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Over the last decades, porous organic materials (POMs) have been extensively
employed in various industrial approaches including gas separation, catalysis and
energy production due to possessing indisputable advantages like great surface
area, high permeability, controllable pore size, appropriate functionalization and
excellent processability compared to traditional substances like zeolites, Alumina
and polymers. This review presents the recent breakthroughs in the
multifunctional POMs for potential use in the membrane-based CO2

separation. Some examples of highly-selective membranes using
multifunctional POMs are described. Moreover, various classifications of POMs
following with their advantages and disadvantages in CO2 separation processes
are explained. Apart from reviewing the state-of-the-art POMs in CO2 separation,
the challenges/limitations of POMs with tailored structures for reasonable
application are discussed.
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1 Introduction

Over the last decades, significant increment in the anthropogenic industrial-based
release of carbon dioxide (CO2) greenhouse gas has exacerbated the risk of serious air
pollution and unfavorable climate changes like global warming, unbalanced pattern of
precipitation and sea-level rise, which not only endanger the humans’ health but also
negatively affect economic systems (Nakhjiri et al., 2018/11; Carnicer et al., 2022; Huhe
et al., 2023). The maximum permittable value of CO2 in natural gas for commercial natural
gas is 2.5% (Mazzetti et al., 2014). Higher value of this water-soluble chemical compound in
natural gas can result is different detrimental effects like corrosion of pipe lines and
reduction of gas heating value (Nakhjiri et al., 2020). Therefore, development of cutting-
edge, environmentally-friendly, cost-effective and breakthrough technologies to increase
the separation rate of CO2 from gaseous mixtures is of prime importance in industry.
Table 1 aims to present detailed information about CO2.

In recent years, membrane-based separation technology has been of prime attention in
various situations such as CO2 removal, air dehumidification, solvent extraction and
precious metals recovery due to its noteworthy advantages such as energy efficiency
and environmental benefits (Cannone et al., 2021; Cao et al., 2021; Cao et al., 2021/04;
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Taghvaie Nakhjiri et al., 2022; Ghadiri et al., 2020; Pishnamazi et al.,
2020/09). Appropriate microporous membranes should possess
great permeability and selectivity toward separation of specific
gases. Despite the significant modification of membranes using
physical techniques (i.e., fabrication route and membrane
configuration), the advancement of more efficient materials with
brilliant separation capabilities has been of great attention among
academic researchers (Zou and Zhu, 2018; Babanezhad et al., 2020).
Polymers (i.e., cellulose acetate (CA), polyamides (PAs), and
polyimides (PIs)) are known as the most prevalent employed
membrane materials in industrial gas separation applications,
which have been prosperously commercialized since the 1980s
(Zhang et al., 2013; Baker and Low, 2014). Generally, polymeric
membranes with high selectivity have low permeability, and vice
versa. Dense or low-porous phase of polymeric membranes is the
reason of justifying this trade-off relationship, which is able to be
empirically and theoretically confirmed by Robeson and Freeman,
respectively (Freeman, 1999; Robeson, 2008). Porous organic
materials (POMs) are developing as an emerging solution for the
issue. POMs are known as the hydrocarbons including pores/voids
in the microporous region. Their structures are created by organic
moieties adjoined via vigorous covalent bonds, often eventuating in
ordered and rigid structures. Porous Aromatic Frameworks (PAFs),
Conjugated Microporous Polymers (CMPs), Hyper-Cross-Linked
Polymers (HCPs), Polymers of Intrinsic Microporosity (PIMs),
Covalent Organic Frameworks (COFs) and Covalent Triazine
Frameworks (CTFs) are regarded as the certain classifications of
the POMs (Nakhjiri and Roudsari, 2016; Das et al., 2020; Krishnaraj
et al., 2020; Lee and Cooper, 2020; Lee et al., 2020; Pishnamazi et al.,
2020; Ramezanipour Penchah et al., 2020). Based on the suggestion
of International Union of Pure and Applied Chemistry (IUPAC),
those pores with persistent connection routes with the external
surfaces of the porous structure are called open pores, while those
pores that are segregated from others are considered as the closed
pores (Rouquerol et al., 1994). The open pores possess brilliant
capabilities to be applied in fluid dynamics and gas separation, and
therefore, have been of great interest among numerous chemists and
chemical engineers all over the world (Rouquerol et al., 1994). The
classification of the POMs based on their pore size (according to the
IUPAC recommendation) is as follows (Das et al., 2017):

A) Microporous POMs with pore size lower than 2 nm;
B) Mesoporous POMs with pore size 2–50 nm;
C) Macroporous POMs with pore size higher than 50 nm.

