kalantari et al., 2020), and zinc
oxide (Khorasani et al., 2018; Raafat et al., 2018), as well as metal ions
such as Cu2+ (Xia et al., 2022; Xia et al., 2022), Fe3+ (Qi et al., 2022),
Al3+(Li et al., 2022b; Wang Y. et al., 2022), and Mg2+ (Eivazzadeh-
Keihan et al., 2020; Albalwi et al., 2022)] have been successfully loaded
into PVA-based hydrogels with good antibacterial effects. The third
uses the photothermal effect the photothermal agent produces under
NIR excitation–photothermal therapy; the principle is that during NIR
irradiation, the photothermal agent generates heat, causing a local high
temperature and irreversible damage to microorganism protein and
enzymes, thus achieving sterilization (Su et al., 2023) (Figure 8A).Many
materials with photothermal effects are used for photothermal therapy,
such as carbide polymer dots (CPD) (Lu H. J. et al., 2022), graphene
oxide (Wang J. H. et al., 2022), and molybdenum disulfide (MoS2) (Li
et al., 2022e). Qin et al. (2023) designed a PAA/PVA-gold nanorod
hydrogel that can rapidly and efficiently disrupt bacterial biofilms and
promote infected wound healing under NIR irradiation.

Another method is to load organic antibacterial ingredients. For
example, antibiotics (Qiao et al., 2020) [e.g., mupirocin (Zhao H.
et al., 2020) and amikacin (Abbasi et al., 2020)], tannins (Li et al.,
2022e; Su et al., 2023; Yi et al., 2023), antimicrobial peptides (Zou
et al., 2020), and allicin (Wang J. H. et al., 2022) showed good broad-
spectrum antibacterial activity in the PVA-based hydrogel bacteria.
The design of loaded antimicrobial ingredients suffers from
antimicrobial activity loss due to the active antimicrobial
ingredient release. Non-releasing antimicrobial materials such as
antimicrobial peptides, graphene oxide, chitosan, and ionic liquids
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can impart sustained antimicrobial activity to hydrogels. Liu B. et al.
(2022) designed and synthesized a polymeric ionic liquid-PVA-
borax tri-crosslinked hydrogel that achieved long-lasting
antibacterial effects due to the non-releasing nature of ionic
liquid (Figure 8D).

Furthermore, some studies have promoted wound healing by
imparting hydrogel reactive oxygen scavenging (Zhao H. et al., 2020;
Qiao et al., 2020) and oxygenation capacity (Li et al., 2022e; Ling
et al., 2022; Nour et al., 2022) to slow the inflammatory response of
wounds. The MoS2@TA/Fe enzyme-anchored multifunctional
hydrogel has both advantages: MoS2 and TA can scavenge excess
free radicals from the affected area, while catalase-like enzymes can
decompose H2O2 to provide O2 to the affected area (Li et al., 2022e).

3.3.2 Drug delivery and conditional
responsive release

The high water content, good biocompatibility, and the ability to
easily encapsulate hydrophilic drugs make PVA-based hydrogels a
desirable drug release system (Yao et al., 2022) (Figure 8E). The drug
loading and delivery rate are mainly related to the hydrogel
microstructure and swelling. Molecular imprinting is used to
prepare hydrogels, which can be tailored to the hydrogel
microstructure by controlling their polymerization behavior,
facilitating hydrogel preparation for efficient and targeted drug
release (Kakkar and Narula, 2022). The specific microstructure
allows the hydrogel to respond to changes in the wound
microenvironment or to the production of a certain substance.
Hydrogels that exhibit responsiveness to pH, light, temperature,

and other biological signals have garnered considerable attention
(Qin et al., 2023).

PVA-based hydrogels can achieve environmentally responsive
drug release through reactive cross-linking agents. For example, a
ROS-scavenging hydrogel using ROS-responsive linker cross-
linking was designed by Zhao H. et al. (2020), which
downregulated pro-inflammatory cytokines, upregulated
M2 phenotype macrophages, and promoted angiogenesis and
collagen production. Meanwhile, due to the responsive cutting of
the cross-linker, the hydrogel gradually degrades and releases loaded
mupirocin and granulocyte-macrophage colony-stimulating factors,
which inhibit bacterial infection and accelerate wound repair,
respectively.

Part of the design achieves responsive release of the drug by
copolymerizing PVA with a bio-signal responsive material. For
example, sodium alginate, rich in carboxyl groups, can accept or
release loaded anti-inflammatory drugs depending on the
environmental pH. PVA/SA hydrogels have successfully
controlled pH-sensitive drug release (Montaser et al., 2019;
Abbasi et al., 2020). Qiao et al. (2020) developed a smart
hydrogel-based trauma dressing by physically cross-linking PVA
with an UV-cleavable polymer. The hydrogel can monitor bacterial
infections by detecting specific substances they release and treating
infections by stimulating antibiotic release through NIR. Qin et al.
(2023) prepared a photothermal nanocomposite hydrogel that
responds to NIR stimulation by exploiting the photothermal
effect of gold nano-ions. The hydrogel could rapidly eliminate
over 80% of Gram-negative/positive bacteria under NIR irradiation.

