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Introduction: Hypoxia-inducible factor-1α (HIF-1α) has become a significant
therapeutic target for breast cancer and other cancers by regulating the
expression of downstream genes such as erythropoietin, thereby improving
cell survival in hypoxic conditions.

Methods: We jointly applied a multistage screening system encompassing
machine learning, molecular docking, and molecular dynamics simulations to
conduct virtual screening of the “Traditional Chinese Medicine Monomer Library”
for potential HIF-1α inhibitors. The virtual screening was conducted in three
sequential stages, applying the following selection criteria sequentially: an activity
prediction score greater than or equal to 0.8, a stronger binding affinity, and an
MM-PBSA binding free energy lower than the reference compound.

Results and Discussion: We retrieved 361 compounds with HIF-1α inhibitory
activity data from the ChEMBL database for the construction and evaluation of
machine learning models. Among the six constructed models, the random forest
model based on RDKit molecular descriptor with the optimal comprehensive
performance was employed for virtual screening. Ultimately, four compounds
were selected for binding mode analyses and 100 ns molecular dynamics
simulations. The results showed that the compounds Arnidiol and
Epifriedelanol exhibit the most stable interactions with the HIF-1α protein,
which can serve as potential HIF-1α inhibitors for future investigations.

KEYWORDS

hypoxia-inducible factor-1α, virtual screening, machine learning, molecular docking,
molecular dynamics simulation

1 Introduction

HIF-1 is a heterodimeric protein consisting of the HIF-1α subunit, which is regulated by
oxygen levels, and the constitutively expressed HIF-1β subunit. The HIF-1β subunit plays a
critical role in forming the HIF-1 heterodimer, whereas the HIF-1α subunit is primarily
responsible for regulating the activity of HIF-1 (Graham and Presnell, 2017). Both subunits
contain a basic helix-loop-helix (bHLH) motif and a Per-ARNT-Sim (PAS) structural
domain, which are responsible for binding DNA as well as forming heterodimers. Unlike
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HIF-1β, HIF-1α also contains an oxygen-dependent degradation
structural domain (ODDD) and two transactivation domains
(TADs), namely, the N-terminal active domain (N-TAD) and the
C-terminal active domain (C-TAD) (Ziello et al., 2007). Under
normal oxygen levels, the factor inhibitor of hypoxia-inducible
factor 1 (FIH-1) hydroxylates C-TAD, inhibiting its interaction
with the transcriptional co-activators CPB and p300. Proline
hydroxylase-2 (PHD-2) catalyzes the hydroxylation of ODDD,
leading to the degradation of the HIF-1α protein after
ubiquitination (Ke and Costa, 2006). In contrast, at lower oxygen
levels, the activities of FIH-1 and PHD-2 are correspondingly
decreased. The structurally stable HIF-1α protein translocates to
the nucleus and forms a heterodimer with HIF-1β. The HIF-1
heterodimer interacts with transcriptional co-activators and binds
to hypoxia-responsive elements (HREs) of downstream genes,
enhancing their expression (Wenger et al., 2005). The regulation
of HIF-1 enhances the expression of downstream genes such as
erythropoietin (EPO) and vascular endothelial growth factor
(VEGF). Cells can adapt to hypoxic conditions through
increasing oxygen delivery, reducing oxygen consumption, or
activating anaerobic metabolic pathways (Albadari et al., 2019).

Cancer has emerged as a significant public health issue worldwide.
According to the “Global Cancer Statistics 2022” released by the
International Agency for Research on Cancer (IARC) in 2024,there
were approximately 20 million newly diagnosed cancer cases and
9.7 million cancer-related deaths worldwide in 2022 (Bray et al.,
2024). Chemotherapy and radiotherapy constitute the principal
treatment modalities for cancer. However, these therapies are
associated with significant adverse effects, such as radiation-induced
damage, gastrointestinal toxicity, and myelosuppression. Consequently,
there is an imperative necessity to develop innovative pharmaceuticals
for oncological therapy. Research has found that HIF-1α is
overexpressed in various cancers, such as brain, breast, and
oropharyngeal cancers, promoting the proliferation and metastasis of
cancer cells (Semenza, 2003). For example, HIF-1α promotes the
proliferation of endothelial cells and tumor angiogenesis by
mediating the VEGFR-1/VEGF/VEGFR-2 autocrine signaling
pathway, which enhances the survival of cancer cells under hypoxic
conditions (Liao and Johnson, 2007). Consequently, the development of
HIF-1α targeted inhibitors is of great significance for the treatment
of cancer.

Computer-aided drug design (CADD) is a multidisciplinary
technology that utilizes methods such as docking and virtual
screening, Quantitative Structure-Activity Relationship (QSAR), and
pharmacophore modeling to simulate and predict the interactions
between drug molecules and their biological targets (Niazi and
Mariam, 2023). Compared to conventional drug discovery methods,
CADD employs accurate computations to predict the interactions
between targets and pharmaceuticals, improving the selectivity of
pharmaceuticals while reducing research and development expenses
and time. With the help of CADD technology, researchers have
successfully developed notable pharmaceuticals such as dorzolamide,
saquinavir, and imatinib. It can be said that CADD has become an
important driving force in the field of drug development.

Machine learning constitutes an essential branch of artificial
intelligence. In machine learning, computers analyze training data to
learn its patterns and regularities. Based on these patterns and
regularities, algorithm models are constructed and employed to

perform predictions or decisions regarding unknown data. In the
field of drug discovery, in contrast to traditional CADD approaches
such as molecular docking and pharmacophore models, machine
learning algorithms (MLAs) possess distinctive advantages in
aspects like the screening of key features and can score or classify
hit compounds in large databases more effectively (Crampon et al.,
2022; Parvatikar et al., 2023). Therefore, in recent years, the joint
application of ML algorithms and CADD methods has achieved
many satisfactory results in drug discovery (Patel et al., 2020). For
instance, Narendra et al. employed multiple machine learning
models for virtual screening to identify selective human
ALDH1A1 inhibitors. They constructed and jointly applied SVM
and RF models for virtual screening of three databases.
Subsequently, they performed molecular docking, ADMET
analysis, and molecular dynamics simulation on the screened
compounds, and 10 selective ALDH1A1 inhibitors were finally
identified (Narendra et al., 2021). Jingyu Zhu et al. constructed a
naive Bayes classification model and combined methods such as
molecular docking and bioactivity evaluation to conduct virtual
screening of the ChemDiv database. Eventually, they identified an
efficacious inhibitor of PI3Kγ, namely, JN-K13 (Zhu et al., 2022).

