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Vaccination has had a major impact on the control of infectious diseases. However, there
are still many infectious diseases for which the development of an effective vaccine
has been elusive. In many cases the failure to devise vaccines is a consequence of
the inability of vaccine candidates to evoke appropriate immune responses. This is
especially true where cellular immunity is required for protective immunity and this
problem is compounded by the move toward devising sub-unit vaccines. Over the past
decade nanoscale size (<1000 nm) materials such as virus-like particles, liposomes,
ISCOMs, polymeric, and non-degradable nanospheres have received attention as potential
delivery vehicles for vaccine antigens which can both stabilize vaccine antigens and
act as adjuvants. Importantly, some of these nanoparticles (NPs) are able to enter
antigen-presenting cells by different pathways, thereby modulating the immune response
to the antigen. This may be critical for the induction of protective Th1-type immune
responses to intracellular pathogens. Their properties also make them suitable for the
delivery of antigens at mucosal surfaces and for intradermal administration. In this review
we compare the utilities of different NP systems for the delivery of sub-unit vaccines and
evaluate the potential of these delivery systems for the development of new vaccines
against a range of pathogens.
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NANOPARTICLES AS VACCINE DELIVERY VEHICLES
Traditional vaccines include live attenuated microbes, killed
microbes, or components of microbes. Although many of these
vaccines have been central to the control of infectious disease,
some do not afford good protection against disease. In addition,
some live vaccines are not safe for use in the growing population
of immunocompromised individuals in society. There is also a
wide range of infectious diseases for which no licensed vaccines
are available. To address these challenges a range of vaccines are
being developed based on isolated proteins or polysaccharides or
naked DNA encoding a protective antigen. Whilst these can be
safer, more defined, and less reactogenic than many existing vac-
cines, they are often poor immunogens, which require adjuvants
to boost their efficacy. The most commonly used adjuvants are
aluminium based but these can induce local reactions and may fail
to generate strong cell-mediated immunity (Guy, 2007; Harandi
et al., 2010). As a consequence, there is a great need to develop
novel adjuvants and delivery systems for the next generation of
vaccines.

Recently attention has been directed toward the utility of
nanoparticles (NPs) as delivery vehicles for vaccines. The vaccine
antigen is either encapsulated within or decorated onto the sur-
face of the NP. By encapsulating antigenic material, NPs provide
a method for delivering antigens which may otherwise degrade
rapidly upon injection or induce a short-lived, localized immune
response. Conjugation of antigens onto NPs can allow presen-
tation of the immunogen to the immune systems in much the
same way that it would be presented by the pathogen, thereby
provoking a similar response. Moreover, NPs made from some

composites enable not only site directed delivery of antigens but
also the prolonged release of antigens to maximize exposure to
the immune system. Also being explored is the potential for NPs
to deliver vaccines through non-traditional methods such as top-
ical, inhalation, or optical delivery as well as combining several
antigens to the same particle so as to protect against more than
one disease.

In this review we have considered VLPs, liposomes, ISCOMs,
polymeric NPs, and non-degradable NPs as delivery systems
for microbial proteins. The expectation is that the particulate
vaccines generated using these technologies will be better at
providing potent antigen-specific humoral and cellular immune
responses and will allow next generation vaccines to be devised
against a range of infectious diseases.

