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Staphylococci are a versatile genus of bacteria that are capable of causing acute and
chronic infections in diverse host species. The success of staphylococci as pathogens is
due in part to their ability to mitigate endogenous and exogenous oxidative and nitrosative
stress. Endogenous oxidative stress is a consequence of life in an aerobic environment;
whereas, exogenous oxidative and nitrosative stress are often due to the bacteria’s
interaction with host immune systems. To overcome the deleterious effects of oxidative
and nitrosative stress, staphylococci have evolved protection, detoxification, and repair
mechanisms that are controlled by a network of regulators. In this review, we summarize
the cellular targets of oxidative stress, the mechanisms by which staphylococci sense
oxidative stress and damage, oxidative stress protection and repair mechanisms, and
regulation of the oxidative stress response. When possible, special attention is given to
how the oxidative stress defense mechanisms help staphylococci control oxidative stress
in the host.
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INTRODUCTION
The genus staphylococcus represents a broad family of related
species and subspecies that are widely distributed in nature
and that colonize skin, skin glands, and mucous membranes of
humans and other warm-blooded animals (Götz et al., 2006).
Several staphylococcal species have commercial value and are rou-
tinely used as starter cultures in fermentation processes (Schleifer
and Fischer, 1982; Geisen et al., 1992; Tanasupawat et al., 1992;
Hammes et al., 1995; Montel et al., 1996; Probst et al., 1998; Place
et al., 2003), whereas others have achieved importance as animal
and human pathogens. On this latter point, some staphylococci,
such as Staphylococcus epidermidis, are pathogens primarily due
to their ability to colonize indwelling medical devices and to form
biofilms (von Eiff et al., 2002; Vuong and Otto, 2002; McCann
et al., 2008; Rogers et al., 2009). In contrast, Staphylococcus aureus
is capable of causing a variety of diseases ranging from soft tissue
infections to life-threatening septicemia. The ability of S. aureus
to cause this wide array of infections is due to its diverse range
of virulence factors and its resistance to numerous antibiotics. In
addition, S. aureus is a prevalent cause of infections due to the fact
that 20–30% of humans carry S. aureus in their anterior nares
(Kluytmans et al., 1997; von Eiff et al., 2001; Wertheim et al.,
2005). Lastly, the prominence of S. aureus as a pathogen is also
due to its ability to evade or defend itself from the host immune
system (Voyich et al., 2005; Palazzolo-Ballance et al., 2008; Foster,
2009). For these reasons, S. aureus is the most prominent staphy-
lococcal pathogen of nosocomial and community-acquired infec-
tions and a leading cause of human infections worldwide (Lowy,
1998; Diekema et al., 2001; Stevens, 2003; Grundmann et al.,
2006; Chambers and DeLeo, 2009; Rosenthal et al., 2010; Johnson,
2011). As oxidative and nitrosative killing mechanisms are impor-
tant for the host immune response, this review will focus on the
ability of staphylococci to resist oxidative stress with an emphasis

on S. aureus, for which the greatest amount of information is
available.

ENDOGENOUS AND EXOGENOUS OXIDATIVE AND
NITROSATIVE STRESS
Endogenous oxidative stress can be caused by many things,
including aerobic respiration, autooxidation reactions, intracel-
lular redox reactions, and antibiotics (Pomposiello and Demple,
2002; Imlay, 2003; Kohanski et al., 2007; Yeom et al., 2010).
During aerobic respiration, oxygen functions as a final electron
acceptor in the electron transport chain where its complete reduc-
tion results in the formation of H2O. Occasionally, oxygen under-
goes incomplete reduction on interaction with flavoproteins (e.g.,
oxidases and monooxygenases) and can generate reactive oxy-
gen species (ROS) (Messner and Imlay, 1999). Upon interaction
with the reduced FAD cofactor of flavoenzymes, one or two elec-
trons are transferred to molecular oxygen (Müller, 1987), leading
to the generation of endogenous superoxide anions (O−

2 ) and
hydrogen peroxide (H2O2) (Massey et al., 1969; Korshunov and
Imlay, 2010). In addition to flavoenzyme catalyzed reactions gen-
erating ROS, other reactions can also produce reactive oxygen
intermediates (Imlay et al., 1988); specifically, Fenton chemistry
can produce the highly-reactive hydroxyl radicals (HO·). This
chemistry occurs when iron reacts with H2O2 and generates HO·
(Figures 1 and 2). Fenton chemistry has been hypothesized to be
possible with other metals such as Cu and Cd; however, questions
remain about the physiological significance of non-ferrous metals
catalyzing this chemistry (Macomber and Imlay, 2009).

In addition to endogenous oxidative stress, exogenous oxida-
tive stress is a common challenge that bacteria must overcome in
order to survive. Host innate immune cells such as macrophages,
monocytes, and neutrophils have NADPH oxidase (NOX) that
is responsible for the generation of the O−

2 during an oxidative
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FIGURE 1 | Overview of oxidative and nitrosative stressors and their

potential targets. The transfer of electron(s) from the reduced FAD of
flavoenzymes to oxygen (O2) can produce superoxide anions (O−

2 ) and/or
hydrogen peroxide (H2O2). Reaction of O−

2 with nitric oxide (·NO) can lead
to the formation of peroxynitrite (OONO− ). Intracellular ferric (Fe3+)
reduction is catalyzed by ferric reductase (FeR), the Fe2+ can react with
H2O2 to generate hydroxyl radicals (HO·). Damage to DNA and protein(s) is
shown as a lightning bolt. Proteins are presented using letter “P”.

burst. Superoxide is generated when the catalytic subunit of NOX
transfers electrons from NADPH to oxygen; a process requiring
FAD and heme (Nauseef, 2004). Once formed, O−

2 can undergo
dismutation to H2O2. This H2O2 that is formed after dismuta-
tion of O−

2 can be used by the myeloperoxidase (MPO) complex
to produce the bactericidal compound hypochlorite (OCl−).

MPO, a 150 KDa heme-containing protein complex, is released
into the phagosome when azurophilic granules fuse with the
phagosome. In the phagosome, MPO binds to bacteria and cat-
alyzes the H2O2-dependent conversion of Cl− to OCl− (Harrison
and Schultz, 1976; Klebanoff, 1999). In addition to the generation
of OCl−, MPO is involved in the oxidation of L-tyrosine, such as
that found in enkephalins, to the potent cytotoxic tyrosyl radi-
cal (o,o′-dityrosine) (Heinecke et al., 1993). That being said, the
susceptibility of bacteria to MPO-mediated killing varies; hence,
MPO is not considered essential for the innate immune response
to bacteria (Lehrer et al., 1969; Lanza, 1998; Allen and Stephens,
2011).

Nitric oxide (·NO) is produced by all immune cells and it is
important in the control of pathogens; however, like MPO, it is
not equally effective against all pathogens (Bogdan et al., 2000).
As an example, in mice, the function of ·NO in S. aureus control is

limited, whereas for Salmonella enterica serovar Typhimurium it
is critical (Nathan and Shiloh, 2000; Vazquez-Torres et al., 2000).
Like ROS, NO is a reactive oxidant with potent cytotoxic proper-
ties against bacteria. In human macrophage, nitric oxide synthase
(iNOS or NOS2) is induced on encountering a pathogen or by
activation via cytokines. Once induced, iNOS or NOS2 catalyzes
the conversion of L-arginine to L-citrulline and ·NO, a reaction
that also reduces oxygen and oxidizes NADPH. While ·NO is
toxic to bacteria by itself, ·NO has a synergistic effect with H2O2

to facilitate bacterial killing (Brunelli et al., 1995; Woodmansee
and Imlay, 2003; Han et al., 2009). In addition, ·NO and O−

2
can form the bactericidal compound peroxynitrite (OONO−)
(Figure 1), a highly reactive nitrogen intermediate (Huie and
Padmaja, 1993).

BACTERIAL TARGETS OF OXIDATIVE DAMAGE
The toxicity of ROS is due to its ability to damage any oxidizable
moiety in a biological molecule. In E. coli, the importance of ROS
damage has been demonstrated in mutants that lack components
of the oxidative stress response system (i.e., superoxide dismutase,
catalase, and peroxidase) (Carlioz and Touati, 1986; Park et al.,
2005b; Jang and Imlay, 2007). In mutants lacking multiple genes
of the oxidative stress response, the bacteria were highly sensitive
to oxidants such as paraquat and H2O2. In this section we will
attempt to address some of the consequences of oxidative stress in
bacteria.