Currently, virtual screening studies of potential inhibitors
targeting HIF-1α are predominantly based on molecular docking
or pharmacophore modeling methods. For example, Yadav PK et al.
used a 3D-QSAR-based pharmacophore model method, screening
ZINC02121040 as a promising candidate for HIF-1α inhibitors
(Yadav et al., 2023). Latha MS et al. used the molecular docking
method, identifiying ten potential molecule inhibitors, such as
ZINC04280532, that can inhibit the activity of HIF-1
heterodimer (Latha and Saddala, 2017). As previously stated,
these methods have certain limitations in the screening process
of critical features and may not adequately identify HIF-1α
inhibitors. Therefore, it is necessary to jointly apply machine
learning and CADD methods to conduct a more comprehensive
discovery and exploration of HIF-1α inhibitors.

In our study, we constructed a joint virtual screening workflow
based onmachine learning, molecular docking andmolecular dynamics
simulation. Firstly, we computed two types of molecular features,
namely, RDKit and Mol2Vec, for the compounds in the training set.
Subsequently, we established six machine learning models utilizing
three algorithms, namely, RF, SVM, and XGBoost. After the evaluation
of model performance, the optimal model was utilized to screen the
“Traditional Chinese Medicine Monomer Library” of TargetMol. The
active compounds obtained from the screening were subjected to
molecular docking with HIF-1α, and compounds with stronger
binding energies were further selected for molecular dynamics
simulations. The MM-PBSA binding free energy was calculated
through molecular dynamics simulations to assess the interaction
mechanism and stability during the dynamic process, so as to
thoroughly explore potential HIF-1α inhibitors (Figure 1).

2 Material and methods

2.1 Data preprocessing

ChEMBL is a large-scale bioactive molecule database
containing 2.43 million compounds (Zdrazil et al., 2024). A
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total of 576 compounds with recorded inhibitory activity data
against HIF-1α were retrieved from the ChEMBL database
(ChEMBL ID-CHEMBL4261). The activity data of compounds
in ChEMBL were mainly obtained from the scientific literature,
the PubChem bioassay and the BindingDB database, etc. Then we
selected compounds with binding type “B”, removed compounds
with uncertain IC50 values or multiple IC50. After cleaning the
data, we ultimately obtained 361 compounds. With 2 μM as the
threshold for activity classification, 129 compounds with an IC50

value ≤ 2 μMwere classified as “active”, and 232 compounds with
an IC50 value > 2 μM were classified as “inactive”. Then the data
were normalized using the StandaedScaler method. By removing
the mean and scaling to unit variance, the original data were
transformed into data conforming to the standard normal
distribution. Finally, the dataset was partitioned into training
and test sets at a ratio of 4:1.

2.2 Molecular features calculation

Molecular descriptors are mathematical or logical
representations of molecular properties based on numeric values
or standardized experimental results (Grisoni et al., 2018). RDKit
molecular descriptors are among the most commonly utilized
molecular descriptors, capable of representing molecular
attributes from multiple perspectives such as physicochemical
properties, topological properties, and pharmaceutical properties.
Mol2Vec is an unsupervised machine learning technique based on
natural language processing (NLP). It compares the substructure of
a molecule based on Mrogan’s algorithm to a “word” and the whole
molecule to a “sentence” (Jaeger et al., 2018). We employed the
Morgan algorithm to calculate the feature vectors of molecular
substructures. Subsequently, the feature vectors of all the
substructures are aggregated to form the molecular composite

FIGURE 1
Workflow for the virtual screening of HIF-1α inhibitors based on machine learning methods.
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vector, which is the Mol2Vec descriptor of the molecule. In this
study, we utilized the Scikit-learn library in Python to generate
208 RDKit 2Dmolecular descriptors for each data point. Meanwhile,
we established a 300-dimensional molecular structure vector
descriptor for each data point via the Mol2Vec method. The one
with the optimal performance was finally selected for the
establishment of the machine learning model.

2.3 Machine learning models building

In this study, we used the Scikit-learn library of Python to build
three machine learning models based on the RDKit and Mol2Vec
molecular descriptors, including random forests (RF), support
vector machines (SVM), and extreme gradient boosting trees
(XGBoost). Moreover, we performed hyperparameter tuning by
Bayesian optimization methods.

Random Forest (RF) comprises an ensemble of numerous
decision trees (Breiman, 2001). For each decision tree, the RF
algorithm randomly selects a portion of the data from the
original dataset with replacement as the training set. A certain
number of features are randomly chosen from all features, and
an optimal feature is further selected based on strategies such as
information gain as the splitting basis for a node. The node proceeds
to split until the maximum depth is reached or no further splitting is
feasible. Each tree will make a prediction for classification problems.
The consensus outcome after voting by all decision trees is the
prediction of the random forest. Hence, the hyperparameters
employed by RF include “max_depth”, “min_samples_leaf”, and
“n_estimators.”

Support Vector Machine (SVM) is a commonly utilized
supervised machine learning algorithm primarily employed for
classification issues. The SVM algorithm constructs a hyperplane
to distinguish two classes of data points with the maximum possible
margin. A hard margin can be used for fully linearly separable data,
while a soft margin can be adopted for approximately linearly
separable data (Evgeniou and Pontil, 2001). For non-linear data,
kernel functions are employed to transform it into linear data in a
high-dimensional space. Hence, SVM possesses two
hyperparameters, namely, “C” and “gamma.”

Extreme Gradient Boosting Tree (XGBoost) is a scalable tree-
boosting machine learning system based on the gradient boosting
algorithm (Chen and Guestrin, 2016). XGBoost aims to improve the
overall predictive performance of the model by building numerous
weak learners. The essence of XGBoost is the iterative training of
decision trees. In each iteration, a new tree is trained based on the
residuals of the previous round of modeling. The residuals are
gradually diminished through iterations to optimize the
prediction model. Consequently, the hyperparameters utilized by
XGBoost encompass “colsample_bytree”, “gamma”, “learning_
rate”, “max_depth”, “min_child_weight”, “n_estimators”,
and “subsample.”