PREPARATION OF NANOPARTICLES
Amongst some of the first studied NP delivery systems are VLPs;
attracting interest because of their ease of production and ability
to stimulate strong immune responses (Kingsman and Kingsman,
1988; Roldao et al., 2010; Zeltins, 2012). Typically in the size range
of 20–150 nm, VLPs consist of a self-assembled viral envelope,
generated from a single protein to form a multimeric complex
displaying a high density of epitopes (Grgacic and Anderson,
2006; Zeltins, 2012). Unlike viruses, VLPs assemble without
encapsulating any viral RNA meaning they are non-replicating
and non-infectious. Genes coding for viral integrase are also
deleted prior to expression to prevent integration of the packed
genome into the host cell and/or prevent recombination with live
or defective virus in an infected individual (Young et al., 2006).
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VLPs can be engineered to express additional proteins either
by fusing these proteins to the particle or by expressing multi-
ple antigens (Kingsman and Kingsman, 1988; Strable and Finn,
2009). Using this approach, VLPs can be generated which provide
protection not only against the virus of origin but also against
heterologous antigens. Moreover, non-protein antigens such as
polysaccharides or small organic molecules can be chemically
coupled onto the viral surface to produce bioconjugate VLPs
(Maurer et al., 2005; Patel and Swartz, 2011). The baculovirus
expression system is most commonly used for the generation of
VLPs, and has a good safety profile since baculoviruses do not nat-
urally infect humans. The Autographa california multiple nuclear
polyhedrosis virus (AcMNPV) is the most extensively studied
VLP component (Hu, 2005). In this system a non-essential gene
coding for the protein(s) forming the viral occlusion body (poly-
hedrin) is replaced with a gene of interest (Grgacic and Anderson,
2006). The vector encoding the modified VLP can then be used to
infect insect cells (Sf9 or Sf21 derived from Spodoptera frugiperda,
or BTI-TN-5B1-4 derived from Trichoplusia ni) to generate suffi-
cient quantities of the viral protein which can then self-assemble
into multimeric complexes (Figure 1A). The advantage of using
such a system is that not only does AcMNPV have a large genome
(130 kb), allowing for the insertion of multiple/large genes, but
there is typically a high protein yield driven by the strong poly-
hedrin promoter (Hu, 2005). Despite its versatility, the main
disadvantage to the baculovirus/insect expression system is its
inability to produce authentic recombinant mammalian glyco-
proteins due to differences in post-translational modification
patterns between insect and mammalian cell lines. One way to

overcome this has been the development of “humanized” insect
cell lines to constitutively express mammalian genes such as β1,
4-galactosyltransferase, and α2,6-sialyltransferase to enable the
expression of terminally galactosylated and sialylated glycopro-
teins (Hollister et al., 1998; Jarvis et al., 2001; Aumiller et al., 2003;
Jarvis, 2003; Harrison and Jarvis, 2006). Another problem associ-
ated with baculovirus expression system is the resulting cell death
and lysis of insect cells within a few days after infection with bac-
ulovirus. This can be problematic for proteins which are selected
for secretion or are vulnerable to degradation. Subsequent efforts
to alleviate this problem have been in the form of a non-lytic bac-
ulovirus developed by random mutagenesis resulting in almost a
10-fold decrease in cell lysis and a reduction in degradation of
expressed protein (Ho et al., 2004).

Like VLPs, liposomes are self-assembling but consist of a phos-
pholipid bilayer shell with an aqueous core (Heurtault et al.,
2010; Henriksen-Lacey et al., 2011). They can be generated as
either unilameller vesicles, which consist of a single phospholipid
bilayer, or multilameller vesicles, that are made of several concen-
tric phospholipid shells separated by layers of water (Figure 1B).
As a consequence, liposomes can be tailored to incorporate either
hydrophilic molecules into the aqueous core or hydrophobic
molecules within the phospholipid bilayers. There are a large
number of methods published for preparing liposomes which are
beyond the scope of this review (Riaz, 1996; Samad et al., 2007;
Shailesh et al., 2009). However, typically these all involve a reverse
phase evaporation process by dissolving phospholipids (such as
monophosphoryl lipid A or phosphatidylcholine) in an organic
solvent (e.g., chloroform, methanol). Water is then added, along

FIGURE 1 | Schematic representation of different nanoparticle delivery systems. (A) Virus-like particle, (B) Liposome, (C) ISCOM, (D) Polymeric
nanoparticle, (E) Non-degradable nanoparticle.
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with the antigen, and the solvent is evaporated resulting in large
unilameller vesicles (Kersten and Crommelin, 1995; Zhu et al.,
2005). Alternatively, liposomes can form in water by introduc-
ing a high energy input such as sonication, or nitrogen gas under
high pressure. Initially this creates large multilameller vesicles,
however, a continued energy input generates smaller, unilameller
vesicles. Another method for preparing unilameller vesicles with-
out subjecting antigens to high energy, which can sometimes be
destructive, is by dissolving lipids in a detergent with a high crit-
ical micelle concentration, such as octylglucoside. The solution
is then dialyzed against a buffer containing the antigen which
results in the formation of liposomes (Kersten and Crommelin,
1995). In any of these methods, cholesterol can be (and often is)
added to provide additional stability to the phospholipid bilayer.
Other approaches to encapsulating antigens in liposomes include
using repeat freeze thaw cycles (Zhu et al., 2005), a pH gradi-
ent (Waterhouse et al., 2005), or an ammonium sulphate method
(Haran et al., 1993) with antigen encapsulation rates varying
between 25 and 72% (Fries et al., 1992; Baca-Estrada et al., 2000;
Zhao et al., 2007).

