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There are many pathogenic Clostridium species with diverse virulence factors that include
protein toxins. Some of these bacteria, such as C. botulinum, C. difficile, C. perfringens,
and C. spiroforme, cause enteric problems in animals as well as humans.These often fatal
diseases can partly be attributed to binary protein toxins that follow a classic AB paradigm.
Within a targeted cell, all clostridial binary toxins destroy filamentous actin via mono-ADP-
ribosylation of globular actin by the A component. However, much less is known about
B component binding to cell-surface receptors. These toxins share sequence homology
amongst themselves and with those produced by another Gram-positive, spore-forming
bacterium also commonly associated with soil and disease: Bacillus anthracis. This review
focuses upon the iota and C2 families of clostridial binary toxins and includes: (1) basics
of the bacterial source; (2) toxin biochemistry; (3) sophisticated cellular uptake machinery;
and (4) host–cell responses following toxin-mediated disruption of the cytoskeleton. In
summary, these protein toxins aid diverse enteric species within the genus Clostridium.
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BASICS OF THE BACTERIAL PLAYERS
Species of Clostridium (derived from Greek “kloster”= spindle)
are ubiquitous, anaerobic, spore-forming bacilli of the phylum
Firmicutes (Latin“firmus”= strong and“cutis”= skin). These bac-
teria are commonly found throughout the world in soil, water, and
gastrointestinal tracts of animals as well as humans. The G + C
content of the genus ranges from 22 to 52%, with the majority
around 28% (Jones and Keis, 2005). Many clostridia are harmless
and quite versatile for solvent production (i.e., acetone, butanol,
isopropanol from C. acetobutylicum and C. beijerinckii), nitrogen
fixation (C. pasteurianum), biodegradation of natural polymers
(cellulose, pectin, etc.) or hazardous materials (TNT, chlorinated
solvents, etc.), debridement of necrotic tissue (application of col-
lagenase from C. histolyticum), and novel anti-cancer treatments
(C. novyi, etc.). However, there are notable exceptions and some
of these clostridial pathogens for various mammals are presented
in this review (Dürre, 2005; Songer, 2005).

Some Clostridium and related Bacillus species have developed
common mechanisms for survival within, and outside of, numer-
ous hosts. This is evidenced by the various diseases caused by
these microorganisms that are often mediated by protein toxins,
enzymes, and spores. C. botulinum, C. difficile, C. perfringens, as
well as C. spiroforme are collectively associated with a multitude
of animal and human diseases/intoxications such as gas gangrene,
food poisoning, antibiotic-associated diarrhea, pseudomembra-
nous colitis, and enterotoxemia. Anthrax attributed to B. anthracis
also occurs in different mammals, and includes three forms: (1)
cutaneous; (2) intestinal; and (3) inhalational. An ability to survive
and thrive in diverse niches is a remarkable characteristic of these

spore-forming bacteria. This review particularly focuses upon dif-
ferent aspects of the iota and C2 families of binary toxins produced
by four different clostridia.

CLOSTRIDIUM PERFRINGENS IOTA TOXIN
Clostridium perfringens, previously known as Bacillus aerogenes
capsulatus and later Clostridium welchii, was first described by
Welch and Nuttal in 1891 (Welch and Flexner, 1896; Lucey,
2004). In particular, the bacterium was isolated following a human
autopsy (death due to an aortic aneurism) with profuse gas for-
mation throughout the circulatory system and multiple organs.
Microscopic examination of organ tissues revealed bacilli masses,
especially where gas pockets formed within the tissue wall. The
isolate was successfully cultured in anaerobic, not aerobic, media.
This bacterium was non-motile and very similar in size/shape
as B. anthracis previously described by Robert Koch; however,
it was not B. anthracis. There was no overt pathogenesis of this
unique isolate upon intravenous injection into rabbits, but bacte-
rial introduction immediately followed by euthanasia reproduced
post-mortem findings similar to the aforementioned human case.
It was concluded that growth of Bacillus aerogenes capsulatus
(C. perfringens) can occur in humans, and animals, as a post-
mortem event. Welch and Flexner (1896) nicely describe many
other human cases of C. perfringens-associated disease manifested
as a pelvic abscess, pneumothorax, peritonitis, gas gangrene of
extremities, etc. Under certain circumstances involving an anaer-
obic niche, many sites within the human body were recognized
120 years ago as hospitable for C. perfringens growth during life,
and afterward in death.
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There are five toxinotypes (A–E) of C. perfringens classically
based upon four lethal, dermonecrotic toxins (alpha, beta, epsilon,
and iota). These “major” protein toxins are neutralized by type-
specific antisera in mouse lethal and guinea-pig dermonecrotic
assays. Today, multiplex polymerase chain reactions (PCR) are
usually employed for rapid typing of isolates (Sawires and Songer,
2005). The iota toxin is exclusively produced by type E strains
and implicated in sporadic diarrheic outbreaks among calves and
lambs (Bosworth, 1940; Billington et al., 1998). Although C. per-
fringens iota toxin was initially described in 1940 by Bosworth,
its binary nature was elucidated 45 years later by exploiting cross-
reacting antiserum against C. spiroforme (Stiles and Wilkins,1986).
The two proteins that comprise iota toxin were then designated as
iota a or Ia (slow moving) and iota b or Ib (fast moving), based
upon electrophoretic mobility in crossed-immunoelectrophoresis.
Ia or Ib are separately non-toxic, as is the case for individual com-
ponents from any toxin described in this review. However, an Ia–Ib
mixture forms a potent cytotoxin that rapidly kills mice, causes
dermonecrosis in guinea pigs, induces rounding of various cell
types in vitro, and elicits fluid accumulation in rabbit ileal loops.
Later studies revealed that Ia is a mono-ADP-ribosyltransferase
specific for actin (Schering et al., 1988). Although Ib lacks dis-
cernible enzymatic activity, it binds to a cell-surface protein(s)
and subsequently translocates Ia into the cytosol of a targeted cell
via lipid rafts and clathrin-independent endocytosis (Stiles et al.,
2000; Hale et al., 2004; Nagahama et al., 2004; Gibert et al., 2011).

Recent studies by Nagahama et al. (2011) suggest a slight para-
digm shift for the clostridial binary toxins, pending cell type. For
instance, they investigated the effects of Ib (no Ia) upon eight dif-
ferent cell lines. Although there were no effects of only Ib (high
ng/ml) upon six lines, viability and ATP levels rapidly decreased in
A431 (human epithelial carcinoma) and A549 (human lung ade-
nocarcinoma) cells. Future experiments will surely reveal more
interesting attributes of Ib, without Ia, upon cells.