Figure 1 presents the development of the membrane
separation industry.

Most of POMs have noteworthy characteristics such as great
surface areas, appropriate thermal stability and negligible
framework density. The aforementioned features have made them
promising for application in gas separation, catalysis, and
biomedical systems (Ding and Wang, 2013; Zou et al., 2013;
Little and Cooper, 2020). Therefore, significant endeavors have
been made to synthesize and consequently characterize the
POMs with disparate chemical structures. POMs-based
membranes may act as a novel classification of molecular sieves
thanks to their high porosity and small pores at molecular levels.
Therefore, great separation efficiency of gas molecules can be
expected if POMs are correctly processed for the membranes
(Budd and McKeown, 2010; Marjani et al., 2021).

The main objective of this review study is to discuss the current
advancements in the application of POMs in CO2 separation.
Various classes of POMs such as HCPs, PIMs, COFs, CMPs,
CTFs and PAFs following with their advantages and
disadvantages in CO2 separation processes are subjected. In
addition to reviewing the breakthrough applications of MOFs in
CO2 separation, the challenges/restrictions towards the true
understanding of POMs with tailored structures for reasonable
applications are discussed.

2 Classification of POMs

Here, different types of POMs accompanying with the
characteristics of each classification are described.

2.1 HCPs

HCPs are known as one of the most important amorphous
polymers possessing great surface areas and low densities, which are
synthesized applying disparate chemical procedures (i.e., Friedel −
Crafts alkylation chemistry) from other POMs. Moderate reaction
conditions, cheap reagents, and ease of scale up are the privileges of
HCPs, which make them promising in gas separation, catalysis and
removal of aromatic molecules from water (Wood et al., 2008; Xu S.
et al., 2013; Masoumi et al., 2020). Wang et al. evaluated the
adsorption efficacy of CO2 applying different types of HCPs
functionalized by ethylenediamine (EDA). Based on the influence

TABLE 1 Detailed information about CO2 (Stein, 2022; Guais et al., 2011; Vesovic et al., 1990; Cao et al., 2021/09).

Molecular structure Molar mass (mol) Appearance Solubility in water Toxicity

44.09 g−1 Colorless gas 1.45 g/L (at 25°C) Headaches

Dizziness

Difficulty in breathing

Sweating

Increased heart rate

Asphyxia

Convulsions
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of amine functionalization, they perceived that the selectivity of
amine functionalized HCPs (HCPs-A) significantly enhanced and
reached to 85.71 and 8.12 for CO2/N2 and CO2/CH4 gaseous
mixtures due to increased specific surface area and microporosity
(Wang et al., 2020).

The prevalent techniques applied for the synthesis of HCPs are
(Xu S. et al., 2013; Tan and Tan, 2017; Yang et al., 2020):

A) Post-cross-linking (PCL) of polymers;
B) Direct one-step polycondensation (DOP);
C) Application of external crosslinkers (ECLs).

The PCL procedure starts by polymeric precursors’
dissolution in solvent. Whenever the swelling process initiates,
the polymeric chains are released from a tangled or twisted state
and the free area between them is occupied by the solvent. Then,
the polymeric chains are exposed to cross-linking process. After
solvent removal, the polymeric chains are disassociated using the
cross-links, finally eventuating in the preparation of an inter-
linked porous polymer. Discovery of Davankov resins has
eventuated in an instant advancement in the design,
characterization, synthesis and application of HCPs. The most
noteworthy privilege of DOP is the direct application of
commercial-based accessible polymeric products as precursors
for PCL process (Tan and Tan, 2017). Various synthetic
procedures consisting of self or co-condensation of
chloromethyl/hydroxymethyl-based monomers have been
offered for the appropriate synthesis of HCPs. However, all of
the abovementioned procedures suffer from certain drawbacks
like the need of great amounts of organic reagents and solvents
following with energy cost for further purification steps. An
outstanding development is ECL strategy in which active
formaldehyde dimethyl acetal is used as an external

crosslinker to blend simple aromatic components such as
benzene with rigid methylene bridges by means of the
anhydrous FeCl3 catalyzed Friedel–Crafts reaction (Tan and
Tan, 2017). Application of external cross-linkers as the third
synthesis procedure, which has resulted in increasing the variety
of HCPs (Germain et al., 2007). Schematic demonstration of
hyper cross-linked polystyrene is presented in Figure 2.