2.4 Evaluation of machine learning models

Model performance evaluation is a necessary step in machine
learning, which can accurately quantify the predictive and

generalization abilities of models, thus guiding us to select
effective and reliable models in practical applications. We use
machine learning models constructed from the training set to
perform pre-screening tests on the test set. The performance of
each model is evaluated through a ten-fold cross-validation method
utilizing metrics including accuracy, precision, recall, F1 score,
Matthews Correlation Coefficient (MCC), and Area Under the
Curve (AUC). The optimal model was chosen for virtual
screening of HIF-1α inhibitors. The formulae for each metric
were as follows:

Accuracy � TN + TP

TN + TP + FN + FP

Precision � TP

TP + FP

Recall � TP

TP + FN

F1 score � 2 × Percision × Recall

Precision + Recall

MCC � TP × TN − FP × FN
��������������������������������������������
TP + FP( ) × TP + FN( ) × TN + FP( ) × TN + FN( )√

TP (True Positives) and TN (True Negatives) respectively
represent the quantities of correctly classified HIF-1α inhibitors
and non-inhibitors. FP (False Positives) indicates the number of
HIF-1α non-inhibitors that are wrongly predicted as inhibitors. FN
(False Negatives) indicates the number of HIF-1α inhibitors that are
wrongly predicted as non-inhibitors. MCC is a performance
evaluation metric that integrates the data of TP, TN, FP, and FN,
and can reliably reflect the predictive performance of binary
classification models (Chicco and Jurman, 2020). AUC is another
evaluation metric reflecting the effectiveness of machine learning
models, with a value range from 0 to 1. The closer it is to 1, the
stronger the classification ability of the model is. AUC > 0.9 can be
regarded as the model having excellent predictive performance
(Jiang et al., 2020).

2.5 SHAP analysis

SHAP is an interpretable artificial intelligence method based on
the Shapley value of cooperative game theory (Salih et al., 2025). In
the SHAP method, all possible combinations of features are termed
as coalitions. It calculates the Shapley values for each feature in the
model by computing the average marginal contributions of a feature
in all possible coalitions, representing the influence weight of that
feature on the model’s predictive outcomes. Each row in the figure
represents a feature, and all features are arranged from top to bottom
according to their feature importance, which is quantified by the
average absolute value of Shapley. Each point in a row represents a
sample under that feature, with higher feature values corresponding
to redder sample points and lower values to bluer ones.

2.6 Molecular docking

The 3D cocrystal structure of HIF-1α (PDB ID: 1H2K) was
retrieved from the Protein Data Bank (https://www.rcsb.org/).
Water molecules, metal ions, and ligands in the cocrystal
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structure were removed utilizing the molecular visualization
software PyMOL. All hydrogen atoms were added to the protein
receptor and all small molecule ligands utilizing the AutoDock Tools
software. Information such as rotatable bonds was verified. Finally,
the protein receptor and small molecule ligands were saved in the
PDBQT format, followed by molecular docking conducted with
AutoDock Vina software.

AutoDock Vina is a high-performance computational program
for molecular docking and virtual screening that utilizes new scoring
functions, efficient optimization algorithms, and multi-threading
technology (Trott and Olson, 2010). We employed the AutoDock
Vina software for semi-flexible docking, allowing for conformational
changes in the ligand while maintaining the receptor’s rigidity. The
docking region was centered at coordinates X = 39.356, Y = 45.945,
Z = 36.489, with a grid box of 40 Å × 40 Å × 40 Å established. The
grid spacing and exhaustiveness value were respectively set to
0.375 and 10. We selected compounds with lower docking scores
for further investigation and utilized PyMOL to visualize the
docking results, thereby analyzing the interactions between the
ligand and HIF-1α.

2.7 Molecular dynamics simulations

To gain a deeper understanding of the dynamic behavior and
interaction mechanisms of molecular systems, we performed
molecular dynamics simulations on the protein-ligand complex
system using the Amber software and ff19SB force field
(Salomon-Ferrer et al., 2013). Firstly, we generated the topology
and coordinate files of proteins and ligands by the tleap program.
The TIP3P water model with a buffering distance of 10 Awas used to
solvate the system. Sodium ions or chloride ions were added to
balance the net charge of the system. After completing the assembly
of the system, we performed energy minimization emoloying the
steepest descent method and the conjugate gradient method to
optimize the stability of the system. The constant-volume system
was slowly heated to 300 K under weak confinement. The Berendsen
barostat was used to control the pressure at 1atm, and the Langevin
thermostat was used to control the temperature at 300 K. The system
was equilibrated under isobaric-isothermal (NPT) ensemble for 1 ns,
followed by a 100 ns production phase of molecular dynamics
simulation. The Particle Mesh Ewald (PME) algorithm was
employed to calculate long-range electrostatic interactions. The
cutoff distance for non-bonded interactions was set to 10 Å. The
SHAKE algorithm was utilized to constrain the high-frequency
vibrations of hydrogen atoms. After the simulation, we analyzed
the simulation trajectory for root-mean-square deviation (RMSD),
root-mean-square fluctuation (RMSF), radius of gyration (Rg) and
B-factors (temperature factors), drew the dynamic cross-correlation
matrices and free energy landscapes by the ptraj program.

The RMSD reflects the degree of deviation of the system’s overall
conformation from its initial conformation at a specific time. Higher
RMSD values in the complex system indicate greater deviations.
When the RMSD values stabilize, the system conformation ceases to
change, indicating that the simulation system has reached
equilibrium. The RMSF characterizes the fluctuation amplitude of
individual atoms in the complex system relative to their average
positions. Residues with higher RMSF values exhibit greater

flexibility, while those with lower RMSF values demonstrate
stronger structural rigidity. The B-factor, also known as the
temperature factor, reflects the extent to which atoms in a
complex system deviate from their positions due to vibration or
thermal disturbance. Lower B-factor values of amino acid residues
are more conducive to protein stability. The Rg serves as a critical
parameter for evaluating structural compactness. A smaller Rg value
indicates a more confined distribution of atoms around the center of
mass, corresponding to greater spatial compactness of the structure.
Dynamical cross-correlation matrix and free energy landscape
further characterize the correlations between distinct residues and
the relative free energy differences among various conformational
states, respectively.

3 Result

3.1 Chemical information diversity analysis

Sample diversity is an important factor affecting the prediction
accuracy of machine learning models. Chemically diverse datasets
can reduce sample bias, enhance the generalization capability of
models, prevent overfitting, and thereby improve the predictive
accuracy on novel data. In our study, we analyzed the molecular
weight and logP of the compounds in the dataset. The molecular
weight distribution of the compounds ranges from 184.198 to
763.909, and the distribution of logP ranges from −1.026 to
10.155 (Figure 2). It demonstrates that the compounds in the
dataset have an excellent chemical space distribution and are
suitable for the establishment of machine learning models.