Superoxide and H2O2 can facilitate the release of iron from
Fe-S cluster containing proteins, such as aconitase or serine
dehydratase. Both O−

2 and H2O2 can oxidize the [4Fe-4S]2+ to
[4Fe-4S]3+, which can be further oxidized, leading to the release
of iron and the inactivation of the enzyme (Kuo et al., 1987; Flint
et al., 1993; Jang and Imlay, 2007). In the presence of H2O2, the
iron liberated from Fe-S clusters creates an intracellular environ-
ment permissive to Fenton chemistry, which generates the highly
reactive HO·. Hydroxyl radicals will react with virtually the first
molecule that it encounters; hence, to induce damage it must
be in close proximity to its cellular target. DNA is a charged
molecule that attracts positively charged molecules, like Fe2+;
hence, charge-charge interaction brings iron in close proximity to
the DNA phosphodiester backbone. The close proximity of Fe2+
to DNA means that HO· generated by Fenton chemistry will likely
react with DNA, inducing lethal or non-lethal mutations (Keyer
and Imlay, 1996).

In addition to DNA being a target of ROS, amino acids, and
proteins can be oxidized and/or modified by ROS. H2O2 can react
with the Fe2+ of an iron-containing protein, presumably through
Fenton chemistry, to cause irreversible protein carbonylation and
the formation of protein aggregates (Dukan et al., 1999; Davies,
2005). Cysteine, methionine, and tryptophan can be oxidized
by H2O2, HO·, and ONOO−, which can lead to reversible or
irreversible enzymatic inactivation. As an example, oxidation of
cysteine residues can lead to reversible modifications (i.e., sulfenic
acid or S-thiolation) or irreversible modifications (i.e., sulfinic
acid, sulfonic acid) (Chouchani et al., 2011). Similarly, oxidation
of methionine can lead to the formation of methionine sulfox-
ides, which are reversible through the action of the methionine
sulfoxide reductase (discussed in Section “Methionine sulfoxide
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FIGURE 2 | Simplified schematic overview of important determinants involved in staphylococcal response to oxidative stress affecting whole cell

physiology.

reductase”). The formation of some important ROS and the
potential damage they cause are summarized in Figure 1.

OXIDATIVE STRESS RESISTANCE MECHANISMS
PIGMENTATION
As a general rule, most S. aureus strains isolated from human
infections will form yellowish-orange or golden colonies due to
the presence of carotenoid pigments. These pigments become
more pronounced after 24 h of growth and when held at room
temperature (Willis and Turner, 1962; Jacobs and Willis, 1964).
An exception to this rule are the small colony variant (SCV)
S. aureus, which are non-pigmented and may have auxotrophies
for hemin, menadione, thiamine, or thymidine. SCVs are often
associated with persistent and recurrent infections and are char-
acterized by numerous phenotypic changes (Proctor et al., 2006).
The main pigment of S. aureus is the membrane-bound orange-
red C30 triterpenoid staphyloxanthin, which is synthesized from
the enzymes coded within the crtOPQMN operon (Marshall
and Wilmoth, 1981a,b; Pelz et al., 2005). The synthesis of
staphyloxanthin involves the head-to-head condensation of
two C15 isoprenoid molecules of farnesyl diphosphate to
form dehydrosqualene, a reaction catalysed by dehydrosqua-
lene synthase (CrtM). Dehydrosqualene is converted into
4,4′-diaponeurosporene by dehydrosqualene desaturase (CrtN),

which is further oxidized, glycosylated, and esterified to yield
staphyloxanthin (Wieland et al., 1994; Pelz et al., 2005). The
crtOPQMN operon is under positive transcriptional control from
the rsbUVW-σB system (Kullik et al., 1998; Giachino et al., 2001;
Palma and Cheung, 2001; Bischoff et al., 2004) and under negative
regulation by the small RNA, SsrA RNA (Liu et al., 2010).

Carotenoid pigments protect S. aureus against desiccation and
photosensitization, and are known to quench toxic singlet oxy-
gen. On this latter point, carotenoids are potent antioxidants due
to their numerous conjugated double bonds, which make them
an important survival factor for detoxifying ROS (Grinsted and
Lacey, 1973; Mathews-Roth et al., 1974; Dahl et al., 1989; Krinsky,
1993; El-Agamey et al., 2004). The importance of staphyloxan-
thin in protecting S. aureus against ROS is seen in non-pigmented
crt mutants, that grow normally, but have increased sensitivity
toward ROS, OONO−, and HOCl (Liu et al., 2005; Clauditz et al.,
2006). One consequence of this increased sensitivity to oxidants
is that S. aureus strains deficient in carotenoid biosynthesis are
more readily cleared by the innate immune response (Salamah,
1992; Liu et al., 2005, 2008; Clauditz et al., 2006; Olivier et al.,
2009). In a mouse subcutaneous abscess model as well as a sys-
temic S. aureus infection model, non-pigmented S. aureus have
reduced virulence and survival relative to the pigmented wild-
type strain (Liu et al., 2005, 2008). The resistance to phagocytic
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killing that is conferred by pigments is primarily attributed to the
antioxidant properties of carotenoids, since the effect is not seen
in NOX deficient mice or when the oxidative burst is inhibited
(Liu et al., 2005). In addition to the antioxidant properties of pig-
ments, staphyloxanthin can also alter membrane rigidity, which
is important in protecting against non-oxidative host defences
mediated by cationic peptides (Mishra et al., 2011). Because of
the contribution of carotenoid pigments to staphylococcal fit-
ness, inhibition of carotenoid biosynthesis is viewed as a potential
therapeutic target in treating S. aureus infections (Daum, 2008;
Haebich and von Nussbaum, 2008; Liu et al., 2008; Walsh and
Fischbach, 2008; Song et al., 2009a,b; Oldfield, 2010).

DETOXIFYING ENZYMES
In addition to pigments, most staphylococci possess several
enzymes that are used in the detoxification of reactive oxygen
and nitrogen intermediates; particularly, superoxide dismutases,
catalases, glutathione peroxidases, globins, and peroxiredoxins
(Figure 2).

Superoxide dismutase (SOD)
Superoxide dismutases are metalloenzymes that catalyse the dis-
mutation of O−

2 to oxygen and H2O2, which can be further
reduced to water and oxygen by catalase or alkyl hydroperox-
ide reductase. By preventing the accumulation of O−

2 , SODs not
only protect the bacterium from damage caused by O−

2 , but
also against products that are derived from reactions requir-
ing O−

2 , such as OONO− (Figure 1). SODs are classified into
one of four types based on the metal ion cofactor; specifically,
these are the copper-zinc type (Cu/Zn-SOD), the manganese type
(Mn-SOD), the iron type (Fe-SOD), and the nickel type (Ni-
SOD) (Fridovich, 1995; Kim et al., 1996, 1998). S. aureus possess
two monocistronic superoxide dismutase genes, sodA and sodM
(Poyart et al., 1995; Clements et al., 1999; Valderas and Hart,
2001); whereas, coagulase-negative staphylococci lack the sodM
gene (Barrière et al., 2001a,b; Valderas et al., 2002).

The S. aureus sodA gene was identified during a screen for
amino acid starvation survival mutants (Watson et al., 1998)
and during characterization of that mutant, it was observed in a
zymogram analysis that S. aureus had three zones of SOD activity
(Clements et al., 1999). The three zones of activity were attributed
to the presence of two homodimers and a heterodimer, which
confirmed the presence of a previously identified second SOD
(SodM) (Poyart et al., 1995; Valderas and Hart, 2001). During
in vitro aerobic growth of S. aureus, the transcription and activ-
ity of both SODs increase in the post-exponential growth phase
and remain high during the stationary phase, with SodA being
responsible for the majority of SOD activity (Clements et al.,
1999; Valderas and Hart, 2001; Karavolos et al., 2003). The tran-
scription and activity of both SODs can also be increased by
the addition of oxidants; specifically, sodA is induced by internal
stressors and sodM by exogenous O−

2 stress. That being said, both
SODs function in maintaining cell viability during exogenous O−

2
stress (Clements et al., 1999; Valderas and Hart, 2001; Karavolos
et al., 2003). In vivo, the importance of superoxide dismutase in
S. aureus infections is unclear, as some reports suggest that SOD
is important (Kanafani and Martin, 1985; Karavolos et al., 2003;

Das et al., 2008; Das and Bishayi, 2009), while others suggest
that SOD has only a minimal effect on virulence (Mandell, 1975;
Clements et al., 1999; Schneider et al., 2002). The difficulty in
determining the function of SOD in virulence may be due to
the observation that calprotectin sequesters Mn and Zn, decreas-
ing SodA and SodM activity, and rendering the bacteria more
susceptible to neutrophil-dependent killing (Kehl-Fie et al., 2011).