CLOSTRIDIUM SPIROFORME TOXIN
Similar to the classic rod-shaped C. perfringens and enteric-acting
iota toxin, the distinctly coiled C. spiroforme also causes diar-
rheic deaths that are spontaneous or antibiotic-induced in rabbits
(Borriello and Carman, 1983; Carman and Evans, 1984) and per-
haps humans (Babudieri et al., 1986). Although further linkage
with human disease has not been confirmed, C. spiroforme was
originally isolated from human feces (Kaneuchi et al., 1979), as
is the closely related Coprobacillus catenaformis (Kageyama and
Benno, 2000). Clearly, rabbits are very susceptible to C. spiro-
forme-induced diarrhea during stress involving lactation, old age,
weaning, and an altered diet (Carman and Evans, 1984). This
bacterium is not commonly associated with the intestinal flora
of healthy animals (Borriello and Carman, 1983; Carman and
Evans, 1984). Furthermore, C. spiroforme isolated from outbreaks
throughout Italy have become rather resistant to antimicrobials
commonly used for treating infected rabbit colonies (Agnoletti
et al., 2009). This latter point raises a daunting issue of disease
management in the future.

The major virulence factor produced by C. spiroforme is an
iota-like toxin called CST. The Sa and Sb components of CST are
respectively analogous to Ia and Ib of C. perfringens iota toxin,

as first determined by crossed-immunoelectrophoresis and neu-
tralization studies with C. perfringens type E antiserum (Stiles and
Wilkins, 1986; Popoff et al., 1989; Simpson et al., 1989). It was erro-
neously thought that C. perfringens type E caused various diarrheic
outbreaks within rabbit colonies, as type E antiserum neutralizes
the cytotoxic cecal contents from enterotoxemic rabbits in vitro
(Katz et al., 1978; Borriello and Carman, 1983). However, C. per-
fringens type E was never isolated and the real breakthrough came
in 1983 correlating disease with enteric presence of C. spiroforme
(Borriello and Carman, 1983). Spores were selected from cecal
contents via heat (80˚C/10 min) or ethanol (50%/1 h at room
temperature) resistance and subsequently plated onto blood or
egg yolk agar incubated anaerobically at 37˚C. Simply based upon
cell morphology and arrangement, there are distinct differences
between C. perfringens and C. spiroforme. There are now less
laborious, PCR-based techniques for detecting C. spiroforme via
ribosome- and toxin-specific genes (Drigo et al., 2008).

CLOSTRIDIUM DIFFICILE TOXIN
The final member to enter the iota family is CDT (Popoff et al.,
1988; Perelle et al., 1997a). C. difficile was first recognized as a
major pathogen in the 1970s regarding its role in pseudomembra-
nous colitis and antibiotic-induced diarrhea in humans (Carroll
and Bartlett, 2011). This bacterium increasingly causes many life-
threatening problems, especially in hospitals throughout the world
via emerging “epidemic” strains (O’Conner et al., 2009; Kim et al.,
2011).

Initial discovery and isolation of C. difficile (originally named
Bacillus difficilis) are credited to Hall and O’Toole (1935) following
studies of intestinal flora in newborn (up to 10 day old) infants.
Their pioneering studies involving guinea pigs and rabbits injected
with culture filtrates of B. difficilis (C. difficile) suggested a soluble
exotoxin(s). The species name is derived from the French word for
“difficult,” as these anaerobes did not readily ferment sugars with
available techniques. Unlike adults, the intestinal tracts of infants
colonized by C. difficile and containing large molecular-weight,
Rho-glucosylating toxins A and B are interestingly not indicative
of disease. In addition to humans, CDT-producing C. difficile col-
onize the digestive tracts of cattle (Houser et al., 2010), horses
(Thean et al., 2011), and pigs (Thakur et al., 2010). Other mam-
mals may also act as sources of C. difficile for human infection
(Keel and Songer, 2006; Avbersek et al., 2011). C. difficile is found
in commercially available meats (Gould and Limbago, 2010) and
vegetables (Metcalf et al., 2010). Detection of the bacterium in
clinical samples is typically done via toxins A and B (protein or
DNA) assays (Barbut et al., 2011).

Like the other binary toxins, CDT consists of two compo-
nents (CDTa and CDTb) that respectively share high amino acid
sequence identity with C. perfringens Ia and Ib (Figure 1). This
relatedness is further demonstrated by interchanging protein com-
ponents between CDT, CST, and iota toxin (not C2 though) to
form biologically active chimeras (Popoff et al., 1989; Perelle et al.,
1997b; Gülke et al., 2001). Obvious structural and functional
commonalities exist between these toxic proteins of C. difficile,
C. perfringens, and C. spiroforme. It does not appear a random
coincidence that these intestinal, spore-forming pathogens possess
iota-family toxins.
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FIGURE 1 | Phylogenetic relationship between the enzymatic and

binding components of clostridial binary toxins. Evolutionary history of
clostridial binary toxins was inferred using the Neighbor-Joining method
(Saitou and Nei, 1987). The optimal tree with sum of branch
length = 1.11845902. The percentage of replicate trees in which the
associated taxa clustered together in the bootstrap test (500 replicates) are
shown next to the branches (Felsenstein, 1985). The tree is drawn to scale,
with branch lengths in the same units as those of the evolutionary
distances used to infer the phylogenetic tree. The evolutionary distances
were computed using the Poisson correction method (Zuckerkandl and
Pauling, 1965) and are in units of the number of amino acid substitutions
per site. All positions containing gaps and missing data were eliminated
from the dataset (complete deletion option). There were a total of 710 and
405 positions for the B and A component sequences, respectively, in the
final dataset. Phylogenetic analyses were conducted in MEGA4 (Tamura
et al., 2007).

For C. difficile, there have been many studies among hospi-
tal patients suggesting that CDT is linked to particularly virulent,
epidemic strains (Geric et al., 2003, 2006; Barbut et al., 2007; Blos-
som and McDonald, 2007; Miller et al., 2010; Bacci et al., 2011);
however, definitive proof correlating CDT levels in feces and dis-
ease severity is lacking. In contrast, other studies do not correlate
CDT with disease severity (Goldenberg and French, 2011). To
help resolve this, and other, CDT-based issues a recently devel-
oped ELISA can possibly correlate binary toxin levels in feces, or
from cultured isolates, to disease severity (Carman et al., 2011).
When one compares the enteric/systemic effects of other clostridial
binary toxins upon various mammals, quite plausibly CDT adds
a synergistic or additive twist to C. difficile-associated disease in
humans and animals. In fact, a recent Danish study by Bacci et al.
(2011) suggests higher fatality rates in patients with C. difficile
containing the CDT genes versus those strains without. Further
correlation of CDT concentrations in the gut, and severity of C.
difficile disease, becomes rather complicated with a sporulating
bacterial pathogen that produces two other potent toxins, A and B.
Add to this relative antibiotic resistance of an isolate and it becomes
very difficult to unequivocally ascertain the role CDT plays in C.
difficile disease. Perhaps use of CDT-targeted gene knockouts of C.
difficile, with an animal infection model, could be useful for future
studies (Kuehne et al., 2010)?