2.2 PIMs

PIMs are known as the polymers with amorphous microporosity
and rigid main chains. Appropriate solubility in organic solvents, great
surface area and their film formation characteristics eventuate in the
development of PIMs in industry (McKeown, 2012; Agarwal et al., 2020;
Perry et al., 2020; Polak-Kraśna et al., 2021). PIMs are an excellent
instance of how changing a co-monomer makes a considerable impact
on the porosity of polymer. PIMs are characteristically different from
other classes of porous polymeric materials. PIMs have microporosity
but do not include designated frameworks (Perry et al., 2020). Figure 2
presents a schematic illustration of the phthalocyanine-based PIM. In
an investigation, Budd et al. studied the synthesis process of a
hexaazatrinapthylene (Hatn)-based PIM. Based on their investigation
(Hatn)-based PIM has a great capability to adsorb approximately
3.9 mmol g-1 of the metal complex when exposing to an excess of
palladium (II) dichloride in chloroform solution (Budd et al., 2003).
Ling et al. fabricated a series of metalized PIMs from a carboxyl-based
functionalized PIM (C-PIM). They corroborated that C-PIM-Na
demonstrated the greatest CO2 capture capacity of 2.44 mmol g-1

compared to other metalized PIMs (Ling et al., 2020). Stanovsky
et al. conducted an experiment with the aim of purifying flue gas
applying the ultra-permeable tetramethyl tetrahydronaphthalene -
based PIM coupled with bicyclic triptycene. Acceptable CO2/N2

FIGURE 1
The development of the membrane separation industry, 1960–2020. Adopted from (Baker, 2004; Li et al., 2020).
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selectivity (in the range of 11–18) encouraged the potential application
of this PIM for industrial MCS (Stanovsky et al., 2020). Figure 3
schematically depict the process of PIMs fabrication.

The synthesis of PIMs is an important milestone toward the use
of this type of POMs in membrane-based CO2 separation. PIMs can
be synthesized via a polymerization reaction on the basis of a
double-aromatic nucleophilic substitution mechanism (Scherf,
1999). This reaction possesses great potential to form two
simultaneous covalent bonds with appropriate performance to
provide a linking group composed of fused rings (McKeown,
2012). Overally, aromatic nucleophilic substitutions can be of
great interest to be done particularly if the halide-including
monomer is activated via an electron-withdrawing substituent
(i.e., –CN, F, etc.) (Eastmond et al., 2001).

2.3 COFs

COFs are known as one of the significant members of POMs,
which are fabricated via molecular-structured blocks interconnected

by covalent bonds. Figure 3 depicts the molecular structure of
different COFs. Various features such as custom-made properties
(achieved by functionalization), structural versatility and uniform
pore size distribution have authorized the COFs to be used in an
extensive range of applications like membrane-based gas separation
and cancer treatments (Guan et al., 2020; Sharma et al., 2020; Guo
et al., 2022). The remarkable development of COFs is prominently
justified because of their self-healing capability and
thermodynamically manageable covalent chemistry, which
eventuate in long-range crystalline structure (Pachfule et al.,
2018/01). Compared to MOFs, COFs usually have lower density
and therefore show outstanding stability in organic solvents.
Moreover, COFs have the ability to tolerate harsh situations and
maintain their crystallinity. In comparison with inorganic zeolites
and porous silica materials, COFs possess greater efficiency due to
higher porosity and tunable pore size, which accelerate the penetrant
diffusion (Cooper, 2013). In Figure 4, the molecular structure of
different COFs is presented.

Noteworthy advantages of COFs like inherent porosity, adjusted
channel structure, low density, great stability and designable

FIGURE 2
Illustration of hyper cross-linked polystyrene (Bykov et al., 2021).