3.2 Model performance

We constructed three machine learning classification models,
namely, RF, SVM, and XGBoost, based on molecular descriptors and
Mol2Vec features. We employed the Bayesian optimization algorithm to
perform hyperparameter tuning and identified the best hyperparameter

FIGURE 2
Scatter distribution plot of molecular weight and LogP for active
and inactive data.
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combinations for the six models, as detailed in Supplementary Material.
Subsequently, we conducted a ten-fold cross-validation on the test set to
assess the performance of themachine learningmodels based onmetrics
including accuracy, precision, recall, F1 score, MCC, and AUC. The
performance metrics data of all models are presented in Table 1. Among
them, MCC and AUC are prioritized as performance evaluation metrics

for binary classification models (Chicco and Jurman, 2020; Ling et al.,
2003). The results show that the RF model based on RDKit molecular
descriptors has an MCC value of 0.781, which significantly surpasses the
other five models, demonstrating the superior performance of the
RDKit-RF model in binary classification. Additionally, the model
exhibits an AUC value of 0.918, which is the highest among all

TABLE 1 Performance evaluation of each machine learning model.

Model Accuracy Precision Recall F1 score MCC AUC

RDkit-RF 0.904 0.947 0.750 0.837 0.781 0.918

RDkit -SVM 0.808 0.679 0.792 0.731 0.587 0.844

RDkit -XGBoost 0.808 0.708 0.708 0.708 0.565 0.902

Mol2Vec-RF 0.836 0.750 0.750 0.750 0.628 0.869

Mol2Vec -SVM 0.822 0.720 0.750 0.735 0.601 0.825

Mol2Vec -XGBoost 0.795 0.667 0.750 0.706 0.551 0.896

FIGURE 3
The performance of machine learning classification models under ten-fold cross-validation.
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models, suggesting that it possesses excellent prediction performance for
HIF-1α inhibitors. Despite the recall value of the RDKit-RF model being
0.75, the disparity with the RDKit-SVM model with the highest recall
value is relatively minimal, and it is comparable to the other four models.
Moreover, the RDKit-RF model also possesses significantly superior
accuracy, precision values, and F1 score (Figure 3). Considering all
factors, we concluded that the RDKit-RFmodel exhibited the best overall
performance and was most suitable for virtual screening of HIF-1α
inhibitors.

3.3 SHAP analysis

We performed SHAP analysis on all the features utilized in the
machine learning model (Figure 4). Through SHAP analysis, we can

determine the degree of influence each feature exerts on the prediction
outcomes. For instance, the VSA_Estate8 descriptor belongs to the
EState-VSA (Electrostatic State-Valence State Analysis) hybrid
descriptor, which denotes atoms or atomic groups with an
electronic state value ranging from 6.45 to 7.00. This descriptor is
the feature that has the greatest impact on the model’s predictive
outcomes. The Chi2n descriptor characterizes the electronic
properties and structural information of a molecule, representing
the number of paths of length 2 within the molecule. Therefore, this
descriptor is the least important feature for the prediction outcomes.
Further analysis revealed that the red sample points with high values
of the VSA_Estate8 feature have negative SHAP values, indicating a
negative influence of VSA_Estate8 on the activity prediction
outcomes. In contrast, Chi2n exerts a slightly positive influence on
the activity prediction outcomes.

FIGURE 4
Scatter diagram of variables in SHAP analysis.
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3.4 Virtual screening

3.4.1 Prediction score for inhibitory activity
The Traditional Chinese Medicine Monomer Library developed

by Topscience company encompasses 2,910 monomer compounds
derived from traditional Chinese medicine sources, including
various structural types like flavonoids and alkaloids. After
excluding some compounds that failed to meet the criteria, we
utilized the optimal machine learningmodel RDkit-RF to predict the
probability of inhibitory activity of 2,560 compounds in the
Traditional Chinese Medicine Monomer Library, as detailed in
Supplementary Material. Using a cutoff threshold of “Active” =
0.8, 2,456 compounds were categorized as “Inactivity”, with “Active”
values ranging from 0.355 to 0.799; 104 compounds were classified
as “Activity”, with “Active” values ranging from 0.800 to
0.917 (Figure 5).

3.4.2 Binding affinity
We conducted molecular docking analyses on 104 compounds

with “active” values greater than 0.8 against HIF-1α (PDB ID:
1H2K), and computed their affinity, as detailed in Supplementary
Material. The results show that the affinity of the 104 compounds
range from −9.035 to −5.838 kcal/mol, indicating that all
compounds form significant interactions with the target protein.
To improve the precision of virtual screening and thoroughly
explore potential HIF-1α inhibitors, we further selected
8 compounds with affinity ranging from −9.035 to −8.505 kcal/
mol (Table 2) for 10 ns molecular dynamics simulations to calculate
their MM-PBSA binding free energy.

3.4.3 MM-PBSA binding free energy
In the 10 ns molecular dynamics simulation, we employed the

MM-PBSAmethod to calculate the binding free energy of these eight
compounds. The results are presented in Table 3. The total binding
free energy of the eight compounds ranges
from −16.5178 to −27.2463 kcal/mol. Among them, the
compound Epifriedelanol exhibits the lowest binding free energy
of −27.2463 ± 2.2615 kcal/mol, indicating the strongest binding
affinity to the HIF-1α target. Further analysis indicated that van der
Waals forces, electrostatic energy, and non-polar solvation energy

contribute favorably to the binding of the compound with the target
protein. Van der Waals forces are the primary contributors to the
total binding free energy. In contrast, polar solvation energy is not
conducive to their binding. The established potent HIF-1α inhibitor,
7-Hydroxyneolamellarin A (PubChem CID:24179494), served as
the reference compound, with a binding free energy of −19.5983 ±
3.4421 kcal/mol. Compared to the reference compound, the
compounds epifriedelanol, arnidiol, alpha-amyrin, and lupeol
exhibited lower binding free energy. Therefore, we proposed that
these four compounds are the most probable HIF-1α inhibitors and
are suitable candidates for further docking analysis and molecular
dynamics simulation studies.