CLOSTRIDIUM BOTULINUM C2 TOXIN
Clostridium botulinum, initially identified as Bacillus botulinus, was
first described in 1895 by Emile van Ermengem following a social

gathering in Belgium where contaminated ham was served to the
guests (Devriese,1999). Some of these people died due to botulism,
caused by a protein neurotoxin (BoNT). Similar to the C. perfrin-
gens typing toxins, BoNT types A–G of C. botulinum are classically
determined by mouse lethal assays with BoNT-specific antisera. As
with the other clostridia though, PCR-based detection is becom-
ing more common for identifying the different toxinotypes (Fach
et al., 2011).

Unlike BoNTs, the binary C2 enterotoxin produced by C. bot-
ulinum types C and D lacks neurotoxicity but is implicated in
fatal enteric outbreaks among waterfowl. The toxin consists of
C2I (enzyme) and C2II (cell-binding and translocation) proteins
(Ohishi, 1983a,b), which do not complement iota-family toxin
components. C2 toxin is cytopathic for many different cell types
and induces vascular permeability, necrotic–hemorrhagic lesions,
as well as lethal fluid accumulation into the lungs and intesti-
nal tracts of various animals (Ohishi et al., 1980; Simpson, 1982;
Ohishi and Miyake, 1985; Kurazono et al., 1987). In 1986, Aktories
and co-workers discovered that C2I mono-ADP-ribosylates glob-
ular (G) actin (Aktories et al., 1986). This was the first report of
any bacterial toxin that modifies actin and subsequently destroys
the cytoskeleton.

BIOLOGY OF CLOSTRIDIAL BINARY TOXINS
Clostridial binary toxins are composed of enzymatic (A) and
cell-binding/translocation (B) proteins released separately from
the bacterium, subsequently assembling upon targeted eukaryotic
cells. The iota-family members are C. difficile CDT, C. perfrin-
gens iota, and C. spiroforme CST (Table 1) based upon high
sequence homology, immunological cross-reactivity, and inter-
changeable components that generate biologically active chimeras.
The lone representative of the C2 family is from C. botulinum and
distinct from the iota family in many ways (Figure 1). Interchange-
able protein components of the iota-toxin family share 80–85%
sequence identity, but the signal peptides are less conserved (40–
61% identity). There is only 31–40% identity between C2 and
iota-family toxins which is slightly higher than the 26–30% iden-
tity between B. anthracis protective antigen (PA) and clostridial B
components. The A and B components of iota-family toxins are
respectively synthesized with a leader peptide consisting of 29–49
and 39–47 residues (Popoff, 2000). In contrast, C2 toxin compo-
nents are sporulation-linked and thus lack a signal peptide. These
findings correlate with iota-family proteins secreted during loga-
rithmic growth, while the C2 toxin is produced during sporulation
(late logarithmic) and released after sporangium lysis (Naka-
mura et al., 1978). Various commonalities between clostridial and
bacillus binary toxins, along with production of spores, suggest
overlapping evolutionary paths between these genera.

The AB components of all Clostridium binary toxins are
encoded by distinct genes possessing 27–31% G + C content
(Popoff, 2000). The A and B genes are transcribed in the same
orientation from a common operon. The A gene is located 40–50
nucleotides upstream of the B, with an exception being the C2
genes separated by 247 nucleotides (Perelle et al., 1993; Fujii et al.,
1996; Gibert et al., 1997; Kimura et al., 1998). There are also other
genetic differences as C. difficile CDT and C. spiroforme CST are
chromosome-encoded versus the plasmid-localized C. botulinum
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Table 1 | Clostridial binary toxins.

Toxin and components

(kDa)

Gene location Associated disease

C. PERFRINGENS IOTA

Ia (45) Plasmid Calf/lamb enterotoxemia

Ib (94 precursor/

81 activated)

C. SPIROFORME CST

Sa (44) Chromosome Rabbit enteritis/potential rare

cases in humansSb (92 precursor/

76 activated)

C. DIFFICILE CDT

CDTa (48) Chromosome Additional virulence factor in

pseudomembranous colitis/

post-antibiotic enteritis

CDTb (99 precursor/

75 activated)

C. BOTULINUM C2

C2I (49) Large plasmid Avian hemorrhagic enteritis

C2II (80 or 100 precur-

sor/60 or 80 activated)

C2 and C. perfringens iota toxins (Popoff, 2000; Li et al., 2007; Sak-
aguchi et al., 2009). Originally, the C. botulinum C2 toxin genes
were thought to be chromosomal but later studies revealed a quite
large (107 kb) plasmid with 123 potential open reading frames
(Sakaguchi et al., 2009). Plasmid from C. perfringens type E that
contains the iota-toxin genes is also unique in that it can encode
another toxin, C. perfringens enterotoxin, which is: (1) associated
with human food poisoning; (2) sporulation-linked; and (3) pos-
sesses a different mode of action versus the clostridial binary toxins
(Miyamoto et al., 2011). Additionally, these type E strains can
be mistyped as C. perfringens type A due to sequence variability
within the Ia gene that is typically targeted by PCR.

STRUCTURE AND FUNCTION OF B COMPONENTS
As Table 1 shows for each toxin, the cell-binding B components
are produced as precursors activated outside of the bacterium
by various serine-type proteases from bacteria, the mammalian
host, or that added in vitro. The resultant loss of an N-terminal
peptide (∼20 kDa) evidently induces conformational changes that
facilitate homoheptamerization, either in solution or on the cell
surface. The B oligomers bind to cell-surface receptors, form com-
plexes with respective A component(s), facilitate internalization,
and ultimately release A into the cytosol. There is no enzymatic
activity attributed to B components from any clostridial binary
toxin.

It was initially reported in 1949 that iota toxin requires prote-
olytic activation for mouse lethal and guinea-pig dermonecrotic
effects (Ross et al., 1949). Additional clues were provided years
later, revealing that an Ib precursor (designated as Ibp) was the
target of exogenously added, or culture-derived, serine-type pro-
teases (Barth et al., 2004). Trypsin proteolysis of fractionated, early
cultures of C. perfringens type E increased ELISA readings for Ibp
but not Ia. These findings suggest a conformational change in
“activated” Ibp exposing cryptic epitopes recognized by Ib-specific
antibodies. There was also increased guinea-pig dermonecrosis

and mouse lethality of Ibp, following proteolysis, in conjunction
with untreated Ia. Subsequent cloning and sequencing revealed
proteolysis of Ibp near A211 (Perelle et al., 1993), which promotes
oligomerization of Ib into SDS-stable heptamers on cell mem-
branes and lipid rafts (Hale et al., 2004; Nagahama et al., 2004);
however, Ib heptamers formed in solution are rather unstable
(Blöcker et al., 2001; Nagahama et al., 2002; Stiles et al., 2002). Vero
cell-bound Ibp does not form oligomers and is not activated over
time in vitro with, or without, exogenous trypsin or chymotrypsin
(Stiles et al., 2002). The cell-targeting domain of Ib/Ibp is in the
C-terminus and quite distal from the N-terminal activation site.
To date, activation and cell-binding studies similar to those for Ib
have not been conducted with C. difficile CDTb or C. spiroforme
Sb; however, there are likely many similarities in the biology of
these B components based upon sequence homology with Ib.