FIGURE 3
Illustration of PIMs fabrication. Reprinted from (McKeown, 2020) with permission from Elsevier.
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functionality have made them suitable for application in different
scientific fields like CO2 separation, optoelectronics, drug delivery
and adsorption (Wu and Yang, 2017; Altundal et al., 2020; Ghosh
and Banerjee, 2023). In the case of membrane-based CO2 separation,
porous COFs have been of paramount attentions owing to their
brilliant ability for the storage and separation of major greenhouse
gases (i.e., CO2), H2 and methane (Xia and Liu, 2016).

2.4 CMPs and CPPs

CMPs/CPPs refer to an important category of polymeric
materials that mix extended π-conjugation with a microporous
structure. Generally, CMPs/CPPs are known as microporous
polymeric materials but can be accompanied by great amount of
mesoporosity (Lee and Cooper, 2020). CMPs/CPPs possess great
potential to be extensively used in disparate applications
(i.e., separation processes, heterogeneous catalysis, energy
storage and so on) owing to their brilliant properties like
high porosity, tunable chemistry, appropriate chemical
resistance, and thermal stability (Talapaneni et al., 2016;
Wang et al., 2017; Liao et al., 2018; Cao et al., 2022).
Although gas separation and storage is regarded as the most
prevalent area of investigation for CMPs/CPPs, some drawbacks
such as the application of expensive transition metals in their
synthesis deteriorates their popularity in large-scale separation
applications (Lee and Cooper, 2020). Figure 5 represents a
schematic demonstration of the synthesis process of
core−shell structured CMPs/CPPs. CMPs can be well
identified as the most efficient POMs for the separation of
CO2 greenhouse gas due to their noteworthy advantages

including high surface area and tunable properties (Reddy
et al., 2021; Zhang et al., 2023). The importance of CMPs is
because of the necessary bond conjugation and amorphous
morphology. Poly (arylene ethynylene)s were introduced for
the first time in 2007 as the synthesized CMPs (Jiang et al., 2007).

2.5 CTFs

CTFs can be defined as an important type of organic polymers
fabricated by aromatic 1,3,5-triazine rings with planar π-conjugation
properties (Wei et al., 2019; Liao et al., 2023). The occurrence of
conjugation between aromatic rings and triazine rings significantly
declines overall energy of π-conjugated molecules in the frameworks
and therefore, significantly enhances the chemical stability. In the
majority of cases, N-containing CTFs frameworks have shown their
great potential in adsorption/separation and catalysis (Jadhav et al.,
2019; Jiang et al., 2019). Most recently, CTFs have been appeared as a
promising type of POMs, which is regarded as an adaptable platform for
various applications due to their impressive characteristics such as
permanent microporosity and appropriate thermal/mechanical stability
and chemical resistance even in the strong acidic/basic environment.

The powerful covalent linkages, intrinsically great content of
nitrogen atoms and excellent capability to add hetero-atoms in the
structural skeleton have made CTFs versatile for numerous potential
applications like gas separation and dye adsorption (Krishnaraj
et al., 2020). Additionally, they are reproducible and recyclable,
which permits them to be a noteworthy candidate in terms of
sustainable materials. Figure 6 represents a schematic
demonstration of photocatalytic CO2 separation from formic
acid using CTFs.

FIGURE 4
Molecular structure of different COFs (Bagheri and Aramesh, 2021).
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2.6 Composite membranes

In the recent years, the industrial applications ofmembrane processes
for the effective separation of CO2 pollutant owing to their great potential
to overcome the negative disadvantages of conventional technologies like
cryogenic distillation and desorption (Dai et al., 2023; Yang et al., 2022/03;
Shirazian et al., 2020; Faraji et al., 2020). One of the most efficient
membrane-based approaches for the separation of CO2 is the use of
composite membranes. Composite membranes possess brilliant capacity
to simultaneously combine the positive points of both inorganic and
polymericmembranes, whichmake them a hotspot for scientific research
(Pishnamazi et al., 2020/09). Compositemembranes can be considered as
mixedmatrixmembranes (MMMs), which are often used for the efficient
separation of CO2. Due to the presence of disparate challenges toward the
use of inorganic or polymeric membranes, composite membranes have
been employed to solve the existed limitations of both aforementioned
membranes. The industrial use ofMMMs is being significantly enhanced
due to their ability to combine the compactness of polymericmembranes
and great permeability of inorganic membranes (Saqib et al., 2019).