Both SODs in S. aureus are transcibed from σA-type promot-
ers. The transcription of sodA initiates from one of two σA-type
promoters; however, the first promoter is negatively influenced
by σB. While the effect of σB on sodA transcription and activity
remains unclear, transcription of sodM and activity are elevated in
σB-deficient strains (Karavolos et al., 2003; Bischoff et al., 2004).
Additionally, the staphylococcal accessory regulator (SarA) func-
tions as a repressor of sodM transcription independent of σB.
Other proteins of the SarA family have only slight effects (i.e.,
SarR) or no effect on sodM transcription. A less pronounced regu-
latory effect of SarA on sodA transcription has also been observed
(Ballal and Manna, 2009).

Catalase and peroxiredoxin AhpC
As mentioned above, the detoxification of H2O2 is accomplished
by catalases that catalyze the degradation of H2O2 to water and
oxygen. The catalase family of proteins is divided into mono-
functional or typical catalases, bifunctional catalase-peroxidases,
and manganese-containing catalases (Chelikani et al., 2004). In
the Staphylococcus genus, all species are catalase-positive with the
exception of S. saccharolyticus and S. aureus subspecies anaerobius
(Götz et al., 2006). S. aureus has a single monofunctional heme-
containing tetrameric catalase encoded by the monocistronic
katA gene (Sanz et al., 2000; Horsburgh et al., 2001a). In contrast,
S. xylosus, S. equorum, and S. saprophyticus each have two catalase
genes (Blaiotta et al., 2010). In addition to catalase, staphylococci
have several peroxiredoxins that are induced upon treatment of
S. aureus with H2O2 (i.e., Tpx, Ohr-like protein, and AhpC)
(Wolf et al., 2008; Chen et al., 2009). Peroxiredoxins detoxify alkyl
hydroperoxides by converting them to their corresponding alco-
hols using NADH or NADPH as the reducing equivalents. This
reducing activity is dependent on redox-active cysteines in the
active site. The alkyl hydroperoxide reductase (ahpC) gene forms
an operon with ahpF, which codes for a homodimeric flavoen-
zyme that acts as a dedicated disulfide reductase to facilitate
the reducing equivalent-dependent reduction and regeneration
of AhpC (Poole, 2005). In E. coli, AhpC detoxifies low levels of
H2O2, whereas KatA is the primary scavenger of H2O2 at high
levels (Seaver and Imlay, 2001). Similar to E. coli, the S. aureus
catalase is the major determinant in resistance toward H2O2

(Martin and Chaven, 1987; Horsburgh et al., 2001a), while AhpC
confers resistance to a broader spectrum of ROS (Cosgrove et al.,
2007). In S. aureus mutants lacking both catalase and AhpC, their
ability to scavenge exogenous and endogenous H2O2 is inhibited,
leading to the accumulation of H2O2 (Cosgrove et al., 2007).

In S. aureus, the katA gene and the ahpCF operon are neg-
atively regulated by PerR (discussed in Section “PerR”), and
putative PerR boxes are found in the promoter regions of both
genes (Horsburgh et al., 2001a). In addition, the transcription
of katA is positively affected by the ferric uptake regulator [Fur,

Frontiers in Cellular and Infection Microbiology www.frontiersin.org March 2012 | Volume 2 | Article 33 | 4

http://www.frontiersin.org/cellular_and_infection_microbiology
http://www.frontiersin.org
http://www.frontiersin.org/cellular_and_infection_microbiology/archive


Gaupp et al. Staphylococcal response to oxidative stress

discussed in Section “Ferric uptake regulator (Fur)”] (Horsburgh
et al., 2001b). As Fur normally functions as a repressor, it is
likely that the positive regulation of katA is due to the repres-
sion of a positive regulator of katA, such as a small regulatory
RNA. Together, PerR and Fur regulate transcription of the katA
gene in response to peroxide and the availability of manganese
and iron. As expected, maximal transcription of katA and catalase
activity occur under aerobic conditions in the post-exponential
growth phase, when tricarboxylic acid (TCA) cycle activity and
electron transport are also maximal (Martin and Chaven, 1987;
Horsburgh et al., 2001b; Cosgrove et al., 2007). The function
of catalase in S. aureus virulence is not completely understood
(Mandell, 1975; Kanafani and Martin, 1985; Horsburgh et al.,
2001a; Messina et al., 2002; Cosgrove et al., 2007; Das et al., 2008;
Das and Bishayi, 2009; Martínez-Pulgarín et al., 2009; Sen et al.,
2009); however, both KatA and AhpC are important for nasal
colonization (Cosgrove et al., 2007).

Flavohemoglobin (Hmp)
The discovery of a hemoglobin-like protein in E. coli (Vasudevan
et al., 1991), and subsequent genome sequencing projects, led
to realization that globins are widely distributed in nature. In
S. aureus, the hemoglobin-like protein is a flavohemoglobin
(Hmp), which has a N-terminal heme-containing globin domain
and C-terminal NAD- and FAD-binding domains that together
form a ferredoxin-NADP+ oxidoreductase-like domain (Ermler
et al., 1995). Hmp family members commonly demonstrate three
enzymatic activities: NO-reductase, NO-dioxygenase, and alkyl-
hydroperoxide reductase (Bonamore and Boffi, 2008). During
aerobic growth the Hmp from E. coli utilizes NAD(P)H and O2

to convert ·NO to nitrate; however, under anaerobic conditions it
converts ·NO to N2O, albeit less efficiently (Gardner et al., 1998;
Kim et al., 1999). In vitro experiments using E. coli Hmp have
demonstrated an NADH-dependent alkyhydroperoxide reductase
activity; however, the in vivo significance of this activity remains
to be elucidated (Bonamore et al., 2003). Like E. coli, S. aureus
Hmp activity is greatest during microaerobic/anaerobic growth
or during nitrosative stress conditions (Gonçalves et al., 2006;
Richardson et al., 2006). Regulation of Hmp activity in response
to reduced oxygen tension is mediated in part by the SrrAB two-
component system; presumably, at the transcriptional level. That
being said, the regulators of hmp transcription remain unknown
in S. aureus, although, it has been postulated to involve the
NO−

2 -sensing transcription repressor, NsrR (Richardson et al.,
2006).

METAL HOMEOSTASIS
Transition metal ions (i.e., Fe, Cu, Mn, and Zn) give structure
to proteins, act as cofactors to enzymes, and are essential for elec-
tron transfer; hence, they are required by all forms of life (Lippard
and Berg, 1994). The ability of transition metals to transfer elec-
trons is beneficial under some circumstances; however, it is this
same ability that facilitates the generation of ROS through Fenton
chemistry (Gutteridge et al., 1982; Imlay et al., 1988). For this
reason, the transport of metal ions is very tightly regulated to
maintain an appropriate intracellular concentration and to avoid
the accumulation of metals to toxic levels (Figure 2). To maintain

metal ion homeostasis, bacteria have evolved active transporters,
efflux systems, and metallochaperones (Finney and O’Halloran,
2003; Maier et al., 2007; Bagai et al., 2008).