Colloidal saponin containing micelles of around 40 nm can
be used as self-adjuvanting vaccine delivery systems and are
collectively known as ISCOMs. Two types of ISCOMs have
been described, both of which consist of cholesterol, phos-
pholipid (typically either phosphatidylethanolamine or phos-
phatidylcholine) and saponin (most often Quil A from the tree
Quillaia saponaria) (Kersten et al., 1988; Lovgren and Morein,
1988; Barr et al., 1998). Classically, ISCOMs have been used
to entrap viral envelope proteins such as from herpes simplex
virus type 1, hepatitis B, and influenza. However, proteins from a
range of bacteria and parasites including Escherichia coli, Brucella
aborus, and Plasmodium falciparum have also been used to assem-
ble ISCOMs (Morein and Simons, 1985; Classen and Osterhaus,
1992; Morein et al., 1995). Complexes without viral proteins are
also used and are often referred to as ISCOM matrices (Barr et al.,
1998). ISCOMs are self-assembling at an optimal ratio of 1:1:5
(cholesterol:phospholipid:saponin) for matrices or 1:1:5:0.1/1 for
classical ISCOM forming in the presence of a non-ionic deter-
gent, which is then removed using dialysis or ultracentrifuga-
tion (Lovgren and Morein, 1988; Kersten et al., 1991). The
resulting complex is a pentagonal dodecahedron arrangement of
micelles containing saponin and lipid held together by hydropho-
bic interactions and stabilized through its negative surface charge
(Figure 1C) (Özel et al., 1989; Kersten et al., 1991).

Polymeric NPs have attracted much attention for their ability
to deliver drugs as well as being biodegradable (Li et al., 2000).
Moreover, the release kinetics of loaded drugs from polymeric
NPs can be controlled by compositional changes to the copolymer
(Li et al., 2000). This class of NP can be prepared from a range of
polymers including poly(α-hydroxy acids), poly(amino acids), or
polysaccharides to create a vesicle which can either accommodate
or display antigens. The most commonly used poly(α-hydroxy
acids) for preparing polymeric NPs are either poly(lactic-co-
glycolic acid) (PLGA) or poly(lactic acid) (PLA) which are often
synthesized using a double emulsion-solvent evaporation tech-
nique (O’Donnell and McGinity, 1997; Sahoo et al., 2002; Lu
et al., 2009). Firstly, a polymer of choice is dissolved in an organic

