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Editorial on the Research Topic
Computational and experimental insights in proton and ion translocating
bioenergetic systems

As a follow up of the Research Topic–“Computational and Experimental Insights in
Redox-Coupled Proton Pumping in Proteins”, this Research Topic showcases how different
experimental and computational approaches can be exploited to understand the molecular
mechanisms of bioenergetic systems (Wikström et al., 2023a).

Proteins performing redox-coupled proton pumping are key players in energy
transduction in all living organisms. They are mostly observed in diverse respiratory
chains (Marreiros et al., 2016; Calisto and Pereira, 2021). One of the most studied redox-
coupled proton pumping proteins are oxygen reductases, the last enzymes of aerobic
respiratory chains. These are found in all three domains of life, eukaryotes, prokaryotes
and archaea and belong to the heme-copper oxidase superfamily or to the cytochrome bd-
type family. The heme-copper oxidase superfamily has been divided primarily into three
sub-types, A, B and C-type oxidases (Pereira et al., 2001). Mårten Wikström, in 1977,
showed for the first time that mammalian cytochrome c oxidase, which belongs to type A,
is a redox-driven proton pump (Wikström, 1977). We have come a long way since then
and several aspects of its catalytic cycle are now well-understood (see Figure 1; Wikström
et al. (2023b)).

In this Research Topic, Shimada et al. discuss the recent experimental findings which
have significantly improved our understanding of the reaction mechanism of the
mitochondrial enzyme. This is a contribution from Yoshikawa’s group that provided us
with the breakthrough of the determination of the first structure of A-type mitochondrial
cytochrome c oxidase (Tsukihara et al., 1995). There is convergence on several aspects of the
catalytic cycle of oxidase, as discussed elegantly by Shimada et al. However, some central
questions remain open–such as the role of the H-pathway of proton transfer in the proton
pumping mechanism of A-type cytochrome c oxidase. Site directed mutagenesis studies,
proton pumping experiments and computer simulation studies (Malkamäki et al., 2019;
Maréchal et al., 2020; Reidelbach et al., 2021) suggest that H-pathway is not the proton
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pumping pathway in the yeast mitochondrial oxidase. Also, notably
the exit route for pumped protons and the structure of the active site
in resting oxidized state of the enzyme remains unclear. But new
structural insights based on serial femtosecond X-ray
crystallography studies by Ishigami et al. (2023) suggest that the
conserved cross-linked tyrosine is neutral in the resting O state of
the enzyme, in agreement with the proposals by Blomberg
(Blomberg, 2021), whereas the origin of this proton maybe
internal (Sharma and Wikström, 2016).

To obtain detailed molecular insights into enzyme
mechanisms, computational approaches are often applied in
combination with high resolution structural data (see Lee et al.,
2022; Bergh et al., 2024). On one hand, physics based classical
molecular dynamics (MD) simulations can help in providing high
spatial and temporal resolution of biological processes, chemical
reactions, on the other hand, can be studied with QM (Quantum
Mechanics)-based computational approaches. Noodleman et al.
discuss the dioxygen reduction reaction and proton pumping
mechanism of B-type oxidases from Thermus thermophilus.
They showcase the strength of computational approaches such
as classical MD simulations and QM-based cluster calculations in
understanding the mechanism of B-type oxygen reductase. The
putative proton loading site, proton transfer pathways, exit route
for pumped protons and active site intermediates of B-type
oxidases, which share similarities and differences with the
relatively well-understood A-type oxidases (Wikström and
Sharma, 2019), are discussed.

Proton transfer reactions, which are central to redox-coupled
proton pumping proteins have also been studied with hybrid QM/
MMmethods, combined with free energy analysis when required (see
Mandal et al., 2023; Zdorevskyi et al., 2023). Protons can transfer
rapidly along a hydrogen bonded pathway involving amino acid
residues and water molecules. However, hydrogen bonds can be
short-lived and undergo rearrangements during the catalytic cycle
of a protein. This is the essence of the work by Bertalan and Bondar,
who discuss graph-based approaches to study hydrogen bond
networks in proteins with special focus on rhodopsins. Structural
snapshots obtained from serial femtosecond crystallography were
subjected to graph computations and hydrogen bond restructuring
was resolved, giving novel insights into protein function. This work
highlights integration of graph-based computational approaches to
structural biology experiments with a possibility of extension also to
MD simulation trajectories.

Cytochrome bd-type enzymes have found increasing interest
in the last years. These enzymes are electrogenic and catalyze the
reduction of molecular oxygen to water by recruiting protons
from the cytoplasmic side of the membrane. However, they do not
actively pump protons across, and in this way can be considered
less efficient than heme-copper oxidases, which generate proton
motive force both by pumping protons and recruiting substrate
protons and electrons from the opposite sides of the membrane.
Importantly, cytochrome bd-type oxidases are discussed to be
defence factors in bacteria and are important antimicrobial drug
targets (Friedrich et al., 2022). They turned out to show a high

FIGURE 1
Catalytic cycle of A-type cytochrome c oxidase (Wikström et al., 2023a). Figure used with permission from the publisher.
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degree of diversity as shown by structural (Safarian et al., 2016;
Safarian et al., 2019; Theßeling et al., 2019), electrochemical
(Nikolaev et al., 2021) and also phylogenetic studies (Murali
et al., 2021). The high diversity of these enzymes is confirmed
with a new cryo-EM structure of cytochrome bd from
Corynebacterium glutamicum (Grund et al.) that shares
structural characteristics with the Mycobacterium tuberculosis
bd-type enzyme.
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