Iron
Iron is an important cofactor for numerous enzymes; hence, it
is essential for bacterial viability (Griffiths, 1999). Despite iron
being one of the most abundant elements in nature, it primarily
exists in the insoluble Fe3+ form, which is difficult for bacteria to
acquire (Ratledge and Dover, 2000). In the host, the low solubility
of iron and the presence of heme, ferritin, and lactoferrin, cre-
ate an environment in which free iron is essentially non-existent
(Brown and Holden, 2002). This iron-limited environment cou-
pled with the bacterial need for iron, creates a major challenge
for bacteria in the host (Weinberg, 1978). To counter this chal-
lenge, S. aureus have adapted to extract iron from heme, which
is carried out in part using the proteins encoded by the iron-
regulated surface determinant (Isd) genes, isdA, isdB, isdCDEF,
isdG, isdH, and isdI (Skaar et al., 2004; Skaar and Schneewind,
2004; Torres et al., 2006). In addition, S. aureus can extract iron
from transferrin using the siderophores staphyloferrin A and B
(encoded by sfaABCD and sbnABCDEFGHI, respectively) (Dale
et al., 2004; Park et al., 2005a; Cheung et al., 2009; Cotton et al.,
2009). When complexed with iron, these siderophores are trans-
ported into the bacterial cytoplasm through the HtsABC and
SirABC transport systems using the energy from FhuC catalyzed
ATP hydrolysis to drive the importation (Speziali et al., 2006;
Beasley et al., 2011). In addition, S. aureus can acquire iron from
hydroxymate siderophores produced by other bacteria and from
catecholamine (Morrissey et al., 2000; Sebulsky et al., 2003, 2004;
Beasley et al., 2011). In S. aureus, these iron acquisition and trans-
port systems are regulated in part by the Fur [(Xiong et al., 2000);
discussed in Section “Ferric uptake regulator (Fur)”].

After iron has been acquired by S. aureus, it is utilized or it is
bound by ferritin, bacterioferritin comigratory protein (Bcp), or
the Dps homolog MrgA (Metallo regulated gene A), which func-
tion as iron chelator/storage proteins. Ferritin, a polypeptide with
a ferroxidase center, is encoded by ftnA in S. aureus and sefA in
S. epidermidis (Horsburgh et al., 2001a; Morrissey et al., 2004)
and both function primarily as iron-storage proteins (Andrews,
1998). In contrast, MrgA has an iron-chelating function and pro-
tects DNA from oxidative damage (discussed in Section “MrgA”).
Bcp is homologous to peroxiredoxin and as such is likely involved
in the thiol-dependent reduction of peroxides. In S. aureus, tran-
scription of bcp, ftnA, and mrgA is regulated by PerR, highlighting
the importance of sequestering iron during periods of oxidative
stress (Horsburgh et al., 2001a; Chang et al., 2006; Wolf et al.,
2008).

Manganese
Like iron, manganese is an essential cofactor in bacteria that is
involved in diverse cellular functions such as, sugar metabolism,
signal transduction, the stringent response, and oxidative stress
resistance (Kehres and Maguire, 2003; Papp-Wallace and Maguire,
2006). In contrast to iron, Mn2+ is soluble in a physiological pH
range and it has a higher reduction potential than Fe2+, mean-
ing that it is less likely to facilitate deleterious redox reactions.
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For these reasons, Mn2+ is important for the detoxification of
ROS in bacteria. As examples, the activity of SodA (discussed
in Section “Superoxide dismutase”) requires Mn2+ and SodM is
also believed to require Mn2+ (Clements et al., 1999; Valderas
and Hart, 2001). To supply the S. aureus Mn2+ requirement,
there are two transporters for manganese, encoded by mntABC
(MntABC-type) and mntH (Nramp-type) and in S. epidermidis,
sitABC codes for the MntABC-type transporter (Cockayne et al.,
1998; Horsburgh et al., 2002).

The importance of Mn2+ to bacteria can be inferred from
the observation that host phagocytic cells transport Mn2+ out of
the phagosome upon engulfing a bacterium. To do this, phago-
cytic cells recruit the efflux protein Nramp1 to the phagosome;
thus, reducing the availability of Mn2+ to the bacterium (Jabado
et al., 2000). In addition, the heterodimeric host protein calpro-
tectin decreases Mn2+ availability by chelating it (Corbin et al.,
2008). Because bacteria need Mn2+ and host cells attempt to
deny the bacteria Mn2+, it is not surprising that S. aureus vir-
ulence is attenuated in mutant strains lacking both mntA and
mntH relative to the isogenic wild-type bacteria. Similarly, muta-
tion of mntA, mntH, or mntR reduces S. aureus survival in human
endothelial cells (Horsburgh et al., 2001a, 2002; Ando et al.,
2003).

Regulation of Mn2+ transport is critical for maintaining metal
ion homeostasis. In S. epidermidis, the DtxR homolog SirR binds
to a Sir box consensus sequence in the promoter region of
sitABC, in a Mn/Fe-dependent manner, to repress transcription
(Cockayne et al., 1998; Hill et al., 1998). Similarly, in S. aureus,
the DtxR homolog MntR represses mntABC, but not mntH, in a
Mn2+-dependent manner by binding to a MntR box in the pro-
moter region. In addition to MntR, PerR also regulates mntABC
transcription and a putative PerR box is located in the promoter
region of this operon. This communal regulation of mntABC by
MntR and PerR is also seen with other members of the PerR
regulon (Horsburgh et al., 2002).

Zinc
Zinc is an essential nutrient that is required as a cofactor for a
few enzymes; however, it’s more important function is in pro-
tein stability (Lippard and Berg, 1994). While Zn may be essential
for bacterial viability, an over abundance of Zn is toxic due to
the fact that it competes with other metals for binding to the
active centers of enzymes (Beard et al., 1997; Xiong and Jayaswal,
1998). The essential nature of Zn and its potential to be toxic
make obvious the importance of Zn ion homeostasis, and demon-
strate why bacteria have evolved zinc transporters (Blencowe and
Morby, 2003). In S. aureus, Zn homeostasis is maintained by the
plasmid encoded CadCA (cadCA) transporter and/or the chro-
mosomally encoded ZntRA (zntRA or czrAB) transporter (Endo
and Silver, 1995; Xiong and Jayaswal, 1998; Kuroda et al., 1999).
Both transport systems code for ArsR/SmtB family transcrip-
tional regulators (CadC and ZntR) (Busenlehner et al., 2003) and
metal-exporting membrane proteins CadA and ZntA (Guffanti
et al., 2002). In the presence of excess zinc, CadC and ZntR bind
Zn, decreasing their affinity for their cognate promoters and this
de-represses transcription of cadA and zntA (Nucifora et al., 1989;
Singh et al., 1999; Ye et al., 2005).

In B. subtilis, Zn transport is primarily mediated by the proteins
encoded within the znuABC operon, and zosA. Transcription of
znuABC is regulated by the Zn-responsive Fur homolog known as
Zur, while the transcription of zosA is regulated by PerR [discussed
in Section “PerR” (Lee and Helmann, 2007)]. In complex with Zn,
the Zur homodimer functions as a transcriptional repressor by
binding to a Zur-box (AAATCGTAATNATTACGATTT) present in
the promoter/operator region of znuABC (Gaballa et al., 2002; Ma
et al., 2011). When the availability of Zn is low, Zur releases from
the DNA, de-repressing transcription of the ATP binding cassette
Zn transporter coded by znuABC. The P-type metal-transporting
ATPase coded by zosA is induced in response to H2O2, consistent
with its proposed function in oxidative stress resistance (Gaballa
and Helmann, 2002; Gaballa et al., 2002). Although zosA has
not been identified in S. aureus, it does have genes homologous
to znuA and znuB; designated as mreA and mreB, respectively.
As stated, Zn has important physiological functions; however,
the role of Zn transport in S. aureus pathogenesis remains to be
elucidated (Lindsay and Foster, 2001).