solvent like ethyl acetate, ethyl acetate, or methylene chloride fol-
lowed by the addition of the antigen which is then vortexed to
get a primary emulsion. A water-in-oil-in-water emulsion is then
formed with the addition of an emulsifying agent (e.g., polyvinyl
alcohol or polyvinyl pyrrolidine). This results in the polymer pre-
cipitating around the antigen (Figure 1D). The solution is then
left to allow solvent evaporation and then dried to prevent degra-
dation of the polymer due to water-catalyzed ester hydrolysis
(Sales-Junior et al., 2005; Feng et al., 2006; Pai Kasturi et al., 2006;
Florindo et al., 2009; Harikrishnan et al., 2012). The use of this
method is limited since antigen entrapment efficiency is low and
there is a possibility of protein denaturation at the oil-water inter-
face (Sah, 1999). The addition of stabilizers such as surfactants or
sugars, including trehalose and sucrose, provide stability against
denaturation by keeping the protein hydrated in its native form.
An alternative method for retaining encapsulated protein stability
uses poly(amino acids) such as poly(γ-glutamic acid) (γ-PGA),
poly(ε-lysine), poly(L-arginine), or poly(L-histidine) which do
not require an emulsion step in their synthesis (Lee et al.,
2003; Matsusaki et al., 2004, 2005; Holowka et al., 2007). These
amphiphilic copolymers self-assemble via hydrophobic interac-
tions to form polymeric structures consisting of a hydrophobic
core and a hydrophilic outer shell (Letchford and Burt, 2007; Lu
et al., 2009). Moreover, γ-linked glutamic acids in γ-PGA are
not easily recognized by common proteases resulting in added
stability (Oppermann et al., 1998; Obst and Steinbuchel, 2004).
To form these polymeric NPs, the poly(amino acid) is first dis-
solved in dimethyl sulfoxide (DMSO) before adding NaCl. The
size of NPs is controlled by the concentration of NaCl resulting
in monodisperse NPs ranging from 30 to 200 nm in diameter
(Kim et al., 2009). To prepare protein-encapsulated γ-PGA NPs,
the antigen (in saline) can be added to γ-PGA (in DMSO) and
centrifuged (Akagi et al., 2011). The resulting encapsulation has
between 30 and 60% efficiency and is stable over an acidic pH
range even after 10 days (Akagi et al., 2011). Hydrophilic polysac-
charide polymers are also good candidates for vaccine delivery
with both dextran and chitosan being chosen for preparing NPs.
Much attention has focused on chitosan NPs because of the
biocompatibility of chitosan, its biodegradability into non-toxic
products in vivo and its ability to open up tight junctions between
epithelial cells (Sonaje et al., 2012). Chitosan NPs can be prepared
in a number of ways. One method is a self-assembly technique
through chemical modification, producing particles with a mean
diameter of 160 nm (Lee et al., 1998). Similarly, a complex coac-
ervation process is sometimes used whereby particles will sponta-
neously form when two hydrophilic colloids are mixed together,
with chitosan precipitating around plasmid DNA (Mao et al.,
2001). These particles are 100–250 nm in diameter and protect
the DNA from nuclease degradation. The emulsion-droplet coa-
lescence technique pioneered by Tokumitsu and colleagues was
developed for intra-tumoral injection (Tokumitsu et al., 1999). It
is based upon the emulsion crosslinking of chitosan and precipi-
tation around the drug (gadopentetic acid). The particles formed
were 450 nm in diameter and were appraised for their slow release
and long-term retention within the tumor making them an excel-
lent delivery vehicle. An ionic gelation process based on the
positively charged amino groups in chitosan and the negative
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charge of tripolyphosphate has also been used to prepare chitosan
NPs in the size range of 20–400 nm (Fernandez-Urrusuno et al.,
1999; Xu and Du, 2003). Sometimes these colloids will be further
modified by the addition of an adjuvant on the surface, such as
polyethylene glycol in order to aid absorption or to slow down
release.

In contrast to the above NPs, which consist of biological
or biodegradable materials, non-degradable NPs are also being
investigated for vaccine delivery (Calvo et al., 1997; Anne Saupe
et al., 2006; Bhumkar et al., 2007b; Lee et al., 2010). Among
those most commonly studied are gold, carbon, and silica to
generate a shell in which to encapsulate antigens or, more com-
monly, to provide a surface for covalent attachment (Figure 1E).
Gold NPs can vary considerably in size, but are frequently used
in the 2–50 nm size range. Using chloroauric acid as the start-
ing solution, the gold is reduced to form spherical particles of
either 10–20 nm or 2 nm in diameter depending on whether a
mild or strong reducing agent is used. In either case the particles
formed are typically monodisperse and uniform in shape, which
is essential for maintaining antigen loading consistency between
batches (Figure 2). The smaller particles, formed from using a
strong reducing agent, can then be grown to form larger par-
ticles with a desired aspect ratio using ceyltrimethlammonium
bromide and silver acetate (Turkevich et al., 1951; Bhumkar et al.,
2007a; Zhou et al., 2008; Chen et al., 2010). Carbon NPs have also
been investigated for their use in vaccine delivery including oral
delivery (Wang et al., 2011). Using silica NPs as a template, the
particles are then carbonized at high temperatures under nitrogen
gas and using sucrose as a carbon source. The resulting particle
is over 450 nm in size with 50 nm mesopores embedded within
the particle surface. Within these pockets a protein antigen can
be protected from the harsh environment of the gastrointestinal
tract, allowing oral administration to promote mucosal immunity
(Wang et al., 2011).