Following proteolysis of Ibp, Ia readily docks with the Ib
oligomer (Stiles et al., 2000). There are also voltage-dependent,
ion-permeable channels formed in artificial lipid membranes by
Ib oligomers, but not Ibp monomers (Knapp et al., 2002). These
channels are blocked by Ia. Ib oligomers formed in solution are
structurally fragile and upon binding to Vero cells do not cause
potassium release, are readily digested by pronase, and do not
promote Ia-induced cytotoxicity (Blöcker et al., 2001; Nagahama
et al., 2002). The pronase studies suggest that solution-generated
Ib oligomers, once bound to cells, remain exposed and do not
insert into lipid membranes.

There are other proteases like pepsin, proteinase K, subtilisin,
alpha-chymotrypsin, thermolysin, as well as the zinc-dependent
C. perfringens lambda protease that activate Ibp more efficiently
than trypsin. Besides Ibp, Ia also undergoes proteolysis by some of
these same enzymes with an additional loss of 9–13 amino acids
from the N-terminus after cleavage of leader peptide (Gibert et al.,
2000). Proteolysis of Ia leads to increased cytotoxicity of Vero cells,
when combined with Ib. It is still uncertain whether proteolysis
of Ia affects docking efficiency to cell-bound Ib, translocation into
cells, and/or enzymatic activity. Proteolysis effects upon A compo-
nents from other clostridial binary toxins has not been reported
to date. As the iota-family members are enteric, it is perhaps an
evolutionary advantage to become activated by many different
proteases from not only the host microbe, but also neighboring
bacteria and eukaryotic host. Proteolytic activation, and subse-
quent resistance to proteolysis-based inactivation, is a common
theme with clostridial toxins from various species.

Structure–function studies have been done with iota toxin, tar-
geting Ib via deletion mutagenesis and antibody studies (Marvaud
et al., 2001). Similar studies are lacking in the literature for B com-
ponents from CST and CDT. Deletion of just 10 residues from
the C-terminus (domain 4) effectively prevents Ib binding to Vero
cells. C-terminal peptides of Ib containing more than 200 amino
acids represent competitive inhibitors of iota cytotoxicity in vitro.
On the other end, deletion of 27 N-terminal residues prevents Ia
docking and intoxication, yet has little effect upon Ib binding to
the cell surface.

Studies with monoclonal antibodies (Mabs) against an N-
terminal epitope within residues 28–66 reveal no effect upon Ib
binding or cytotoxicity (Marvaud et al., 2001). It is possible that
these immunoreagents do not occupy the Ib site necessary for Ia
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docking and/or perhaps are displaced upon Ib oligomerization or
docking of Ia. An obvious void in the literature involves affin-
ity constants for A–B docking amongst clostridial binary toxins,
which evidently does not occur at an appreciable rate in solution
versus on a cell surface.

Two other Mabs recognize unique Ib epitopes within the C-
terminus (residues 632–655), protecting against iota cytotoxicity
via distinct mechanisms. One Mab prevents Ib binding to cells
while the other does not; however, this latter antibody efficiently
prevents Ib oligomerization on the cell surface. These latter results
further demonstrate the importance of Ib oligomerization on
iota-toxin activity, which is a common theme amongst clostridial
binary toxins. Unfortunately, from an antibody probe perspective,
none of the N- or C-terminal binders recognize Ib bound to the
cell surface.

Each Mab against Ib recognizes Ibp or C. spiroforme Sb in
an ELISA and Western blot, but not B. anthracis PA (Marvaud
et al., 2001). A similar effort with CDTb is obviously lacking.
Surprisingly, C2II (activated form designated as C2IIa) is rec-
ognized by one of the C-terminal binding Mabs in an ELISA;
however, in contrast to iota toxin this immunoreagent does not
neutralize C2 cytotoxicity. C2IIa and Ib bind unique receptors
via their C-terminus and share little sequence homology within
the C-terminal domain (Fritz et al., 1995; Blöcker et al., 2000).
Although previous efforts have targeted the N- and C-termini of
Ib through different techniques, a more thorough understanding
of the clostridial binary toxins could perhaps now be gleaned by
focusing upon internal domains 2 and 3.

Like the iota-family toxins, the 80 kDa (or 100 kDa) C2II pre-
cursor of C2 toxin is activated by trypsin into 60 kDa (or 80 kDa)
C2IIa (Blöcker et al., 2000). Size differences in precursor and acti-
vated C2II can vary, depending upon strain and C-terminal exten-
sion that increases toxin potency (Sterthoff et al., 2010). C2IIa,
but not the C2II precursor, forms stable homoheptamers in solu-
tion (Barth et al., 2000; Kaiser et al., 2006). Electron microscopy
of C2IIa oligomers on lipid bilayers reveals donut-, as well as
horseshoe-, shaped heptamers with inner (20–40 Å) and outer
(110–130 Å) diameters (Barth et al., 2000) further confirmed by
Schleberger et al. (2006) via modeling. In similar fashion as the
iota toxin, the C2II precursor binds to cells but is not activated by
surface proteases and does not dock C2I (Ohishi, 1987; Ohishi and
Yanagimoto, 1992).

C2IIa forms ion-permeable, cation-selective channels in arti-
ficial black lipid bilayer membranes that are blocked by comple-
mentary C2I (Schmid et al., 1994; Bachmeyer et al., 2001; Blöcker
et al., 2003). A cluster of hydrophobic and hydrophilic amino acids
(303–331) within C2II may play a critical role in membrane inser-
tion, along with E399 and F428 (Blöcker et al., 2003; Lang et al.,
2008). Moreover, in acidic media, C2IIa forms pores in the cyto-
plasmic membranes of intact cells which translocate C2I directly
into the cytosol. Such experiments mimic acidified endosomes
where C2IIa heptamers form transmembrane pores to translocate
C2I from the endosomal lumen, across the endosomal membrane,
and into the cytosol.

As described by different groups for both C. perfringens Ib and
B. anthracis PA, studies also reveal that the C-terminus of C2IIa
facilitates binding to cell-surface receptor (Blöcker et al., 2000).