Copper
Although limited in number, copper-requiring enzymes have crit-
ical roles in bacterial respiration, biosynthesis, and oxidative stress
resistance; hence, Cu is considered an essential trace element
(Halliwell and Gutteridge, 1984; Puig and Thiele, 2002). The
enzymatic utility of Cu is due in part to its ability to act as an
electron donor or acceptor by cycling between the Cu2+ to Cu1+
oxidation states. Like iron, the properties of Cu that make it a
useful redox cofactor, also allow it to facilitate the generation of
ROS (Baker et al., 2010). For this reason, bacteria have evolved
mechanisms to protect themselves from the toxic effects of Cu,
while maintaining the intracellular concentration of Cu at the
minimum necessary for growth (Solioz and Stoyanov, 2003; Liu
et al., 2007; Wolschendorf et al., 2011). In S. aureus, copper home-
ostasis is primarily maintained by the P1-type ATPase CopA and
the copper chaperone CopZ; CopZ sequesters intracellular Cu1+
and delivers it to the Cu exporter CopA (Sitthisak et al., 2007).
While CopA and CopZ are highly conserved in S. aureus, some
strains also have a second P1-type ATPase copper transporter,
CopB, and a Cu oxidizing enzyme, multicopper oxidase (mco)
(Sitthisak et al., 2005). In contrast to the chromosomally encoded
genes copA and copZ, both copB and mco are carried on a plas-
mid or on a plasmid integrated into the chromosome (Holden
et al., 2004; Baker et al., 2011). Importantly, the plasmid carry-
ing copB and mco can be transferred between S. aureus strains
(Baker et al., 2011). Regulation of copA, copZ, copB, and mco
is dependent upon the Cu1+ responsive copper-sensitive operon
repressor (CsoR) (Baker et al., 2011; Grossoehme et al., 2011).
CsoR binds to DNA in the absence of Cu1+ and represses tran-
scription; however, as the intracellular concentration of copper
increases, CsoR complexes with Cu1+, releases from the DNA,
and de-represses transcription of copper resistance genes. The
in vivo importance of Cu resistance for S. aureus is likely due
to the fact that macrophage increase the Cu concentration in
phagosomes via the ATP7A Cu transporter, which enhances the
bactericidal activity of the phagosome (Wagner et al., 2005; White
et al., 2009).
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DNA PROTECTION AND REPAIR
MrgA
The genomic DNA of bacteria is organized in a nucleoid that
requires DNA supercoiling, molecular crowding, and several
architectural proteins (e.g., Hu, H-NS, Fis, Dps) (Dame, 2005;
Luijsterburg et al., 2006). Dps (DNA-binding protein from
starved cells) is a member of the ferritin super family of pro-
teins and a non-specific DNA binding protein that functions as
a major determinant for protecting DNA by nucleoid condensa-
tion (Martinez and Kolter, 1997; Wolf et al., 1999; Nair and Finkel,
2004). During the stationary phase of growth in E. coli, the con-
formation of DNA changes from a relaxed state to a compacted
state, a process requiring Dps (Kim et al., 2004; Ohniwa et al.,
2006). This complex DNA condensation process is regulated dur-
ing the exponential growth phase by Fis and H-NS binding to the
dps promoter and repressing transcription. (Ohniwa et al., 2006;
Grainger et al., 2008). Unlike E. coli, S. aureus appears to lack both
Fis and H-NS homologs (Ohniwa et al., 2011); hence, transcrip-
tion of the Dps homolog MrgA is likely linked to growth via other
means. One possible linkage between growth and regulation of
mrgA is PerR (discussed in Section “PerR”).

Transcription of mrgA is induced by H2O2 and iron (Horsburgh
et al., 2001a; Morrissey et al., 2004; Chang et al., 2006; Morikawa
et al., 2006; Wolf et al., 2008), suggesting that PerR and Fur regulate
mrgA transcription. This suggestion is partially true as PerR is
a repressor of mrgA transcription; whereas, mrgA transcription
is independent of Fur. Consistent with PerR regulation of mrgA,
inactivation of perR results in a compacted nucleoid in the absence
of oxidative stress, which is similar to that found in a strain over-
expressingmrgA (Morikawa etal., 2006,2007).Theactivatingeffect
of iron on mrgA transcription, while not completely understood,
is related to the fact that the MrgA/Dps protein is a ferritin-like
Fe2+ binding and storage protein (Grant et al., 1998; Zhao et al.,
2002; Su et al., 2005). The compact nature of the nucleoid and the
susceptibility of DNA to oxidative damage (discussed in Section
“Bacterial targets of oxidative damage”) likely led to the evolution
of a bi-functional protein involved in DNA condensation and
protection from Fe2+ generated HO· (Figure 2).

Excision repair
Oxidative damage to DNA can occur at the bases or sugars,
producing lesions such as strand breakage or base alterations
(Demple and Harrison, 1994; Lu et al., 2001). Due to the obvious
importance of DNA in species propagation, DNA repair mech-
anisms have evolved to maintain genetic integrity. These DNA
repair mechanisms can be divided into two broad catagories;
excision repair [i.e., base excision repair (BER), mismatch repair
(MMR), and nucleotide excision repair (NER)] and recombina-
tional repair. As with many aspects of bacterial physiology, much
of our knowledge has been derived from the study of model bac-
teria; therefore, we will use this knowledge to draw inferences
into staphylococcal DNA repair mechanisms. In time, these infer-
ences will likely be proven correct as S. aureus has homologs of
many of the DNA repair enzymes discussed below; specifically, for
BER/MMR S. aureus has Nfo, MutM, MutY, MutT, MutS, MutL,
RecJ, and Nth (O’Neill and Chopra, 2002; Prunier and Leclercq,
2005; Ambur et al., 2009).

Multistep BER pathways rely on damage-specific DNA gly-
cosylases that scan DNA, recognize base lesions, and initiate
removal by cleaving the base–deoxyribose glycosyl bond, forming
apurinic/apyrimidimic sites (AP site). The next step in the repair
process is restoration of the correct DNA sequence via short-patch
(1-nucleotide patch size) or long-patch (multiple nucleotide
patch size) pathways. Depending on the enzymatic properties of
the initiating DNA glycoslyase, the activities of AP endonucleases
and/or DNA deoxyribosephosphodiesterase (drPase) are required
to break the DNA during this process. In E. coli, AP endonucle-
ase activity is primarily due to exonuclease III (ExoIII or Xth) and
endonuclease IV (EndoIV or Nfo), while drPase activity is due to
RecJ and exonuclease I (ExoI) (Ljungquist, 1977; Lindahl, 1979;
Rogers and Weiss, 1980; Franklin and Lindahl, 1988; Sandigursky
and Franklin, 1992; Mol et al., 2000).

During periods of oxidative stress, a common lesion found
in DNA is the oxidized base 7,8-dihydro-8-oxoguanine (8-oxoG
or GO lesion), which can mispair with adenine (Shibutani et al.,
1991). In E. coli, the formamidopyrimidine DNA glycosylase (Fpg
or MutM) acts on oxidized and ring-opened purines, while the
adenine DNA glycosylase MutY prevents mutagenic transversions
by removing already misincorporated adenine (Michaels et al.,
1992a,b; Michaels and Miller, 1992). In addition to repairing
DNA, oxidized guanine is removed from the nucleotide pool by
the pyrophosphohydrolase activity of MutT (Maki and Sekiguchi,
1992).

The 5,6-double bond of pyrimidines is susceptible to reaction
with HO· creating a number of oxidatively damaged products,
such as thymine glycol. In E. coli, pyrimidine lesions are recog-
nized by endonuclease III (EndoIII or Nth) and endonuclease
VIII (EndoVIII or Nei) (Radman, 1976; Demple and Linn, 1980;
Katcher and Wallace, 1983; Breimer and Lindahl, 1984; Wallace,
1988). The removal of misincorporated bases occurs by the MMR
system, which requires MutSL for recognition and initiation
of excision repair (Modrich, 1991; Marti et al., 2002). Genetic
defects in MMR and/or GO systems are associated with muta-
tor phenotypes and as such, these damage repair systems are
important in adaptive mutagenesis and the generation of genetic
diversity, which was also demonstrated for S. aureus (O’Neill and
Chopra, 2002; Chopra et al., 2003; Prunier and Leclercq, 2005;
Vidales et al., 2009).

In contrast to BER, NER lesions are repaired in 12–13
nucleotide-long segments, followed by synthesis of a repair patch
using the intact strand as a template and ligation of the repaired
ends. Briefly, damaged DNA is detected by a complex of UvrA
and UvrB. After the DNA damage is detected, UvrB binds the
damaged DNA, displacing UvrA, and allowing UvrC to complex
with UvrB. It is this UvrBC complex that cleaves the phospho-
diester backbone to create a 12 base excision. UvrD facilitates
dissociation of base pairing, causing the release of the nucleotide
segment. At this point, the deletion can be filled by DNA poly-
merase I and then the newly synthesized DNA is ligated to the
existing DNA. In addition to UvrAB, the transcription-repair
coupling factor Mfd can recruit the DNA excision-repair machin-
ery to damaged DNA (Sancar, 1996). This process is likely similar
in S. aureus as it has the uvrABC genes and mfd (Ambur et al.,
2009).