2.7 PAFs

Figure 6 presents the schematic depiction of PAFs and their various
applications in industry. PAFs are another category of POMs. PAFs,
which are manufactured by carbon-carbon-bond-linked aromatic-

based building units (CCBLABU), possess remarkable features such
as rigid structures and great surface area. The presence of strong
carbon−carbon linkage eventuates in enhancing the chemical
resistance of this class of POMs in undesirable chemical
environments (Tian and Zhu, 2020). Hence, PAFs illustrate excellent
characteristics in chemistry and functionalities in comparison with
traditional POMs like zeolites and MOFs. PAFs can be freely
functionalized by severe chemical treatments (Tian and Zhu, 2020).
Table 2 gives a comprehensive summarization about the characteristics
of various POMs investigated in this review paper.

3 POMs for CO2 separation: challenges
and opportunities

Development of economical/novel technologies for CO2

separation from emission sources is considered as the most
appropriate strategy to decrease the anthropogenic emissions of
this acidic pollutant (Vesovic et al., 1990). POMs have been provided
excellent capabilities for CO2 separation processes due to their
brilliant privileges compared to porous inorganic materials
(i.e., zeolite) or inorganic-organic hybrids (i.e., MOFs), such as
appropriate stability and chemical robustness to acid and base
(Zhang and Dai, 2017). In the recent 20 years, remarkable
progressions have been made by the appearance of various
POMs such as PIMs, CTFs, COFs, CMPs, HCPs and PAFs

FIGURE 5
Synthesis process of core−shell structured CMPs. Reprinted from (Xu Y. et al., 2013) with permission from ACS Publications.
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(Zhang et al., 2015). Generally, POM synthesis needs particular rigid
monomers, which possesses acceptable resistance against the
intermolecular packing, and consequently results in high porosity
(Hao et al., 2015). POMs with different functionalities have been
developed for better physico-chemical and CO2 separation

properties. A summary of the more significant results is
presented in Table 3.

Table 4 gives detailed information about the challenges towards
the development of functionalized POMs-based membrane for CO2

separation.

FIGURE 6
Schematic depiction of PAFs for various industrial applications (Yuan and Zhu, 2019).

TABLE 2 Detailed summarization about the characteristics of various POMs (Bildirir et al., 2017; McKeown, 2017; Huang and Turner, 2018; Liu et al., 2019;
Guan et al., 2020; Lee and Cooper, 2020; Sharma et al., 2020; Tian and Zhu, 2020).

POMs Porosity Designability Crystallinity Stability Synthetic strategy

HCPs Micro Acceptable Amorphous Excellent • PCL

• DOP

• ECL

PIMs Micro Acceptable Amorphous Good Polymerization reaction based on a double-aromatic nucleophilic substitution
mechanism to form the dibenzodioxin linkage

COFs Micro/Meso Good Modest to high Good Self-assembly based on covalent bond

CMPs/
CPPs

Micro Good Amorphous Excellent Cross-coupling of building blocks with different geometries

CTFs Micro Acceptable High Excellent Trifluoromethanesulfonic acid catalyzed method at room temperature and
microwave-assisted conditions

PAFs Micro Good Amorphous Good carbon-carbon-bond-linked aromatic-based building units (CCBLABU)
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4 Conclusion and future directions

This article presents a review about the possibility of POMs
application in CO2 separation processes. Critical investigation on
the functionalization features of different classes of POMs including
HCPs, PIMs, COFs, CMPs, CTFs, and PAFs is implemented and a

detailed summarization about the characteristics of various POMs
such as porosity, designability, crystallinity, stability, and synthetic
strategy is presented to clarify the advantages and disadvantages of
these materials in CO2 separation. Specially, reviewing the state-of-
the-art applications of functionalized POMs in CO2 separation and
the challenges and future directions towards the correct perception

TABLE 3 A comprehensive summary of the more significant results in CO2 separation.

POMs Significant results Ref.