Antiserum specific for the C-terminus (domain 4; residues 592–
721), but not domains 1 (residues 1–264) or 3 (residues 490–592),
blocks C2IIa binding to cells. Antiserum against domain 4 neutral-
izes C2 cytotoxicity in vitro when preincubated with C2IIa, but this
is not the case after C2IIa has bound the cell surface. As described
for Ib Mabs binding to Ib (Marvaud et al., 2001; Stiles et al., 2002),
neutralizing epitopes on C2IIa are perhaps sterically hindered
after C2IIa-cell receptor interactions. Deletion studies targeting
the N-terminus of C2II precursor show that loss of residues 1–
181, normally cleaved upon proteolytic activation, impacts proper
folding (Blöcker et al., 2000). The sequence similarities existing
between PA, C2II, and Ib are primarily localized within central
domains 2 and 3. For PA, these domains participate in oligomer-
ization, channel formation, and enzyme translocation (Benson
et al., 1998; Mogridge et al., 2001; Sellman et al., 2001). Except for
one study with C. botulinum C2II (Blöcker et al., 2003), very little
structure–function analysis has occurred within domains 2 and 3
of B components from the other clostridial binary toxins.

STRUCTURE AND FUNCTION OF A COMPONENTS
Enzymatic components of iota, CDT, and C2 toxins consist of
two comparable-sized domains of ∼200 amino acids. The N-
terminal domain of each is enzymatically inactive and serves as
a docking site for complementary B component. Residues 1–87
of C2I mediate binding to C2II heptamers and translocation into
the cytosol (Barth et al., 1998a, 2002a,b). Alignment of C2I with
Bacillus cereus vegetative insecticidal protein 2 (VIP2), a related
ADP-ribosyltransferase, reveals relatedness within amino acids 1–
225 (C2I) and 60–275 (VIP2) that includes four exposed α-helices
(Han et al., 1999). Active sites are located in the C-terminus
of these enzymes, harboring conserved amino acids for cataly-
sis. Mutation of the first glutamic acid in the EXE motif of C2I
prevents ADP-ribosyltransferase, but not nicotinamide adenine
dinucleotide (NAD)-glycohydrolase, activity while the second glu-
tamic acid affects both (Barth et al., 1998b; Sakurai et al., 2003).
An STS triad is also commonly located near the active site and
promotes binding to NAD. These residues are conserved amongst
various ADP-ribosyltransferases from prokaryotes and eukaryotes
(Carroll and Collier, 1984; Jung et al., 1993; van Damme et al.,
1996; Han et al., 1999; Sakurai et al., 2003).

Mutagenesis of Ia within the NAD binding cavity reveals that
Y246 and N255 are important for ADP-ribosyltransferase, but not
NAD-glycohydrolase, activity while Y251 is involved in both (Saku-
rai et al., 2003). Enzymatic activity is inhibited by removing
divalent cations associated with actin, but low temperature (0˚C)
remarkably decreases activity by only 50% versus that at 37˚C (Just
et al., 1990).

Crystallography studies with components of different
clostridial binary toxins have been reported by various groups.
Tsuge et al. (2003, 2008) revealed Ia interactions with actin at 2.8 Å
resolution (Figure 2). Similar efforts by Sundriyal et al. (2009)
show CDTa (1.85–2.25 Å resolution) at different pH (4.0, 8.5, 9.0)
and complexed with NAD. C2I has also been resolved at 1.75 Å,
and like CDTa, there are few conformational changes that occur
with varying pH (Schleberger et al., 2006). This latter point is
particularly pertinent since an acidic environment (endosome or
extracellular fluid), with C2II-mediated channels, promotes C2I
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FIGURE 2 | Crystal structure of Ia with G-actin. Figure was generated
using Entrez’s Molecular Modeling Database (Wang et al., 2007), based
upon co-crystal structure from Tsuge et al. (2008) at 2.8 Å resolution.

translocation into the cytosol. Sequence identity of C2I with Ia
(or CDTa) is only 40%. A similar duplicate domain structure
exists for the related B. cereus VIP2 (Han et al., 1999). Like the
clostridial binary toxins, VIP2 is transported into cells via a sep-
arate B component (VIP1) that forms oligomers and channels in
lipid membranes (Leuber et al., 2006). Relative to the iota and
C2 family toxins, less is known about VIPs produced by Bacillus
species.

CELLULAR UPTAKE OF CLOSTRIDIAL BINARY TOXINS
To come within range of any intracellular substrate, and like other
bacterial protein toxins, the clostridial and bacillus binary toxins
must first bind to the exterior of a targeted cell (Figure 3). This
is followed by internalization of the toxin complex and transloca-
tion of A component from acidified endosome into the host-cell’s
cytosol. These individual steps during cellular uptake are medi-
ated by the multifunctional B components of binary toxins (Barth
et al., 2004). Serine-type proteases activate B monomers that then
form homoheptamers (most commonly reported arrangement)
on the cell surface or in solution prior to cell contact. Bind-
ing of B components from clostridial binary toxins involves lipid
rafts (Hale et al., 2004; Nagahama et al., 2004, 2009), with the B
oligomer – receptor complex acting as a docking platform for A
component(s). The receptors for Ib and C2IIa are distinct proteins,
in which carbohydrates play an important role in binding of C2IIa
but not Ib (Eckhardt et al., 2000; Stiles et al., 2000). In contrast,
the cell-surface receptors for B. anthracis PA have been definitively
identified as tumor endothelium marker (TEM) 8 (Bradley et al.,
2001) and human capillary morphogenesis gene (CMG) 2 (Scobie
et al., 2003). Lipid rafts also facilitate PA clustering and endocytosis
(Abrami et al., 2003).

To further understand the binding and oligomerization of
clostridial binary toxins on cells, the potential role played by lipid
rafts has been explored by different research groups. Lipid rafts are
dynamic, cholesterol-rich, detergent-insoluble (at 4˚C) regions on
cell membranes that popularly serve as portals for invasive bacte-
ria, viruses, and toxins (Vieira et al., 2010). It has been shown that
C. perfringens Ib localizes into these membrane microdomains on
Vero cells (Hale et al., 2004; Nagahama et al., 2004). The Ibp mole-
cule, which binds to cells but does not promote iota toxicity, is not
associated with lipid rafts on the cell surface. This finding suggests
that the receptor for iota toxin exists outside of lipid rafts, but is
perhaps “dragged” into these microdomains after binding to Ib.
Protein composition of Ib-containing lipid rafts from Vero cells
has been determined by proteomics (Blonder et al., 2005). Recent
work by Schwan et al. (2011) suggests that lipid rafts also play a role
in CDT intoxication, which includes unique microtubule-based
extensions from intoxicated cells that promote C. difficile adher-
ence. This same group (Papatheodorou et al., 2011) has recently
revealed a rather obscure protein, lipolysis-stimulated lipoprotein
receptor (LSR), as a receptor for CDTb and Ib. LSR is a type I
transmembrane protein involved in uptake of lipoproteins, but
has never been described as a receptor for any bacterial toxin.
Such a finding excitingly paves the way for further understanding
the uptake mechanisms of the iota-family toxins, which could lead
to unique toxin-targeting therapies.