Frontiers in Cellular and Infection Microbiology www.frontiersin.org March 2012 | Volume 2 | Article 33 | 7

http://www.frontiersin.org/cellular_and_infection_microbiology
http://www.frontiersin.org
http://www.frontiersin.org/cellular_and_infection_microbiology/archive


Gaupp et al. Staphylococcal response to oxidative stress

Recombinational repair
The predominant consequence of oxidative damage to the sugar
in DNA is strand breakage, which can be repaired by mecha-
nisms used in recombination. In E. coli, repair of DNA strand
breaks initiates when RecBCD binds to the blunt end of a dou-
ble stranded DNA break and the helicase activity of RecB and
RecD unwinds the DNA. Due to severe consequences of strand
breakage (i.e., death), there is redundancy in the initiation of
recombinational repair systems (i.e. RecF and SbcCD pathways).
While the repair of most double strand DNA breaks in E. coli
are initiated by the RecBCD exonuclease/helicase complex, low-
GC content Gram-positive bacteria, including staphylococci, lack
this pathway. Gram-positive bacteria initiate double strand break
repair using the AddAB nuclease/helicase complex, functional
homologs of RecBCD, or homologs of the RecF and SbcCD path-
ways (Alonso et al., 1993; Eisen and Hanawalt, 1999; Ambur et al.,
2009; Yeeles and Dillingham, 2010). After initiating recombina-
tional repair and as the DNA is unwound, RecA binds to the single
stranded DNA and pairs with the homologous DNA sequence and
initiates strand invasion. Following strand invasion, RuvAB drive
branch migration and then in concert with RuvC, cuts the DNA
to resolve the Holliday junction. The process of branch migration
and resolution can be catalyzed by RecG as well. These additional
components of double strand break repair are conserved in S.
aureus (i.e., RecA, RuvAB, and RecG) (Niga et al., 1997; Ambur
et al., 2009).

PROTEIN DAMAGE REPAIR
Thioredoxin
In bacteria, the cytoplasm is in a reduced state; hence, pro-
tein thiols can be maintained in their reduced form (Pollitt and
Zalkin, 1983; Derman and Beckwith, 1991). This reduced state of
the bacterial cytoplasm depends heavily on the thioredoxin and
glutaredoxin systems and the low-molecular-weight thiol reduc-
tants coenzyme A (CoASH) and bacillithiol (BSH) (Brown, 1959;
Derman et al., 1993; Prinz et al., 1997; Di Simplicio et al., 2003).
While many bacteria have both the thioredoxin and glutaredoxin
systems, most Gram-positive bacteria, including S. aureus, lack
the glutaredoxin system (Vido et al., 2005; Diep et al., 2006); thus,
these bacteria rely heavily on the thioredoxin system to main-
tain a reduced cytoplasm (Scharf et al., 1998; Uziel et al., 2004).
The importance of thioredoxin cannot be overstated as it is essen-
tial for a large variety of cellular processes, including acting as a
hydrogen donor to ribonucleotide reductase and methionine sul-
foxide reductases (Russel and Model, 1986; Aberg et al., 1989).
As important, thioredoxins are major contributors to oxidative
stress resistance by facilitating the reduction of H2O2, scavenging
HO·, and donating reducing equivalents to peroxiredoxins and
peroxidase (Arnér and Holmgren, 2000) (Figure 2).

The thioredoxin system is comprised of thioredoxin (trxA) and
the thioredoxin reductase (trxB). Thioredoxins are small disulfide
reductase proteins, while thioredoxin reductase uses the elec-
trons from NADPH to maintain thioredoxin in a reduced state
(Holmgren, 1985). In B. subtilis, trxA and trxB transcription is
maintained at a basal level during growth but it is increased in
response to diamide, H2O2, heat, salt, or ethanol stress (Scharf
et al., 1998; Leichert et al., 2003; Mostertz et al., 2004). These

increases in trxA and trxB transcription are primarily mediated
by σA, σB, and Spx (Scharf et al., 1998), an RNA polymerase-
dependent transcriptional activator that responds to diamide
stress (Nakano et al., 2003). Similar to B. subtilis, transcription of
trxA and trxB in S. aureus is maintained at a basal level under aer-
obic and anaerobic growth conditions, with Spx being required
for transcription under all growth conditions (Horsburgh et al.,
2001a; Pamp et al., 2006; Ballal and Manna, 2010). Also similar
to B. subtilis, stressors such as copper, diamide, menadione, and
tert-butyl hydroperoxide induce transcription of trxA and trxB
(Uziel et al., 2004; Wolf et al., 2008; Baker et al., 2010).

As stated above, bacteria rely on the cysteine-containing
small proteins thioredoxin and glutaredoxin to carry out the
thiol-disulfide redox cycling reactions and maintain a reduced
cytoplasm (Holmgren, 1989); therefore, cysteine biosynthesis is
critical for sustaining the reducing environment of the cytoplasm.
This can be seen by the fact that under diamide or H2O2-induced
oxidative stress, S. aureus increases cysteine biosynthesis and
uptake (Chang et al., 2006; Wolf et al., 2008). In B. subtilis and
S. aureus, cysteine biosynthesis and transport are negatively reg-
ulated by CymR in complex with CysK [o-acetyl serine (OAS)
thiol-lyase] (Even et al., 2006; Soutourina et al., 2009). Although
cysteine is needed to maintain the reducing environment of the
cytoplasm via thioredoxin, the intracellular concentration of cys-
teine is kept low due the ability of free cysteine to reduce Fe3+
to Fe2+, which can facilitate Fenton chemistry (Park and Imlay,
2003). Thus, the intracellular concentration of cysteine must be
finely balanced, or the reducing environment of the cytoplasm
will be compromised. This can be seen in cymR mutants where
cysteine accumulates in the cytoplasm and susceptibility to H2O2

also increases (Soutourina et al., 2009, 2010).

CoA reductase
Coenzyme A functions as a substrate for biosynthesis and the
oxidation of pyruvate and fatty acids. These functions rely on
the ability of CoA to form high-energy thioester bonds, such as
that found in acetyl-CoA (Magnuson et al., 1993; del Cardayre
et al., 1998). In addition to the metabolic importance of CoA,
staphylococci use CoA and, possibly, bacillithiol as low molecu-
lar weight free thiols to help maintain the reducing environment
of the cytoplasm (Newton et al., 1993; del Cardayre et al., 1998;
Fahey, 2001; Pöther et al., 2009). To fill the need for reduced CoA
(CoASH), coenzyme A disulfide reductase catalyzes the NADPH-
dependent reduction of CoASSCoA to CoASH and protein-SH
(Coulter et al., 1998). The importance of coenzyme A disulfide
reductase is reflected in the observation that inactivation of the
S. aureus coenzyme A disulfide reductase results in the attenua-
tion of virulence for mice relative to the isogenic strain (Coulter
et al., 1998; Schneider et al., 2002). Because of the metabolic
demand for CoA and the use of CoA as a free thiol, it is difficult to
predict which function is more responsible for this attenuation.

Methionine sulfoxide reductase
Methionine is highly susceptible to oxidation (Dean et al., 1997;
Grimaud et al., 2001), which can lead to structural changes that
alter or inhibit enzymatic functions. When oxidized, methion-
ine forms diastereomeric S and R forms of methionine sulfoxide
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(Brot et al., 1981; Moskovitz et al., 1996; Sharov et al., 1999).
To repair this change, most life forms rely on methionine sul-
foxide reductases (Moskovitz et al., 1996). The oxidized S form
of methionine is reduced by the enzyme MsrA, while the R
form is reduced by MsrB. The reduction of methionine sulfox-
ide to methionine is dependent on the thioredoxin thiol-disulfide
redox system or other reducing agents that can donate electrons
(Russel and Model, 1986). The importance of methionine sulfox-
ide reductase can be seen in E. coli where GroEL, a chaperone
involved in the folding of polypeptides, is highly susceptible to
inactivation by host immune cell generated ONOO− and HOCl
(Khor et al., 2004; Sasindran et al., 2007).