We further calculated the contribution of each residue to the
MM-PBSA binding free energy of epifriedelanol, arnidiol, alpha-
amyrin, and lupeol. Figure 6 displays, from top to bottom, the ten
residues with the largest contributions to the binding free energy for
Alpha-Amyrin, Arnidiol, Epifriedelanol, and Lupeol. We found that
PRO 217 was the only residue that made a significant contribution to
the binding free energy of all four compounds. Additionally,
residues such as VAL 322, LEU 326, PRO 319, PHE 97, and
GLY 323 demonstrated significant contributions to the binding
free energy of three of the compounds. These residues represent
noteworthy hotspots. Remarkably, there were a considerable
number of high-contributing residues in the 310–340 region in
all four compounds. Subsequent molecular dynamics simulations
indicated that this region was highly flexible and related to the
function of the active site. These residues were consistent with
dynamic functional characteristics of the active region.
Furthermore, a certain number of high-contribution residues
were identified outside this region. Although molecular docking
did not identify direct interactions between these two types of
residues and the ligands, the calculation results of the
contribution of residues to the binding free energy suggested that
such residues might stabilize the overall conformation of the protein
through long-range van der Waals forces or reduce the exposure of
hydrophobic interfaces to decrease the loss of solvation entropy,
thereby enhancing the ligand affinity in coordination with the
directly binding residues. These findings demonstrated the
necessity of combining multiple computational methods in
elucidating the complex protein-ligand interaction mechanism
and provided a new perspective for precise drug design.

3.5 Binding mode analysis

Figure 7 illustrated the intermolecular interactions between the
four aforementioned potential HIF-1α inhibitors and the target
protein. Table 4 further presents the bond lengths and bond
angles of the interactions. Except for Arnidiol, the other three
compounds docked into the binding pocket with similar
orientations. Arnidiol forms seven hydrophobic interactions with
residues PHE111, PHE114, TYR230, PRO231, and GLN334 through
its saturated hydrocarbon chain, with bond lengths of 3.6, 3.51, 3.69,
3.87, 3.73, 3.44, and 3.62 Å. Additionally, it forms four hydrogen
bond interactions with GLN241, ARG251, PRO333, and
GLY337 through the hydroxyl group, with bond lengths of 3.0,
2.92, 3.09, and 2.72 Å and bond angles of 98.9, 141.9, 106.5, and
138.4. Research by Jeffrey et al. indicates that bond length and bond

FIGURE 5
The distribution range of prediction scores of RDKit-RF model.
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angle are critical factors determining hydrogen bond strength.
Strong hydrogen bonds exhibit donor-acceptor distances of
2.2–2.5 Å, moderate-strength bonds range from 2.5–3.2 Å, while
weak hydrogen bonds span 3.2–4.0 Å. Hydrogen bond strength
increases when the bond angle approaches 180°, as this linear
arrangement maximizes orbital overlap and electrostatic

interactions between the donor and acceptor. Effective hydrogen
bonds typically demonstrate angles exceeding 120° (Jeffrey, 1997).
Specifically, the guanidyl group of ARG-251 exhibits strong donor
characteristics and forms highly complementary electrostatic
interactions with the hydroxyl group of Arnidiol, leading to a
hydrogen bond with a short bond length (2.92 Å) and near-

TABLE 2 The eight compounds with the lowest binding affinities.

Compound PubChem CID Structure Binding affinity

β-Amyrin 73145 −9.035

Arnidiol 10478550 −8.886

alpha-Amyrin 73170 −8.802

Soyasapogenol B 115012 −8.734

Neoruscogenin 9910474 −8.640

Lupenone 92158 −8.626

Epifriedelanol 119242 −8.626

Lupeol 259846 −8.505

TABLE 3 The MM-PBSA binding free energies of the selected compounds and the reference compound.

Compound van der Waals Electrostatic Polar solvation Non-polar solvation Delta total

β-Amyrin −24.8296 ± 3.0824 −1.9171 ± 2.5689 12.3711 ± 2.9900 −3.0817 ± 0.2327 −17.4573 ± 2.9240

Arnidiol −28.9238 ± 3.1297 −26.7377 ± 6.7507 36.0393 ± 3.1439 −3.4469 ± 0.1674 −23.0690 ± 6.0784

alpha-Amyrin −32.9273 ± 2.8387 −2.8381 ± 3.2600 17.3814 ± 3.4603 −4.0435 ± 0.1614 −22.4275 ± 2.9015

Soyasapogenol B −30.1631 ± 3.7572 −13.3866 ± 6.9211 29.2832 ± 6.1601 −3.3842 ± 0.2792 −17.6507 ± 3.2998

Neoruscogenin −34.8140 ± 3.0997 −26.2047 ± 5.4528 45.4834 ± 5.2613 −4.0078 ± 0.1471 −19.5431 ± 3.6187

Lupenone −24.5069 ± 3.6751 −3.2034 ± 2.2221 14.3452 ± 3.0921 −3.1527 ± 0.4063 −16.5178 ± 2.3276

Epifriedelanol −34.6658 ± 2.3512 −0.5926 ± 1.4122 11.9477 ± 3.0692 −3.9356 ± 0.2320 −27.2463 ± 2.2615

Lupeol −32.1686 ± 3.1916 −2.5593 ± 1.3048 16.8127 ± 4.3160 −3.7719 ± 0.2131 −21.6870 ± 3.8124

7-Hydroxylamellarin A −29.1419 ± 3.6769 −16.5952 ± 7.7053 29.7008 ± 6.1931 −3.5619 ± 0.2274 −19.5983 ± 3.4421
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linear geometry (141.9°). GLY-337, lacking a side chain, exhibits
high backbone conformational flexibility. This allows the formation
of a hydrogen bond with the shortest bond length (2.72 Å) and a

relatively ideal bond angle (138.4°). These two bonds exhibit
characteristics of strong hydrogen bonds, significantly enhancing
compound-target binding affinity. Although the hydrogen bonds

FIGURE 6
Residue contributions to the binding free energy of alpha-Amyrin, Arnidiol, Epifriedelanol, and Lupeol.
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formed between Arnidiol and PRO-333 and GLN-241 exhibit bond
lengths within the moderate-strength range, their bond angles
deviate from linearity to varying degrees. Consequently, these
interactions are weaker and primarily contribute to the
stabilization of the protein-ligand complex through synergistic
and auxiliary effects.