In addition to Ib, receptor-binding studies have also been
reported for precursor and proteolytically activated forms of C2II
(Ohishi and Miyake, 1985). C2IIa has unique hemagglutinating
properties competitively inhibited by various carbohydrates such
as N -acetylgalactosamine, N -acetylglucosamine, l-fucose, galac-
tose, or mannose (Sugii and Kozaki, 1990). Trypsin or pronase
treatment of human erythrocytes prevents C2II-induced hemag-
glutination, suggesting a glycoprotein of unknown identity. Fur-
thermore, Fritz et al. (1995) revealed that chemically mutage-
nized CHO cells do not bind C2IIa. These cells are devoid of
N -acetylglucosaminyltransferase I which facilitates formation of
asparagine-linked complex and hybrid carbohydrates (Eckhardt
et al., 2000). These cells are still susceptible to iota toxin; therefore,
demonstrating that C2IIa and Ib recognize different receptors. C2,
like iota and the B. anthracis binary toxins, uses lipid rafts for
binding and entry into cells (Nagahama et al., 2009). C2 toxin
effectively intoxicates all tested vertebrate cells (Ohishi et al., 1984;
Sugii and Kozaki, 1990; Eckhardt et al., 2000), but the receptor for
Ib is not as ubiquitous (Stiles et al., 2000).

The Ib receptor is resistant to various proteases, but not
pronase. Rather extensive pretreatment of cells with lectins or
glycosidases does not affect Ib binding, thus suggesting that car-
bohydrates play no role (Stiles et al., 2000). Experiments with
polarized CaCo-2 (human colon) cells show that Ib receptor is
namely localized upon the basolateral membrane (Blöcker et al.,
2001; Richard et al., 2002). Additionally, Ib crosses a CaCo-2 cell
monolayer at 37˚C (but not 4˚C) from the apical or basolateral
surface independent of Ia (Richard et al., 2002). Ib that has trav-
eled across a monolayer can internalize Ia on this distal surface,
even when Ia is added 3 h after Ib.

Western blot experiments reveal that Ib rapidly binds to cells
at 37˚C and forms a large (>200 kDa) complex within 1 min

Frontiers in Cellular and Infection Microbiology www.frontiersin.org December 2011 | Volume 1 | Article 11 | 6

http://www.frontiersin.org/cellular_and_infection_microbiology
http://www.frontiersin.org
http://www.frontiersin.org/cellular_and_infection_microbiology/archive


Stiles et al. Clostridial binary toxins

FIGURE 3 | Model for the cellular uptake of C2 toxin from

C. botulinum. The C2IIa/C2I toxin complex binds to a receptor on the cell
surface and is internalized via clathrin-dependent receptor-mediated
endocytosis. Acidic conditions in the lumen of early endosomes trigger

membrane insertion and pore formation by C2IIa. C2I translocates in an
unfolded conformation through the C2IIa pores across endosomal
membranes into the cytosol. Hsp90 and cyclophilin A (CypA) facilitate
translocation.

(Nagahama et al., 2002; Stiles et al., 2002). This complex, which
does not form at 4˚C, remains for at least 6 h and thus promotes
Ia docking opportunities that generate holotoxin. Rapid binding
of Ib followed by surface-sustained availability for Ia makes sense
for any clostridial binary toxin.

Beyond cell-based studies, Sakurai and Kobayashi (1995) dis-
covered that when Ib is injected intradermally into guinea pigs,
Ia (injected intraperitoneally) can “find” Ib and cause localized
dermonecrosis. Perhaps this “homing” characteristic of Ia can be
exploited in future experiments from a medicinal perspective. Sim-
ilar discoveries have been reported for the C2 toxin in both mice
and rats (Simpson, 1982).

Following receptor-mediated endocytosis of the clostridial
binary toxins, which can occur via clathrin-dependent and -
independent mechanisms (Pust et al., 2010; Gibert et al., 2011),
the A components of iota, CDT, and C2 toxins cross the endoso-
mal membrane into the cytosol (Barth et al., 2000; Blöcker et al.,
2001; Kaiser et al., 2011). This step is mediated by transmem-
brane pores formed by the B components and can be blocked by
a macrolide antibiotic, bafilomycin A, which inhibits vacuolar-
type ATPases that acidify the endosomal lumen. This suggests
that acidic conditions are crucial for translocating A components
from endosomes into the cytosol. Low pH evidently induces con-
formational changes within the B complex, promoting insertion
into membranes and subsequent translocation of A components
through pores into the cytosol. This process is also artificially
induced from the cell surface into the cytosol by simply lower-
ing media pH (Barth et al., 2000; Blöcker et al., 2001). There are
unique pH requirements for translocating iota and C2 toxins, as
iota requires a lower pH (≤5.0) versus C2 (≤5.5). The biochem-
ical reasons for this difference are not known. Conversion of B.

anthracis PA heptamer from a pre-pore to pore state, when bound
to CMG2 receptor, is also pH driven and controlled by the receptor
(Lacy et al., 2004). Perhaps the unique receptors recognized by C2
and iota toxins play similar roles during pH-induced translocation.

Furthermore, entry of iota toxin from the endosome into the
cytosol of Vero cells differs from C2 toxin as per chloroquine, mon-
ensin, nigericin, and ammonium chloride inhibition (Gibert et al.,
2007). Besides preventing endosomal acidification, chloroquine
also physically blocks the C2IIa-induced pore thereby stopping
C2I translocation (Schmid et al., 1994; Blöcker et al., 2003). Mon-
ensin, like nigericin, exchanges monovalent cations for protons
that abolish the endosomal pH gradient. Because of inherent alka-
linity, ammonium chloride increases pH within endosomes. The
biological activity of iota toxin on Vero cells is not inhibited by
monensin alone; however, a combination of monensin and vali-
nomycin (a potassium ionophore) proves partially inhibitory, and
there is a distinct decrement of iota-toxin activity with monensin
plus bafilomycin A. Based upon these results, requirements of
Ia entry from the endosome mimic those previously described
for fibroblast growth factor (Wesche et al., 2006). Altogether, a
pH gradient between the endosome and cytosol are required for
translocating Ia (from early to late endosomes) and C2I (from
early endosomes), but Ia also requires a membrane potential. Most
likely, following translocation of A component into the cytosol,
the B heptamers of clostridial binary toxins remain attached to
the endosomal membrane and undergo lysosomal degradation
(Ohishi and Yanagimoto, 1992; Richard et al., 2002). It is also
possible, yet less likely, that B heptamers recycle back onto the
cell-surface following release of A into the cytosol.