Rather than delivery of whole microbes, as with traditional
vaccines, the aforementioned NP delivery systems are focused
on small molecular antigens produced by the pathogen. These

FIGURE 2 | Transmission electron micrograph of 15 nm gold

nanoparticles formed when sodium citrate dihydrate is used to reduce

gold(III) chloride trihydrate. Bar is 200 nm.

components are usually expressed on the microbial membrane
and may include polysaccharides, proteins, lipoproteins, glyco-
proteins (Table 1). In some cases DNA encoding microbial anti-
gens has delivered and is then transcribed and translated in host
cells, although these DNA vaccines are beyond the scope of this
review. Membrane antigens used for vaccinations are often less
immunogenic than whole microbes and require an adjuvant to
boost the immune response. However, the safety profile of these
small molecules is considerably better, making them much more
attractive for future licensing of vaccines.

CHARACTERIZATION OF NANOVACCINES
Once synthesized, it is essential to characterize the structure
and composition of NP formulations to avoid any variation
between (or within) batches. Variation could arise from con-
tamination, a polydisperse population of NPs, the accumula-
tion of toxic components or incomplete particle formation. In
order to maintain a homogenous population, several methods
are employed to measure uniformity within colloidal solutions.
Spatial uniformity amongst NPs is essential since the spherical
volume will influence how much antigen is encapsulated or con-
jugated onto the surface and could vary the immunizing dose
of the vaccine. Consequently, the size and shape of particles
is characterized using a variety of methods including electron
microscopy, dynamic light scattering, and density gradient cen-
trifugation (Morein et al., 1984; Kersten et al., 1988). The amount
of antigen-present is then quantified using one or more of the
following techniques: Lowry and Bradford assays, enzyme-linked
immunosorbent assay, dot-blots, density gradient centrifugation,
sodium dodecyl sulphate polyacrylamide gel electrophoresis, and
Western blotting (Carol et al., 1989, 1997; Erturk et al., 1991;
Browning et al., 1992; Reid, 1992). In some instances it may be
necessary to measure the compositional content of the NP if some
of the reagents are toxic in high doses. This is especially true of
Quil A, a key component of ISCOMs, which can have haemolytic
effect in sufficient concentrations, and is measured in a rocket
electrophoresis assay or by reversed phase high-performance liq-
uid chromatography (Kersten et al., 1988; Sundquist et al., 1988).
Other component of ISCOMs, such as cholesterol and phos-
pholipids, are measured by gas chromatography and phosphorus
assays respectively (Kersten et al., 1988). Quantification of metal
(and non-metal) NPs, such as gold, can be quantified using
instrumental neutron activation analysis or inductively coupled
plasma mass spectrometry (Hillyer and Albrecht, 2001; Harkness
et al., 2010).

VACCINE INDUCED IMMUNITY
For more than 70 years adjuvants have been added to vac-
cine formulations to boost the immune response to the vac-
cine. In total there have been several hundred natural and
synthetic compounds identified as adjuvants, the most com-
monly used include an oil in water emulsion with and without
the addition of mycobacteria (Freund’s complete and incom-
plete adjuvant, respectively), lipid A from the lipopolysaccharide
of Gram-negative bacteria and unmethylated cytosine-guanine
dinucleotides (CpG) found in bacterial DNA. Despite this,
aluminium-based compounds (principally aluminium phosphate
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or hydroxide) remain the most widely used adjuvants incorpo-
rated into licensed human vaccines. Until recently the mecha-
nisms by which alum potentiates the immune response has been
poorly understood and was initially believed to be due to a depot
effect at the site of injection prolonging exposure of the antigen
to the immune system for a better response (Glenny et al., 1931;
Harrison, 1935). This theory was later challenged by Holt who
showed that excision of the injection site from guinea pigs did
not interfere with the development of a humoral response (Holt,
1950). Recent studies have also documented the rapid release of
antigens from alum adjuvants; ∼80% of aluminium phosphate
adsorbed tetanus toxoid had disappeared from the site of injec-
tion within 4 h (Weissburg et al., 1995; Gupta et al., 1996). It is
now believed that alum plays a more active role from observa-
tions of its electrostatic interaction with lipopolysaccharide (Shi
et al., 2001); or its demanding effect on some protein antigens
(Soliakov et al., 2012) leading to corrugated layers of aluminium
oxyhydroxide held together with hydrogen bonds. Aluminium
gel particles are generally no more than 10 μm in diameter, and
antigens adsorbed to these particles maybe phagocytosed more
readily than those without alum (Powell et al., 1995). The genera-
tion of particulate molecules in vivo may create an inflammasome
which in turn may activate the Nlrp3 (NOD-like receptor fam-
ily, pyrin domain containing 3) (Li et al., 2008; Eisenbarth et al.,
2009) causing an influx of eosinophils and an upregulation of
MHCII expression and antigen-presentation cell activity (McKee
et al., 2009). Once activated, this cytoplasmic Nlrp3 protein pro-
motes the production of pro-inflammatory cytokines such as
interleukin 1beta and interleukin 18 (IL-1β and IL-18) (Li et al.,
2007; Eisenbarth et al., 2009). Of these cytokines IL-1β has been
shown to be a potent stimulus for T-cell dependent antibody pro-
duction in vivo (Nakae et al., 2001). Alternatively, prostaglandins
or other moieties may mediate the inflammatory response to
the alum (Pelka and Latz, 2011). Although alum is renowned
for its ability to produce antibody responses, it induces strong
CD4-mediated cellular responses (predominantly Th2 but also
Th1) and can also induce CD8 activation (McKee et al., 2009).
Stimulation of these cellular responses induces cellular memory
in man which is important for protection against many pathogens
as well as generating long-term protective immunity (Bomford
et al., 1992; Comoy et al., 1997; Hogenesch, 2002). Whilst alum-
based adjuvants are generally well tolerated, there may be some
associated toxicity problems such as the formation of granulomas
when subcutaneous or indradermal injection is preferred over
intramuscular; allergenicity and accumulation of aluminium if
renal function is poor which not only can become highly toxic
but has also been associated with amyotrophic lateral sclerosis and
Alzheimer’s disease (Straw et al., 1985; Goto et al., 1993; Gupta
et al., 1996; Campbell, 2002). Consequently, there is an urgent
need to develop safe adjuvants which are able to stimulate both
Th1 and Th2 immune responses.