Among the four compounds, Arnidiol establishes the highest
number of hydrophobic interactions with the HIF-1α target protein.
Furthermore, it is distinguished by its distinctive ability to establish
hydrogen bond interactions with the protein. The distinctive
interaction profile might be attributed to its distinct docking
posture. The remaining three compounds demonstrate solely
hydrophobic interactions with the target protein via saturated
hydrocarbon chains. Specifically, Epifriedelanol forms six
hydrophobic interactions with the residues PHE111, PHE224,
TYR228, PRO231, GLN334, and LEU340. Alpha-Amyrin
establishes four hydrophobic interactions with PHE111, PRO231,
VAL336, and LEU340. Lupeol also establishes four hydrophobic
interactions, targeting residues PHE111, PHE224, PRO231, and

VAL336. The last two compounds exhibit the fewest interactions
with the HIF-1α target protein, corresponding to the lowest binding
affinity to the target, which aligns with the results of the previous
MM-PBSA binding free energy calculations.

We observed that the dihydroxy groups of Arnidiol form strong
hydrogen bonds with the ARG-251 and GLY-337 residues of the
target protein, characterized by short bond lengths and nearly linear
bond angles, while forming slightly weaker hydrogen bonds with the
GLN-241 and PRO-333 residues. The cooperative effects of this
multi-hydrogen-bond network reduce the compound’s
conformational freedom to stabilize its conformation. Arnidiol’s
optimal docking conformation enables better adaptation to the
binding pocket of the target protein, facilitating the formation of
intermolecular interactions and enhancing binding affinity. In
contrast, the other three compounds possess only monohydroxy
structures. Minor local conformational changes could easily disrupt
their hydrogen bonds without compensatory alternative sites, while
also compromising the maintenance of hydrophobic interactions.
Therefore, introducing hydroxyl groups to construct multi-

FIGURE 7
3D binding modes of four potential compounds with HIF-1α.
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hydrogen-bond networks should be considered in future lead
compound optimization efforts. Additionally, methoxy (-OCH3)
or amino (-NH2) groups can be introduced at the ortho or para
positions of hydroxyl groups. These electron-donating substituents
enhance the polarity of the O-H bond through resonance effects,
thereby augmenting the hydrogen bond donor capacity of the
hydroxyl group. Alternatively, replacing hydroxyl groups with
guanidinyl moieties—which possess three more polarized N-H
bonds—could simultaneously strengthen hydrogen bonding and
target multiple residues to form hydrogen bond networks.
Without affecting the binding space, hydrophobic groups such as
methyl groups can be introduced when necessary to counterbalance
the increased polar solvation energy arising from hydrogen-bond
optimization. These structure-based drug design approaches are
expected to further enhance compound binding affinity with HIF-1α
and optimize the activity of lead compounds.

Furthermore, it is also essential to focus on critical topological
structures and binding sites associated with HIF-1α functional activity
in molecular modeling studies. HIF-1α comprises a total of 826 amino

acids, with its N-terminal basic region serving as the DNA-binding
domain that interacts with hypoxia response elements (HREs) in
downstream target genes. Subsequent HLH and PAS domains
constitute the HIF-1β binding sites, mediating the formation of
heterodimers (Xu et al., 2022). The central ODD domain (401-600),
which contains the N-terminal transcriptional activation domain
(N-TAD, 531-575), serves as the VHL protein binding site. The
Pro402 and Pro564 residues within this domain undergo
hydroxylation by oxygen-dependent prolyl hydroxylases (PHDs),
while Lys532 is acetylated by acetyltransferase-1 (ARD-1), both
processes being critically involved in the VHL-mediated
ubiquitination degradation pathway. The C-terminal transcriptional
activation domain (786-826) serves as the transcriptional coactivator
binding site, with its Asn803 residue directly participating in the
recruitment of p300/CBP coactivators (Wu et al., 2021). These key
binding sites and functional residues also provide a theoretical
foundation for developing HIF-1α-targeted inhibitors.

In previous research, Yadav PK et al. generated a compound
with the highest potential as an HIF-1α inhibitor via the side-chain

TABLE 4 Analysis of the interaction between four compounds and HIF-1α.

Compound Interaction type Residue Bond length Bond angle

Arnidiol Hydrophobic interaction PHE-111 3.60 145.8

PHE-111 3.51 82.6

PHE-114 3.69 156.5

TYR-230 3.87 109.9

TYR-230 3.73 131.4

PRO-231 3.44 119.7

GLN-334 3.62 144.0

Hydrogen bond GLN-241 3.00 98.9

ARG-251 2.92 141.9

PRO-333 3.09 106.5

GLY-337 2.72 138.4

Epifriedelanol Hydrophobic interaction PHE-111 3.92 88.3

PHE-224 3.72 92.4

TYR-228 3.54 158.9

PRO-231 3.38 81.7

GLN-334 3.96 163.8

LEU-340 3.85 134.8

Alpha-Amyrin Hydrophobic interaction PHE-111 3.60 122.3

PRO-231 3.33 103.1

VAL-336 3.87 89.0

LEU-340 3.94 111.4

Lupeol Hydrophobic interaction PHE-111 3.75 124.2

PHE-224 3.88 93.0

PRO-231 3.34 90.3

VAL-336 3.79 85.2
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hopping approach based on the outcome of pharmacophore model
screening. The molecular docking results demonstrated that this
compound interacted with residues TYR102, TYR145, GLN147,
THR196, HIS199, ASP201, and LYS214 of the HIF-1α protein
(Yadav et al., 2023). Latha MS et al. conducted a virtual
screening study for HIF-1 inhibitors based on molecular docking,
discovering residues ARG14, LYS17, MET18, TYR21, ASN34,
VAL35, SER36, and ARG46 as key interacting residues with
potential inhibitors (Latha and Saddala, 2017). Intriguingly, the
potential HIF-1α inhibitors identified through our innovative
multi-level virtual screening system presented a distinct
interaction pattern from previous studies. This unique interaction
pattern provided a novel perspective that contributed to the
exploration and optimization of potential HIF-1α inhibitors.

3.6 Molecular dynamics simulations

To achieve a comprehensive understanding and predict the
interactions and dynamic alterations of the complex system at
the molecular level, we performed 100 ns molecular dynamics
simulations on four protein-ligand complexes using the Amber
software. The results are shown in Figure 8. In Figure 8, the
images located in the upper left, upper right, lower left, and
lower right are respectively Figures 8A–D.