For C2 toxin it has been shown that translocation requires par-
tial unfolding of the A component, C2I (Haug et al., 2003b). It can
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be expected that A components from the other clostridial binary
toxins also unfold into a “molten globule” to translocate through B
heptameric pores within the endosomal membrane. Perhaps this
occurs in a ratchet-type mechanism similar to the B. anthracis
lethal factor (LF) via an N- to C-terminal direction, through the B
(PA) pore, into the cytosol (Zhang et al., 2004; Krantz et al., 2006).

Recent studies with the C2, CDT, and iota toxins reveal that
pH-dependent membrane translocation and/or refolding of the
A components is facilitated by host-cell factors including the
chaperone heat-shock protein 90 (Hsp90), and cyclophilin A, a
peptidyl-prolyl cis/trans-isomerase (PPIase) (Haug et al., 2003a,
2004; Kaiser et al., 2009, 2011). PPIases are helper enzymes that cat-
alyze slow protein-folding reactions (Fischer et al., 1989; Schmid,
1993). Treatment of cultured cells with specific pharmacological
inhibitors of Hsp90 (geldanamycin and radicicol) or cyclophilin
A (cyclosporine A) significantly delay the C2-, CDT-, and iota-
induced rounding of cells. Moreover, these inhibitors prevent
uptake of A components into the cytosol but do not influence
other aspects of toxin uptake or enzyme activity. Inhibition of the
chaperone and PPIase activities of Hsp90 and cyclophilin A respec-
tively prevent translocation of A components into the cytosol,
thus trapping them in the endosomes. The A components directly
interact with purified Hsp90 and cyclophilin A proteins in vitro
(Kaiser et al., 2009, 2011). Although the data support a com-
mon Hsp90/cyclophilin A-dependent translocation for clostridial
binary toxins, the precise molecular mechanisms underlying the
interaction between these host-cell factors and A components is
not known and requires further investigation. Interestingly, Hsp90
is a conserved ATPase present in all eukaryotic cells and often com-
plexed with other proteins, including PPIases (Wandinger et al.,
2008). In conjunction with other heat-shock proteins, Hsp90 reg-
ulates trafficking of “client” proteins into the cytosol and assists
various cell functions that include signaling (Pratt and Toft, 2003;
Zuehlke and Johnson, 2010). The translocation process used by
clostridial binary toxins is akin to that exploited by another ADP-
ribosyltransferase from Corynebacterium diphtheriae, diphtheria
toxin, involving a cytosolic complex of Hsp90 and thioredoxin
reductase (Ratts et al., 2003). The latter might cleave the disulfide
bond between A and B chains of diphtheria toxin, in which such
reduction-based activation exists for other single-chain proteins
like C. tetani tetanus toxin and C. botulinum neurotoxin A (Kist-
ner and Habermann, 1992). However, such a cystine bond does not
exist between AB components for clostridial and bacillus binary
toxins.

In contrast to the clostridial binary toxins, cytosolic entry of
B. anthracis lethal toxin is not affected by Hsp90 inhibitors (Haug
et al., 2003a; Zornetta et al., 2010; Dmochewitz et al., 2011). This
latter result further suggests differences in translocating clostridial
and bacillus binary toxins. Moreover, Hsp90 might be gener-
ally selective for bacterial ADP-ribosyltransferases like the cholera
toxin of Vibrio cholerae (Taylor et al., 2010), which is structurally
distinct from the binary toxins described in this current review.

New knowledge about the molecular mechanisms underlying
cellular uptake of binary clostridial toxins can provide useful ther-
apeutic targets against these toxins. For example, targeting of CDT
could perhaps diminish some of the enteric ill-effects of epi-
demic (CDT-producing) strains of C. difficile. Examples of novel

therapeutics might include derivatives of chloroquine (Bachmeyer
et al., 2001) or methyl-β-cyclodextrin (Nestorovich et al., 2011),
which interfere with pore formation by B components and sub-
sequent translocation of A components. Another possibility is the
targeted pharmacological inhibition of individual host-cell fac-
tors that translocate A components, such as cyclophilin A (Barth,
2011).

A more comprehensive understanding of how clostridial binary
toxins enter cells can also aid their potential use as medicinal
shuttles. This latter aspect is particularly interesting since frag-
ments of the C2 (Barth et al., 1998a, 2002b; Pust et al., 2007;
Fahrer et al., 2010a,b) and iota (Marvaud et al., 2002) toxins
have been successfully employed as “Molecular Trojan Horses”
to deliver foreign proteins (e.g., enzymes) into the cytosol of vari-
ous mammalian cell types without causing damage during entry.
Because this approach enables targeted manipulation of living
cells, recombinant fusion toxins do not only represent valuable
tools for cell biology and experimental pharmacology, but also
potentially attractive therapeutics (Barth and Stiles, 2008).

ADP-RIBOSYLATION OF ACTIN. . . A PATHOGEN’S SURGICAL
STRIKE UPON THE CYTOSKELETON
Mono-ADP-ribosylation of host proteins is a common mecha-
nism employed by diverse, pathogenic bacteria via the actions of
protein toxins (Masignani et al., 2006). All of these toxins use
eukaryotic-provided NAD, a ubiquitous molecule necessary for
energy metabolism, as a source of ADP-ribose to alter the function
of critical eukaryotic proteins necessary for life.

There are four groups of ADP-ribosylating toxins based upon
their intracellular targets: (1) elongation factor two (EF2) modified
by C. diphtheriae diphtheria toxin and Pseudomonas aeruginosa
exotoxin A via an N- and C-terminal active site, respectively; (2)
heterotrimeric G-proteins targeted by Bordetella pertussis pertus-
sis toxin, Escherichia coli heat labile enterotoxin, and V. cholerae
cholera toxin by way of N-terminal active sites; (3) Rho and Ras
GTPases modified by C. botulinum C3 exoenzyme and P. aerugi-
nosa exoenzyme S through C-terminal active sites; and (4) G-actin
(Holbourn et al., 2006; Masignani et al., 2006). All actin-modifying
toxins have a C-terminal active site and are designated as type IV
ADP-ribosyltransferases. Although sequence homologies may be
low between different ADP-ribosyl transferases (i.e., prokaryotic
and eukaryotic), topography of the enzymatic cleft and catalytic
residues remains quite conserved (Tsuge et al., 2008).

Pathogen disruption of the eukaryotic cytoskeleton through
actin can alter many vital processes, including: (1) vesicle traf-
ficking; (2) phagocytosis; (3) migration; (4) epithelial barrier
formation and binding to extracellular matrix; as well as (5) sig-
naling (Aktories et al., 2011). Ultimately, these cumulative events
induce cell death with subsequent release of valuable, intracellu-
lar nutrients for the pathogen and other microbes within that
microenvironment. Furthermore, bacterial toxins that modify
actin have become invaluable tools for studying the cytoskeleton
and numerous cell processes.