The objective of vaccination with any formulation is to
emulate the innate and adaptive responses of the immune
system to infection (Bachmann and Jennings, 2010). The pre-
dominant interface between the innate and adaptive immune
responses is antigen-presenting cells, and particularly dendritic
cells (O’Hagan, 1998; Storni et al., 2005). Antigen-presenting cells

are able to recognize micro-organisms through pattern recog-
nition receptors such as toll-like receptors (TLR). On recog-
nition of microbial surface determinants, antigen-presenting
cells undergo maturation leading to a redistribution of MHC
molecules from intracellular compartments to the cell surface,
secretion of cytokines and chemokines, cytoskeleton reorga-
nization, and morphological changes including the prolifera-
tion of dendrites from the membrane of dendritic cells. The
micro-organism can be engulfed by the antigen-presenting cells
through an endocytic pathway (phagocytosis) where it is typically
degraded by proteolytic enzymes and reactive oxygen species. The
peptides released by processing of proteins are then displayed on
MHC class II molecules and are recognized by CD4+ T cells to
stimulate the production of antigen-specific antibodies and the
formation of memory T-cells. CD4+ T-cells are further divided
functionally on maturation into Th1 or Th2 cells; induction of the
former leads to a predominantly pro-inflammatory response with
the secretion of interferons (typically IFNγ) and tumor necrosis
factor α (TNFα), whereas the predominantly anti-inflammatory
role of Th2 cells is to secrete cytokines such as IL4, IL10, and IL13.
Both types of Th cell also support the production of antibodies by
B-cells, in either a pro-or anti-inflammatory environment, which
in turn influences antibody isotype and function. However, some
pathogens such as viruses and some bacteria are able to become
internalized within cells via non-endocytic pathways. When this
occurs, antigens derived from the pathogen are processed via pro-
teosomes which then display peptides in the clefts of MHC class
I molecules (Shen et al., 2006). The displayed antigen is rec-
ognized by CD8+ T cells which have cytotoxic activity toward
other host cells infected by the pathogen (Figure 3). In practice,
the response to any pathogen may encompass a mix of all these,
further complicated by the induction of pro-inflammatory Th17
cells and constrained by regulatory T-cells, but a predominant
polarity (Th1 or Th2) may be required to resolve the infection
(Bot et al., 2004).