3.6.1 Dynamic stability and conformational
flexibility

Firstly, we assessed the conformational stability of complex
systems during molecular dynamics simulation by measuring the
Root-Mean-Square Deviation (RMSD). In Figure 8A, we observed
that at the onset of the simulation, the complex system transitioned
from its initial conformation towards an equilibrium state, with all
complex systems exhibiting a certain degree of fluctuation. After
5 ns, the RMSD values of the four complex systems commenced
stabilization. Between 30 ns and 40 ns, the Lupeol-HIF1α complex
system experienced a minor fluctuation of approximately 1 Å, which
was within the acceptable range and could be considered as the
system remaining in equilibrium. In the final 10 ns of the simulation,
all complex systems had reached dynamic equilibrium,
demonstrating that the 100 ns molecular dynamics simulation
was sufficient. For a protein with a defined PDB structure, the
RMSD values of the complexes it forms being below 3 Å are
considered acceptable (Kufareva and Abagyan, 2012). Compared
to other systems, the Arnidiol-HIF1α and Epifriedelanol-HIF1α
complex systems exhibited lower average RMSD values, with
2.51 Å and 2.56 Å, respectively. This indicated that the degree of
deviation from the initial conformation of these two systems was
minimal, and the overall structure was the most stable. This finding
was also consistent with the MM-PBSA binding free energy
calculations presented in the previous section.

FIGURE 8
Analysis of structural stability and dynamics in molecular dynamics simulations: (A) RMSD, (B) RMSF (C) B-factor, (D) Rg.

Frontiers in Chemistry frontiersin.org13

He et al. 10.3389/fchem.2025.1585882

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://doi.org/10.3389/fchem.2025.1585882


Previous studies have indicated that the RMSF fluctuation of a
complex not exceeding 2 Å is regarded as within an acceptable range
(Rahimi et al., 2023). The calculation of RMSF in Figure 8B
illustrates that the RMSF variation trends of the main chains of
all complexes are broadly consistent. The residues at the N-terminal
and C-terminal ends of the protein lack stable interactions, such as
internal hydrophobic interactions, thereby resulting in larger RMSF
values. Additionally, the residues 310–340 in proximity to the active
site also exhibit elevated RMSF values. The high fluctuations of these
residues may be associated with the function of the active site. In
Figure 8C, the computational analysis of B-factor showed that all
complex systems exhibit two distinct regions with high B-factor
values, corresponding to areas with high RMSF values. Future
research can focus on selectively optimizing non-active site
residues with high B-factor values to enhance the thermodynamic
stability of the complexes while preserving their functionality.

We subsequently assessed the structural compactness of the
complex systems by computing the Rg. The calculation of Rg in
Figure 8D illustrates that during the initial 2 ns of the simulation, the
Rg values of all protein-ligand complexes exhibited fluctuations to
varying degrees. After transitioning to the equilibrium state, the Rg
values of the four complex systems remained relatively stable
throughout the simulation without significant structural
contraction or expansion. In comparison, the Rg values of the
Arnidiol-HIF1α and Epifriedelanol-HIF1α complex systems
exhibited smaller fluctuations and lower average values of
20.47 Å and 20.50 Å, respectively, indicating a more compact
overall structure.

Additionally, we analyzed the SASA variations of four
complexes during molecular dynamics simulations. As shown in
Figure 9, all systems exhibited SASA fluctuation trends consistent
with Rg values throughout the 100ns simulations, maintaining
stability before simulation termination. The mean SASA values of
Arnidiol-HIF-1α and Epifriedelanol-HIF-1α are 17269.5 Å2 and
17376.4 Å2 respectively, which are significantly lower than those
of the other two complexes. This indicates these two complexes
possess minimal solvent-exposed surface area with the most
compact structural arrangements. Collectively, these molecular
dynamics simulation results consistently demonstrate the tight
and stable binding capabilities of Arnidiol and Epifriedelanol
with HIF-1α.

To investigate the dynamic protein-ligand interaction patterns,
we also visualized the binding modes of four complexes at 50 ns and

100 ns time points during molecular dynamics simulations in
Figure 10. Our findings revealed that compound Arnidiol
demonstrates remarkable advantages. The hydrogen-bond
network formed with residues GLN-227 and ASP-229 remained
stable throughout the simulation, while hydrophobic interactions
optimized from residues TYR-216 and ASP-234 to retain only the
critical anchor residue TYR-216, indicating highly converged
binding modes. This combination of dominant polar interactions
and streamlined hydrophobic interactions suggests that Arnidiol
establishes an energy-stable and specific binding with HIF-1α,
emerging as a reliable drug candidate with clear optimization
potential in pharmaceutical design.

3.6.2 Dynamical cross-correlation matrix
To investigate the correlations between different residues during

the simulation process and comprehend the dynamic characteristics
and functions of proteins, we constructed the dynamical cross-
correlation matrix (DCCM) of four complex systems. Subsequent to
aligning the protein structures, we computed the deviation vectors of
each residue’s α-carbon atom relative to its average position. Based
on the deviation vectors, the covariance matrices and correlation
coefficients were further calculated to obtain the DCCM diagrams of
the four complex systems as shown in Figure 11. In Figure 11, the
images located in the upper left, upper right, lower left, and lower
right are respectively Figures 11A–D. Positively correlated motions
between residues are represented in yellow and orange. Negatively
correlated motions are depicted in blue and black. Uncorrelated
motions are indicated in purple. At the diagonal position, the same
α-carbon atom exhibits the highest self-correlation, indicating that
its own motion pattern remains completely consistent throughout
the time series. The correlations on both sides of the diagonal usually
indicate that adjacent residues form a tight secondary structure such
as α-helix, β-sheet, or β-turn.

The correlated motions of active site residues are crucial for the
execution of protein function. Specifically, in the Arnidiol-HIF1α
complex, residues 320–340 located near the active site demonstrated
markedly positive correlated motions. In the Epifriedelanol-HIF1α
system, the residues near the active site manifested certain correlated
motions, albeit with slightly diminished intensity compared to
Arnidiol. In the Lupeol-HIF1α system, the residues in proximity
to the active site also exhibited a regular trend of correlated motion.
Residues 66–150 displayed significantly positive correlated motions
with each other, while also exhibiting significantly negative

FIGURE 9
The changes in SASA of four complexes during the molecular dynamics simulation process.
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correlated motions with residues 166–250 and 295–364. Residues
166–364 also had interrelated positive correlated motions among
themselves. Meanwhile, we observed that the adjacent residues

flanking the diagonal in the above three systems showed
significant correlations, indicating a tight and stable secondary
structure. In contrast, no notable correlated motions are detected

FIGURE 10
Binding modes of four complexes at 50 ns and 100 ns during molecular dynamics simulations.
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near the active site residues in the alpha-amyrin complex system.
Moreover, the distribution of positive and negative correlated
motion regions was comparatively disordered, suggesting lower
structural stability. This may account for its higher mean RMSD.