HCPs Carbazole-based HCPs (CHCPs) possessed greater CO2/N2 and CO2/H2 selectivities compared to
benzene-based HCPs (BHCPs) and polystyrene-based HCPs (PHCPs) at 1 bar and 298 K. The order is
CHCPs > BHCPs > BHCPs

Ramezanipour Penchah et al. (2020)

PIMs Significant improvement of CO2 selectivity from 20.4 to 58.1 by presenting superacid-induced self-cross-
linked PIM compared to pristine PIM

Zhou et al. (2020)

COFs Improvement of CO2 permeability by about 2.2 times by applying hollow structured-COF fillers
compared to pure Pebax membrane

Liu et al. (2021)

CMPs/CPPs Great potential of functionalized biphenylene-based CMP for CO2 separation fromCO2/CH4 and CO2/N2

mixtures with maximum adsorption capacity of 87.4 cm3 g-1 and reasonable CO2/N2 and CO2/CH4

selectivities (27.9 and 5.6) at 273 K and 1 bar

Wang et al. (2018)

CTFs • CO2 separation efficiency of 2,4,6-tris(4-cyanophenylamino)-1,3,5-triazine (TAT), 2,4,6-tris(4-
cyanophenoxy)-1,3,5-triazine (TOT), and 2,4,6-tris(4-cyanobenzenesulfenyl)-1,3,5-triazine (TST) are
proved to depend on the incorporated heteroatoms

Liao et al. (2020)

• CO2 separation efficiency of TAT, TOT and TST improves in the order of PhNH- > PhO- > PhS-
linkage in CTFs

PAFs • High CO2 uptake/selectivity make the nitrogen-rich PAF promising for CO2 separation process Ben and Qiu (2020)

• Tailoring the pore diameter of PAFs improves their ability in CO2 separation process

TABLE 4 Challenges towards the development of POMs-based membrane for CO2 separation (Krishnaraj et al., 2020; Prasetya et al., 2019; Johnson et al.,
2008; Haq et al., 2021; Fouladivanda et al., 2021; Yang et al., 2020/03).

POMs-based membrane Challenges towards material
selection

Challenges towards
membrane fabrication/
module configuration

Challenges towards
membrane performance

Mixed matrix membranes (i.e., POFs,
PIMs)

• Selection of resistant fillers (i.e., ionic
liquid (IL)-modified UiO-66-NH2)
against water vapor, pollutants and
so on

• Optimization of particle loading • Addition of nanoparticles such as Ni-
ZIF-8 to enhance penetrant membrane
interactions

• Selection of appropriate polymers to
tolerate unfavorable operational
conditions

• Development of novel synthesis/
characterization method to enhance the
efficiency

• Development of environmentally-
friendly POMs-based membranes with
low environmental toxicity

• Fabrication of asymmetric membrane in
a hollow fiber formation

• Optimization of operational conditions

Pure POFs membrane • Selection of resistant POFs against
unfavorable operational conditions

• Advancement of hollow fiber formation • Decreasing the thickness of membrane
to enhance permeation

• Attention of polymeric substrate as a
more economical option for membrane
support

• Aging testing performance

Microporous polymers (i.e., CTFs,
HCPs, PAFs)

• Selection of resistant polymers against
unfavorable operational conditions

• Advancement of hollow fiber formation

• Fabrication of nitrogen, oxygen, and
fluorine-doped carbon molecular sieve
membranes

• Attention of low-temperature thermal
adjustment for membranes
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of POMs are presented to find the existing research gaps in this field.
One of the prominent challenges towards the application of POMs is
the perception of their promising efficiency in industrial-based CO2

separation processes. Several challenges are existed that their
interpretation seems to be mandatory. For instance, fabrication of
POMs-based membrane in hollow-fiber configuration may be a
good choice to improve the efficacy and components interaction.
Appropriate optimization of POMs-based membranes’ operational
condition is regarded as another matter. Optimum operational
conditions (i.e., pressure and temperature) must be precisely
evaluated, especially for studying CO2-induced plasticization.
Environmental consideration and fabrication of environmentally-
friendly POMs-based membranes’ with the minimum detriments
and toxicities is an important challenge towards the development of
these types of polymeric membranes, which must be thoroughly
investigated. Eventually, investigation of membrane aging must be
in the priority of evaluation due to its significant impact on the long-
term performance of POMs. More comprehensive investigation in
the development of emerging POMs for MCS process is definitely
required. The study not only should not be conducted in discovering
new POMs but also must be towards optimizing the currently
developed polymers due to their promising efficiency in CO2

separation. Furthermore, an extensive economic feasibility
analysis is needed to be implemented to evaluate the possibility
of POMs application in different industries. If the economic
feasibility analysis justifies the use of POMs-based membranes in
industries, this technology possesses the potential to replace the
traditional methods contributing in efficacious CO2

separation processes.
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