NANOPARTICLE UPTAKE AND IMMUNITY
It is important to be able to tailor vaccine-induced immunity to
an appropriate response to deal with the pathogen. Moreover,
the delivery of antigens to dendritic cells is central to the devel-
opment of a protective immune response. Using NPs to deliver
antigens, the efficiency of uptake into dendritic cells is signifi-
cantly increased compared with soluble antigen alone; in some
instances a 30-fold increase in uptake can be achieved (Akagi
et al., 2011; Uto et al., 2011). Similarly, studies comparing dif-
ferences in uptake between micro- and nano-PLA particles have
found that uptake by antigen-presenting cells is significantly
increased for NPs. Chithrani et al. investigated the dependency
of gold NPs size on uptake into HeLa cells by incubating cells
with a range of NP sizes (14–100 nm) and then measuring their
gold content using inductively coupled plasma atomic emis-
sion spectroscopy. The results showed that the optimal size for
uptake was 50 nm and uptake increased significantly for the
first 2 h before plateauing at between 4 and 7 h post-exposure
(Chithrani et al., 2006). Particle shape and surface charge are
also important physicochemical factors playing crucial roles in
the interaction between particles and antigen-presenting cells.
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FIGURE 3 | Induction of immune response by dendritic cells response to

different stimuli. Antigens which enter cells via endosomal pathways (blue
arrows) are typically degraded within a vesicle before the contents is displayed

on the cellular surface by MHC II receptors and recognized by CD4+ T cells.
Alternatively, antigens present in the cytosol (red arrows) are broken down and
presented on MHC I receptors, which are recognized by CD8+ T cells.

In general, cationic particles are taken up into cells much more
readily than those with an overall negative surface charge due
to the anionic nature of cell membranes, whilst spherical as
opposed to rod-shaped particles are also more readily endo-
cytosed (Merdan et al., 2002; Foged et al., 2005; Xia et al.,
2009).

As well as the degree of uptake, the mechanisms by which
NPs enter cells will have a direct impact on the type of immune
response induced. This too is dependent on NP size, as well
as their composition, shape and charge, resulting in antigens
being taken up into different intracellular trafficking pathways.
Whilst PLGA microparticles typically enter macrophages through
phagocytosis, there are a variety of mechanisms by which NPs
may be internalized. It has been suggested that 43 nm polymeric
NPs are taken up by HeLa cells via clathrin-dependent endo-
cytosis, whilst 24 nm particles enter a cholesterol-independent,
non-clathrin, and non-caveolar dependent pathway (Lai et al.,
2007). NP shape can have a significant effect on the ability of
macrophages to internalize particles via actin-driven movement
of the macrophage membrane. Subsequently the phagocytosis of
rod-shaped particles is often negligible when compared to spher-
ical NPs (Champion and Mitragotri, 2006, 2009). Both polymer
and gold cationic NPs have been shown to enter various mam-
malian cell lines via non-endosomal pathways using a range of
pharmacological inhibitors or cell lines with endogenous proteins
considered essential for a transport mechanism knocked-out

(Ivanov, 2008; Sharma et al., 2010; Taylor et al., 2010; Vercauteren
et al., 2010; Dos Santos et al., 2011; Iversen et al., 2011).

When poly(amino acid) NPs with encapsulated ovalbumin
were used to immunize mice, significantly higher levels of total
IgG, IgG1, and IgG2a were induced compared with the response
to soluble ovalbumin, suggesting the particles have the ability
to prime humoral and cellular immune responses since CD4+
and CD8+ T cell activation produces IFNγ which induce Ig class
switching to IgG2a (Uto et al., 2007, 2009; Mohr et al., 2010).
Similarly, the loading of Hepatitis B core antigen into PLGA
NPs (300 nm) induced a stronger cellular immune response
in a murine model than when Hepatitis B core antigen was
administered alone. Particle size also plays an important role in
directing the immune response. Immunization with PLA NPs
(200–600 nm) was associated with higher levels of IFNγ produc-
tion related to a Th1 response. In contrast, immunization with
PLA microparticles (2–8 μm) promoted IL-4 secretion related to
a Th2 response (Gutierro et al., 2002). Both PLGA NPs and lipo-
somes are efficiently phagocytosed by dendritic cells in culture,
resulting in their intracellular localization (Lutsiak et al., 2002;
Copland et al., 2003; Elamanchili et al., 2004).