In most bacteria genes encoding for the enzymes, MsrA and
MsrB, are commonly present as a single copy for each one (Ezraty
et al., 2005). In S. aureus, there are three paralogs of msrA (i.e.,
msrA1, msrA2, msrA3), and a single msrB gene. msrA1 and msrB
are present in an operon with a PTS permease and a fourth gene
of unknown function; whereas, msrA2 and msrA3 are unlinked
with msrA1 and msrB (Singh et al., 2001; Singh and Moskovitz,
2003). As expected, msrA1 deletion makes S. aureus more sensitive
to H2O2; however, the other msrA paralogs do not complement
for the msrA1 deletion. In the case of msrA2, this may be due
poor transcription rather than inability to function as a methio-
nine sulfoxide reductase. Interestingly, msrA1 transcription can
be induced by oxacillin and other cell wall antibiotics, but not by
peroxide (Singh et al., 2001; Singh and Moskovitz, 2003). While
some work has been performed on methionine sulfoxide reduc-
tase in S. aureus, the fitness benefit of having three msrA paralogs
remains to be determined.

Fe-S cluster repair
Iron-sulfur clusters are ubiquitous prosthetic groups that are
involved in diverse cellular processes such as electron transfer,
enzyme activity, environmental sensing, and gene regulation.
The biogenesis of these Fe-S clusters requires the presence of
assembly systems (e.g., isc, suf, and csd operons/systems), con-
taining cysteine desulfurases, Fe-S scaffold proteins, and other
accessory proteins (Johnson et al., 2005; Fontecave and Ollagnier-
de-Choudens, 2008). As mentioned in Section “Bacterial targets
of oxidative damage”, Fe-S clusters are very susceptible to oxida-
tive inactivation; hence, to survive in an aerobic environment,
bacteria have evolved Fe-S cluster repair mechanisms. In some
bacteria, the suf system appears to maintain Fe-S cluster assembly
under oxidative stress conditions, while IscS is thought to repair
Fe-S clusters (Nachin et al., 2003; Djaman et al., 2004). In addi-
tion to IscS, the recovery of aconitase and fumarase activity after
oxidative damage is facilitated by the Fe-S cluster repair proteins
YtfE in E. coli and ScdA in S. aureus (Justino et al., 2006, 2007;
Overton et al., 2008; Vine et al., 2010). ScdA is a di-iron pro-
tein that is widely distributed among bacteria and is believed to
be a new protein family that repairs Fe-S clusters (Overton et al.,
2008). In S. aureus, the monocistronic scdA gene was first iden-
tified as being involved in autolysis and cell division (Brunskill
et al., 1997). Transcription of scdA is de-repressed in the post-
exponential growth phase when TCA cycle activity and electron
transport are maximal and the bacterial demand for iron is at
its greatest (Brunskill et al., 1997; Somerville et al., 2003), a

process mediated by MgrA [(Ingavale et al., 2003); discussed in
Section “MgrA”]. Consistent with the MgrA-dependent repres-
sion of scdA, transcription of scdA can be induced by exposure to
H2O2 (Chang et al., 2006) and scdA inactivation leads to increased
sensitivity to H2O2 (Overton et al., 2008). The importance of scdA
to staphylococcal pathogenesis remains to be determined.

SENSING AND REGULATION
As oxidative stress affects all aspect of bacterial physiology, it is
understandable that regulation of cellular processes that respond
to oxidative stress is complex (Figure 2). In fact, the complexity is
significantly increased when one considers that the staphylococ-
cal response to oxidative stress depends on the chemical nature of
the oxidant. This was demonstrated when S. aureus was treated
with three different oxidative stress inducing compounds (i.e.,
paraquat, H2O2, diamide) and the protein profiles for each stress
had only limited overlap (Wolf et al., 2008). Because many of the
regulators that affect the oxidative stress response are discussed in
other areas of this Frontiers Research Topic, we have limited our
discussion to only a few of the sensing and regulatory systems in
staphylococci.

ENVIRONMENTAL SENSING—THE METABOLIC RESPONSE
Despite the large percentage of the staphylococcal genomes dedi-
cated to metabolism and physiology, staphylococci only require
13 biosynthetic intermediates to synthesize all macromolecules
in the cell. These 13 biosynthetic intermediates are derived from
the three metabolic pathways of central metabolism: glycoly-
sis, the pentose phosphate pathway (PPP), and the TCA cycle.
Because of the importance of these 13 intermediates, staphylo-
cocci have evolved metabolite responsive regulators (e.g., CcpA,
CodY, RpiR) to “sense” the availability of these intermediates or
compounds derived from them (Somerville and Proctor, 2009).
As stated above, oxidative stress leads to the rapid inactivation
of Fe-S cluster containing enzymes and the reversible and irre-
versible oxidation of some cysteine and methionine-containing
proteins. Hence, oxidative stress alters enzymatic activity, result-
ing in changes in metabolite concentrations as well as the redox
poise. These changes in the bacterial metabolic status create
signals that alter the activity of redox-responsive and metabolite-
responsive regulators (e.g., Rex, CcpA, CodY, RpiR) (Egeter and
Brückner, 1996; Seidl et al., 2008a,b; Pagels et al., 2010). It is
for this reason that metabolite-responsive regulators, such as
CodY (Majerczyk et al., 2010) and RpiRC (Zhu et al., 2011) are
involved in regulating components of the oxidative stress response
(Figure 2).

FERRIC UPTAKE REGULATOR (Fur)
The ferric uptake regulator (Fur) is a transcriptional regulator
that is partially responsible for maintenance of iron homeostasis
in many bacteria, including S. aureus and S. epidermidis (Ernst
et al., 1978; Hantke, 1981; Heidrich et al., 1996; Xiong et al.,
2000). Fur is a homodimeric metalloprotein with an N termi-
nal DNA binding domain and C terminal dimerization domain
that may be occupied by structural zinc (Jacquamet et al., 1998;
Gonzalez de Peredo et al., 1999; Sheikh and Taylor, 2009). Fur
when complexed with iron can regulate the transcription of
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genes by binding to a 19 bp inverted repeat sequence known
as the Fur box (GATAATTGATAATCATTATC) in the promoter
region (Ochsner et al., 1995; Escolar et al., 1999; Xiong et al.,
2000; Baichoo and Helmann, 2002). Fur primarily functions as
a repressor; therefore, changes in gene expression during growth
in iron-limited medium are similar to those changes observed
in a fur mutant (Johnson et al., 2011). Interestingly, in vitro
studies of fur mutants have demonstrated that the number of
genes regulated by iron far outweighs the number of genes iden-
tified as being directly regulated by Fur. It is hypothesized that
Fur-independent transcription of genes that are regulated by the
availability of iron may be regulated by agr, rot, and sae, as
the transcription of these regulators is influenced by Fur during
iron-limited growth. As stated, Fur is primarily a transcriptional
repressor; however, Fur is a positive effector of katA transcrip-
tion and consistent with this positive effect, fur mutants have
reduced catalase activity and increased sensitivity to peroxide
stress (Horsburgh et al., 2001b). The more likely explanation
for the positive effect of Fur on katA transcription is that Fur
represses transcription of a positive regulator of katA transcrip-
tion; specifically, small RNAs have been implicated in regulat-
ing S. aureus transcription and translation (Allard et al., 2006;
Felden et al., 2011). In S. aureus, Fur is speculated to regulate
the accumulation of immunomodulatory proteins, cytolytic pro-
teins, and to protect against neutrophil-mediated killing (Torres
et al., 2010). Despite this speculation, fur inactivation has a slight
effect on S. aureus virulence in one type of experimental model
(Horsburgh et al., 2001b).