3.6.3 Free energy landscape
Based on the data from molecular dynamics simulations, we

initially computed the covariance matrix of the spatial coordinates.
Using the two most significant eigenvectors, PC1 and PC2, obtained
from the covariance matrix decomposition as the coordinate axes, we
constructed the free energy landscapes for the four complex systems. In
Figure 12, the images located in the upper left, upper right, lower left,
and lower right are respectively Figures 12A–D.The blue region denotes
areas of higher energy, namely, energy barriers. The red region, on the
other hand, denotes areas of lower energy, namely, energy wells. In all
four complex systems. We observed several widely significant energy
wells in all four complex systems, indicating that the four ligands can

strongly bind to the target protein and form multiple stable complex
conformations. Compared to other systems, the Lupeol-HIF1α complex
exhibits a degree of minor relative free energy differences among its
energy wells, indicating the existence of distinct stable conformations.
Meanwhile, the transitions between stable conformations require
overcoming two significant energy barriers of varying magnitudes.
Therefore, the corresponding RMSD trajectory in Figure 8A displays
two moderate fluctuations at 60 ns and 80 ns. The Arnidiol-HIF1α
complex also exhibits two minor energy barriers, with the
corresponding RMSD trajectory showing slight fluctuations at 10 ns
and 25 ns, respectively. The Epifriedelanol-HIF-1α complex presents a
significant energy barrier and several scattered minor energy barriers.
Consequently, the RMSD trajectory exhibits noticeable fluctuations
between 5 ns and 10 ns, succeeded by several subtle oscillations. The
Arnidiol-HIF1α and Epifriedelanol-HIF1α complexes exhibit the lowest
energy wells with the widest ranges, indicating the most stable complex
conformations. The alpha-Amyrin complex system possesses an

FIGURE 11
Dynamic cross-correlation matrices of the complexes: (A) alpha-Amyrin, (B) Arnidiol (C) Epifriedelanol, (D) Lupeol.
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extensive and sizable energy barrier, indicative of higher conformational
instability. This is consistent with the mean RMSD value observed
in Figure 8A.

4 Discussion

The multi-level virtual screening strategy of “machine learning -
molecular docking - molecular dynamics simulation” adopted in this
study successfully achieved the virtual screening and mechanism
analysis of HIF-1α inhibitors, verifying the efficiency and reliability
of combining artificial intelligence with classical CADD methods for
drug discovery. In this study, we separately computed 208 RDKit
molecular descriptors and 300-dimensional Mol2Vec molecular
structure vector descriptors for the training and test datasets. Based
on these two molecular features, six distinct machine learning models
were constructed by three machine learning algorithmic: random forest
(RF), support vector machine (SVM), and extreme gradient boosting
(XGBoost). In the subsequent model performance evaluation, the

random forest model based on RDKit molecular descriptors (RDKit-
RF) exhibited superior performance, with anAUCvalue of 0.918 and an
MCC value of 0.781. Consequently, we employed the RDKit-RF model
to conduct virtual screening of the Traditional Chinese Medicine
Monomer Library developed by Topscience, identifying
104 compounds with “active” values exceeding 0.8 for molecular
docking. Based on the results of molecular docking, we further
selected eight compounds with docking scores below −8.5 kcal/mol
and computed their MM-PBSA binding free energies. Taking the
known effective HIF-1α inhibitor, 7-Hydroxylamellarin A, as a
reference, the total binding free energies of the compounds
Epifriedelanol, Arnidiol, alpha-Amyrin, and Lupeol were lower than
that of the reference compound 7-Hydroxylamellarin A (−19.5983 ±
3.4421 kcal/mol). Among them, the MM-PBSA binding free energy of
the compound Epifriedelanol was the lowest, at −27.2463 ± 2.2615 kcal/
mol. We considered Epifriedelanol and the other three compounds to
be themost likelyHIF-1α inhibitors, and conducted docking interaction
analysis and 100 ns molecular dynamics simulations on them. We
found that the potential HIF-1α inhibitors screened by the multi-level

FIGURE 12
Free energy landscapes of the complexes: (A) alpha-Amyrin, (B) Arnidiol (C) Epifriedelanol, (D) Lupeol.

Frontiers in Chemistry frontiersin.org17

He et al. 10.3389/fchem.2025.1585882

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://doi.org/10.3389/fchem.2025.1585882


virtual screening system combining machine learning and CADD
methods exhibited different target protein interaction patterns
compared to previous studies. This may provide a new perspective
for the exploration and design of HIF-1 α inhibitors. The results of
molecular dynamics simulations indicate that the compounds Arnidiol
and Epifriedelanol form themost stable conformations with theHIF-1α
protein, holding promise as potential HIF-1α inhibitors.

In the future, we will integrate data frommultiple databases such
as ChEMBL and Pubchem to enrich the sample diversity of our
research. Additionally, we will focus on building a fusion system of
deep learning models and existing machine learning frameworks to
fully explore the three-dimensional binding features in molecular
graph data and reduce the potential false positive rate of existing
algorithms. We also plan to incorporate multiple molecular docking
algorithms including Glide and AutoDock Vina, establishing a
multi-dimensional scoring system to overcome potential biases
associated with single-algorithm approaches, On the basis of
verifying the effectiveness of current targeted inhibitors, we will
also extend the screening strategy to key targets such as PHD2 and
FIH-1 in the HIF-1α pathway to explore the possibility of developing
multi-target inhibitors or agonists. Meanwhile, we will also evaluate
the value of compounds in HIF-1α-related disease such as ischemic
cardiovascular disease, chronic inflammation and autoimmune
diseases to further enhance the application value of this study.

5 Conclusion

In this study, we employed a three-tier innovative virtual screening
system integratingmachine learning, molecular docking, andmolecular
dynamics simulations to comprehensively screen potential HIF-1α-
targeting inhibitors from the traditional chinese medicine monomer
database containing 2,560 natural compounds developed by
Topscience. Through sequential evaluation via machine learning
model scoring, binding affinity analysis, and MM-PBSA binding free
energy calculations, four compounds demonstrating theoretical
superiority over the known HIF-1α inhibitor 7-hydroxy
amiraprotein A were identified. Subsequent molecular dynamics
simulations ultimately revealed two most potent potential HIF-1α
inhibitors: Arnidiol and Epifriedelanol. In future, these compounds
hold promise for advancing more effective therapeutic strategies in
cancer treatment after further experimental validation.
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