FIGURE 8
(A) PVA-based hydrogels can be affixed to chronic wounds and slowly release drugs under NIR light stimulation (Su et al., 2023); (B) PVA-based
hydrogels can promote hydrogel wound healing (Liu et al., 2023); (C) PVA-based hydrogels can be copolymerized with antimicrobial active materials to
obtain better antimicrobial properties (Su et al., 2023); (D) PVA-based hydrogels show better anti-inflammatory effects (Liu B. et al., 2022); (E,F) PVA-
based hydrogels can achieve long-lasting drug release (Chen S. Y. et al., 2022).

Frontiers in Chemistry frontiersin.org15

Zhong et al. 10.3389/fchem.2024.1376799

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://doi.org/10.3389/fchem.2024.1376799


3.4 Other applications

PVA-based hydrogels are widely used in various biomedicine
fields due to their good biocompatibility and suitable and tunable
mechanical properties, showing great potential for applications in
long-acting drug delivery, treatment, and chronic disease diagnosis.

Hydrogels have been designed as skin microneedle patches due
to their water-absorbing properties and ease of transition between
relatively rigid and flexible states (Wu et al., 2021). Microneedle
(MN) based transdermal drug delivery systems are gaining interest
as an alternative to traditional vaccine, drug, and cosmetic delivery
methods. Chen S. Y. et al. (2022) designed a borate-PVA hydrogel
for efficient skin penetration and sustained glucose-responsive
insulin delivery (Figure 9A).

Patients often need to take medications continuously for an
extended period during chronic disease treatment; a carrier for a
long-acting, sustained-release drug can simplify the treatment
process, facilitate chronic disease management, and help improve
patient compliance with medication. For example, Sunita et al.
loaded PVA-based hydrogels with calcipotriol to treat psoriasis
by adding polyvinylpyrrolidone to PVA to improve its
hydrophilicity and water permeability (Thakur et al., 2023). The
results show that the hydrogel can achieve prolonged drug release,
promote epithelial tissue regeneration, and heal psoriatic lesions.

Hydrogels are ideal for gastric retention materials, enabling in
vivo physiological monitoring, diagnostics, and extended drug
delivery (Bellinger et al., 2016; Liu et al., 2017). A gastric

retention device was prepared by Liu et al. (2019) that utilized
polyacrylic acid particles with high water absorption to encapsulate a
PVA-based hydrogel. It can rapidly absorb water and swell and
reside in the stomach of the animal for a long time. The porous and
loose structure of PVA-based hydrogels makes loading drugs easier,
while adding nanocrystalline domains makes them robust, resilient,
and fatigue-resistant. This is the core principle of the ability to
perform therapeutically and remain robustly in the stomach under
repetitive mechanical compression and gastric acid
erosion (Figure 9C).

A hybrid coupling consisting of a PVA-coated Aβ probe has
high sensitivity, selectivity, biocompatibility, and economy; this
nanoprobe can enable the early diagnosis of Alzheimer’s disease
by detecting Aβ peptides in human serum (Hamd-Ghadareh et al.,
2022). In addition, PVA-based hydrogels have also been applied in
areas such as crystalline lenses (Ran et al., 2023) and vascular
pathways (Mannarino et al., 2020).

4 Summary and prospect

Due to the unique structure of PVA, PVA-based hydrogels have
multiple promising applications in biomedicine. The researchers
adopted different methods to make PVA-based hydrogels obtain
various properties. These methods have their limitations and cannot
adapt to all situations. For example, due to the low temperature and
annealing, the physical cross-linking method for preparing hydrogel

FIGURE 9
Other applications of PVA-based hydrogels; (A) Schematic and photographs of the synthesis of PVA-based hydrogels for microneedle patches; (B)
Schematic and photographs of microneedle patch application (Chen S. Y. et al., 2022); (C) PVA-based hydrogel for gastric retention device, which can be
rapidly dissolved in the stomach and retained for a long period of time up to 30 days (Liu et al., 2019); (D)Gastric retention device in porcine stomachwith
X-ray photographs and drug release profile (Liu et al., 2017).
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cannot be used for cell-loading research. Preparing the hydrogel by
chemical cross-linking introduces a residual chemical reagent, which is
not conducive to cell growth. The high UV radiation intensity is not
conducive to cell loading and growth, and the low radiation intensity
cannot form a high-strength hydrogel. Therefore, many problems need
to be solved with PVA-based hydrogels. Accordingly, the best solution
is to combine physical and chemical methods and explore innovative
ways to prepare hydrogels.
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