PerR
PerR is a second member of the Fur family of regulators in staphy-
lococci, and it has been identified as a peroxide sensing protein
(Horsburgh et al., 2001a; Lee and Helmann, 2006a, 2007). The
PerR regulon includes many genes involved in the oxidative stress
response and iron storage, including katA, ahpCF, mrgA, bcp,
and trxA genes. The fact that PerR regulates part of the oxida-
tive stress response would suggest it is important for surviving
the host immune response during an infection; however, in a
mouse model of infection, perR mutants are only slightly attenu-
ated in virulence relative to the parental strain (Horsburgh et al.,
2001a). As a member of the Fur family of regulators, the activity
of PerR is dependent upon metal ions. In B. subtilis, PerR carries
structural zinc and its DNA binding activity is enhanced when
complexed with either Fe or Mn (Lee and Helmann, 2006a). PerR
containing Fe or Mn will function as a transcriptional repressor
by binding to a consensus DNA sequence, termed the PerR box
(AAGTATTATTTATTATTATTA) (Chen et al., 1995; Horsburgh
et al., 2001a). In the presence of H2O2, the iron in PerR leads
to formation of HO·, which oxidizes the iron-coordinating his-
tidines, causing the loss of iron and DNA binding activity (Lee
and Helmann, 2006b). When PerR is complexed with Mn, it is
less likely to be inactivated by H2O2 because Mn is a poor media-
tor of Fenton chemistry; thus, in the absence of HO· there is little
oxidation of the metal coordinating histidines and PerR retains
its DNA binding properties. Based on this mechanism of activ-
ity regulation, it is understandable that in the presence of high
Mn2+ and low Fe2+ PerR regulon members remain repressed in

the presence of H2O2 (Horsburgh et al., 2001a, 2002; Fuangthong
et al., 2002).

MgrA
MgrA (multiple gene regulator) is a member of MarR family of
regulators that positively affects capsule biosynthesis and nuclease
accumulation, represses α-toxin, coagulase, and protein A syn-
thesis, and represses autolysis (Ingavale et al., 2003; Luong et al.,
2003, 2006). In addition, MgrA regulates transcription of sev-
eral multidrug efflux pumps (i.e., NorA, NorB, NorC, and Tet38)
(Figure 2); thus, MgrA functions in staphylococcal resistance
to different antibiotics including fluoroquinolones, tetracycline,
vancomycin or penicillin (Truong-Bolduc et al., 2003, 2006; Cui
et al., 2005; Kaatz et al., 2005; Truong-Bolduc et al., 2005; Chen
et al., 2006; Truong-Bolduc et al., 2006). In total, transcriptional
profiling has revealed that MgrA affects the transcription of as
many as 350 genes (Luong et al., 2006). This global reach of
MgrA is achieved by binding to target genes as well as by indi-
rect regulation through its affects on other regulators (i.e., SarS,
SarV, SigB, LytRS, and ArlRS) (Ingavale et al., 2003, 2005; Truong-
Bolduc et al., 2003; Manna et al., 2004; Luong et al., 2006).
The global nature of MgrA is also reflected in the fact that it
is required for the establishment and progression of S. aureus
infections in murine abscess, septic arthritis, and sepsis models
(Chen et al., 2006; Jonsson et al., 2008; Sun et al., 2011). S. aureus
MgrA is structurally similar to the MarR of E. coli in that it con-
tains a DNA binding, helix-turn-helix domain and a dimerization
domain (Chen et al., 2006). In addition, MgrA contains a single
cysteine (Cys12) in the dimerization domain that is accessible to
oxidizing agents. This dimer interface domain is similar to that
of the B. subtilis peroxide-sensing regulator OhrR (Fuangthong
et al., 2001; Fuangthong and Helmann, 2002; Lee et al., 2007;
Soonsanga et al., 2007), which when the cysteines of the two
monomers are oxidized leads to dissociation of MgrA from the
DNA (Chen et al., 2006). In addition, to regulating activity via Cys
oxidation, the activity of MgrA is modulated by the eukaryotic-
like serine/threonine kinase (Stk1 or PknB) (Truong-Bolduc et al.,
2008).

SarZ
In addition to MgrA, a second MarR family regulator, SarZ, is
involved in sensing oxidative stress. Like MgrA, SarZ has a DNA-
binding helix–turn–helix motif, a single cysteine (Cys13), and a
dimerization domain. The oxidation of Cys13 to sulfenic acid by
peroxides is insufficient to disrupt SarZ DNA-binding properties;
however, generation of a mixed disulfide or further oxidation to
sulfinic acid or sulfonic acid leads to a de-repression of transcrip-
tion. Thus, in S. aureus, SarZ and MgrA function as thiol switches,
similar to the B. subtilis OhrR (Chen et al., 2006, 2011; Poor
et al., 2009). Among the SarZ affected genes, many code for pro-
teins involved in intermediary, amino acid, fatty acid, nucleotide,
and sugar metabolism, including regulators of pyrimidine syn-
thesis (pyrR) and gluconate catabolism (gntR, GntR-like protein).
In addition, SarZ regulates transcription of the H2O2-inducible
Ohr-like peroxiredoxin (Chen et al., 2009). Interestingly, there is
little regulatory overlap between SarZ and MgrA affected genes
(Luong et al., 2006; Chen et al., 2009). Since the Cys oxidation
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mechanisms for regulating the activity of MgrA and SarZ are
similar, this absence of overlap may only partially explain why
different oxidants create different proteome profiles (Wolf et al.,
2008).

SarA
The SarA (Cheung et al., 1992) is a promiscuous DNA binding
protein containing a single cysteine (Cys9) at the dimerization
interface that may be involved in oxidative stress sensing; however,
SarA is more sensitive to alkylation than it is to oxidation (Chen
et al., 2011). The DNA binding activity of SarA may be influ-
enced by the redox poise or the oxidative status of the cytoplasm
(Chan and Foster, 1998; Lindsay and Foster, 1999; Fujimoto et al.,
2009). This may explain why SarA is a negative effector of super-
oxide dismutase and thioredoxin reductase transcription (Ballal
and Manna, 2009, 2010). In addition to regulating some aspects
of the oxidative stress response, SarA affects transcription of genes
involved in many cellular processes, including virulence related
genes and amino acid, nucleotide, and cell wall metabolism genes
(Dunman et al., 2001).

SOS RESPONSE
If the ROS burden is high and the general stress response sys-
tems (e.g., σB-system) are overwhelmed, then the SOS response
can become activated. As mentioned above, oxidative stress fre-
quently induces DNA damage. For this reason, it is not surprising
that exposure of S. aureus to H2O2 can induce the LexA regu-
lated SOS response (Chang et al., 2006; Wolf et al., 2008). The SOS
response is a highly conserved global DNA damage repair system
that can be triggered by numerous DNA damaging agents, includ-
ing fluoroquinolone or β-lactam antibiotics (Anderson et al.,

2006; Cirz et al., 2007; Erill et al., 2007). During an SOS response,
the sensor protein RecA becomes activated by non-specific bind-
ing to single-stranded DNA that is derived from recombinational
repair or stalled replication. Activated RecA stimulates the auto-
catalytic cleavage of the SOS transcriptional repressor LexA in
the C-terminal dimerization domain and in the N-terminal DNA
binding domain, leading to the de-repression of SOS genes. When
RecA no longer encounters ssDNA, the concentration of non-
cleaved LexA increases and the SOS repair system is deactivated.
While the SOS system is important for staphylococcal survival, it
has also been linked to virulence, antibiotic resistance, and the
dissemination of mobile genetic elements (Úbeda et al., 2005,
2007; Goerke et al., 2006; Kelley, 2006; Maiques et al., 2006). As an
example, the gene encoding fibronectin binding protein B (fnbpB)
is part of the LexA regulon in S. aureus (Bisognano et al., 2004).

CONCLUSION
Staphylococci face the near constant challenge of surviving in the
presence of exogenous and endogenous oxidants. To meet this
challenge, staphylococci have evolved a multitude of oxidative
defense strategies that require a coordinated regulatory response
(Figure 2). This regulatory response relies on molecular sen-
tinels to detect oxidative stress or the damage caused by oxidative
stress and to transduce these signals to regulators that enhance
or repress transcription of the defence genes in proportion to the
challenge. Once activated, the defence machinery must repair or
degrade and replace damaged DNA and proteins. Disruptions in
the ability of staphylococci to sense, respond, or repair oxidative
stress, and the damage caused by oxidative stress, results in a fit-
ness cost that makes the bacterium more sensitive to oxidative
damage.
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