Actin is a conserved protein (∼42 kDa in monomeric G form)
found throughout nature, playing a pivotal role in filament
(F-actin) formation essential for cytoskeleton development and
cellular processes (Wertman and Drubin, 1992; Aktories et al.,
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2011). Mono-ADP-ribosylation of G-actin inhibits monomer
assembly into F-actin strands (Aktories et al., 1986, 2011), via
steric hindrance of hydrophobic loop interactions between G-actin
molecules (Figure 4). Ultimately modified G-actin does not bind
F-actin strands, decreasing concentrations of the latter, while con-
comitantly increasing the G-actin pool inside a cell (Aktories et al.,
1989). In addition to the actin–gelsolin complex, both the iota and
C2 toxins modify G-actin complexed with ATPase that results in
increased exchange, but decreased hydrolysis, of ATP (Geipel et al.,
1989). F-actin does not represent a direct target for any clostridial
binary toxins.

There are six actin isoforms in birds and mammals, depend-
ing upon tissue type, and include: α-skeletal; α-cardiac; α and γ

smooth muscle; as well as β and γ cytoplasmic (Perrin and Ervasti,
2010; Aktories et al., 2011). Interestingly, bacteria also contain a
cytoskeletal matrix consisting of actin homologs (MamK, MreB,
ParM, etc.) that vary between species (Cabeen and Jacobs-Wagner,
2010). Like eukaryotes, the cytoskeleton of a bacterium plays
major life-sustaining functions that include division, shape, pro-
tein localization, and DNA segregation. The targeting of prokary-
otic actin, similar to the iota and C2 toxins that modify eukary-
otic actin, could perhaps lead to novel anti-infectives (Vollmer,
2006). We are unaware of any bacterial toxin that modifies bac-
terial homologs of actin. Along these lines, an indole compound
inhibits growth of efflux-deficient P. aeruginosa by binding to the
ATP-binding site on MreB (Robertson et al., 2007).

The clostridial binary toxins form two obvious groups based
upon actin substrates. The C. botulinum C2 toxin only modi-
fies R177 of β/γ-non-muscle, as well as γ-smooth muscle, G-actin
(Aktories et al., 1986; Ohishi and Tsuyama, 1986; Vandekerckhove
et al., 1988). In contrast, the iota-toxin family is less discrimi-
nating and modifies all known G-actin isoforms (Mauss et al.,
1990). The enzymatic CDTa, Ia, and Sa components each pos-
sess a LKDKE sequence, important for binding to G-actin, within
the N-terminus (Popoff, 2000). However, the C2I molecule has a
unique actin-binding sequence (LKTKE) and location that might
help explain distinct substrate specificity.

Uematsu et al. (2007) have shown that actin disassembly by C2
toxin induces microtubule assembly and polarization of human
leukemic cell lines. More recent studies by Schwan et al. (2009,

FIGURE 4 |Toxin-catalyzed mono-ADP-ribosylation of G-actin results in

depolymerization of actin filaments (F-actin). Details are given in the
text.

2011) reveal that treatment of gastric epithelial cells with CDT,
iota, or C2 toxin induces microtubule protrusions from the mem-
brane that promote adherence and colonization of C. difficile to
the colonic mucosa. These protrusions are most likely dependent
on cholesterol- and sphingolipid-rich microdomains of the cyto-
plasmic membrane (Schwan et al., 2011). This concept introduces
a novel twist to pathogen–cell interactions, elicited by clostridial
binary toxins.

Furthermore, ADP-ribosylation of actin by C2 toxin arrests cell
cycling at the G2/M boundary (Barth et al., 1999). Treatment with
either the C2 or iota toxins results in delayed caspase-dependent
death ∼20 h after toxin application (Heine et al., 2008; Hilger et al.,
2009). It is clear that toxins, like those produced by clostridia and
which specifically modify actin, have become invaluable tools for
studying cell biology and experimental pharmacology. There is
much more to be learned from the ways these toxins work on
cells.

PEERING INTO THE FUTURE VIA A PORTAL OF THE PAST
Discovery of C. perfringens iota toxin in 1940 by Bosworth was
the first for any clostridial binary toxin. It was not until 1956 that
the multi-component structure of B. anthracis toxins was initially
reported, thus representing the first binary description for any bac-
terial toxin (Smith, 2002). The passing of three more decades even-
tually revealed the multi-component nature of various clostridial
binary toxins described in this review. Many different laborato-
ries led to these discoveries, with different toxins, from different
clostridia.

The B heptamers from clostridial binary toxins shuttle one
type of enzyme, a mono-ADP-ribosyltransferase specific for G-
actin, into cells. This paradigm diverges with the B. anthracis PA,
which transports lethal (LF) and edema (EF) factors possessing
different enzymatic properties. Additionally, recent findings by
Kronhardt et al. (2011) show that PA can also bind and subse-
quently transport C. botulinum C2I into cells. The efficiency of
C2I transport by PA was at least 50-fold less than C2IIa. Further-
more, EF and LF bind to C2IIa oligomers in lipid bilayers but
are not transported into cells. Within the iota family, enzyme is
transported by heterologous B components from other clostridial
species. To date, the C. botulinum C2 toxin is still distinct amongst
the clostridial binary toxins in that C2IIa exclusively transports
C2I. An ability of these B components to transport another pro-
tein into a cell makes them natural shuttles that can perhaps, with
further study, transport medicinal molecules into cells. Crossing
of a medicinal molecule through a cell membrane into the cytosol
can be a daunting challenge, but the aforementioned Clostrid-
ium and Bacillus binary toxins have naturally solved this problem
for rather large (i.e., protein) cargo. An important discovery for
better understanding the mode of action of any bacterial toxin
involves specific receptor identification. Very recent work by Pap-
atheodorou et al. (2011), in which LSR serves as a receptor for Ib
and CDTb, opens up an exciting realm for future research with the
iota-family toxins.

It is our opinion that genetic analysis of other species (genera
perhaps?) will yield more binary toxin-like producers, as evi-
denced by a PCR-based study showing C. novyi type A strains
containing the C. botulinum C2I and/or C2II genes (Heffron and
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Poxton, 2007). Additionally, some strains of B. cereus associated
with lethal pneumonia in humans possess the anthrax toxin genes
(Hoffmaster et al., 2004). Furthermore, one of these isolates pro-
duce a novel ADP-ribosyltransferase called certhrax which shares
34% identity with the catalytic region of CDTa (Hoffmaster et al.,
2006; Fieldhouse et al., 2010). Certhrax also possesses 31% iden-
tity with LF, but lacks protease activity. Such discoveries reveal a
dispersed genetic template for binary toxins that is, to date, more
prevalent in clostridia. Evidently binary toxin “successes” of the

past, and those today, promote further success of various bacterial
pathogens into the future.
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