VLP’s have been shown to produce strong humoral immune
responses that are able to protect against human papillomavirus
(HPV) infection in both animal models and human clinical trials
using the HPV L1 protein (Breitburd et al., 1995; Kirnbauer et al.,
1996; Koutsky et al., 2002; Harper et al., 2004; Villa et al., 2005).
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Through mimicking the native viral structure, VLP-based vac-
cines (including those against influenza A and HIV) are able to
enhance the production of neutralizing antibodies by present-
ing antigens in their natural state as membrane-bound proteins
rather than soluble ectodomains (Kemp et al., 2011; Pushko
et al., 2011). However, this is mostly type-specific and may not
protect against infection with heterologous types. Furthermore,
cell-mediated immune responses were also achieved with HPV
VLPs, including T cell proliferation (CD4+ and CD8+) (Emeny
et al., 2002; Pinto et al., 2003). There is also an association of
increases in Th1 and Th2 type cytokines (IFNγ and IL-5, IL-10
respectively) stimulated with VLP immunization (Evans et al.,
2001; Pinto et al., 2003). Once in vivo, particulate vaccine formu-
lations of all types constitute an antigen depot, the effect of which
is to allow a gradual release of antigen, prolonging exposure of the
immune system to the antigen and essentially providing a booster
dose. The pharmacokinetics/pharmacodynanics of each formula-
tion will determine how slowly or otherwise antigen is released
from the depot. In general though, particulate formulations con-
fer benefits in terms of a reduced need for the administration of
booster doses and a self-adjuvanting effect due to the enhanced
uptake of particulates by antigen-presenting cells.

LIMITATIONS AND ONGOING QUESTIONS
The limitations of NPs for the delivery of vaccines range from
concerns over the toxicity of the particles, to difficulties in pro-
ducing the materials and presenting antigens in their native
form.

The production of suitable NPs can present some tech-
nical challenges. For example, although insect cell lines are
widely used to express VLPs, they are unable to glycosylate pro-
teins in the same way as mammalian cells. Consequently, some
insect cell lines have been mammalianized to accommodate this
(Palmberger et al., 2012). For other systems there are concerns
over the stability or potential to scale-up production. One of the
greatest obstacles with liposome delivery systems is their instabil-
ity (Soppimath et al., 2001; Hans and Lowman, 2002). One of the
ways in which this has been overcome is by modifying the sur-
face with a hydrophilic polymer, such as glycol (e.g., polyethylene
glycol, glycol chitosan). This serves as a barrier to reticuloen-
dothelial system cells to extend its circulatory lifetime (Goren
et al., 2000; Filipovic-Grcic et al., 2001). The scale-up of pro-
duction of sterile polymeric particles has also been problematic,
though this has to some extent been overcome by the introduc-
tion of scaled-up spray-drying techniques. This allows polymer
and payload, together with a stabilizer such as trehalose, to be
sprayed at high temperature (80–100◦C) through an orifice in
clean room conditions (Baras et al., 2000; Varshosaz et al., 2011).
This is a batch process, typically yielding hundreds of milligrams
of product (depending on equipment size and operating condi-
tions), but care needs to be taken that a protein payload will not
be damaged by either the heat or shear force. One way around
this is to spray -dry the polymer and subsequently surface-absorb
the protein antigen(s). Additionally, in order to overcome the
risk of traces of unacceptable solvents in the final NP product,
super-critical fluid technology is being applied to the generation
of NP (Valle and Galan, 2005; Vemavarapu et al., 2005). In this

approach, the PLGA polymer is solubilized in super-critical fluid
solvent (freon/propanol) and the solution is compressed under
pressure prior to introduction of the aqueous phase containing,
for example, the recombinant protein. Polymeric particles then
form of typical size range 300 nm–3 μm.

An ongoing concern with the introduction of NPs into
biomedical applications has been their potential toxicity, not least
because some materials which would otherwise be considered safe
take on different characteristics in a nanoparticulate form and can
sometimes become harmful (NIOSH, 2006). For example, in its
naturally occurring mineral state titanium dioxide is biologically
inert, however, when administered as a NP smaller than 20 nm
in diameter it causes an inflammatory reaction in animals and
humans (Ophus et al., 1979; Oberdorster et al., 1994). Similarly
gold is generally regarded as a safe, inert material, and is used rou-
tinely for medical implants, however, gold NPs with a diameter of
1.4 nm behave very differently and have been shown to permeate
cells and nuclear membranes and bind irreversibly in the major
grooves of DNA causing instability (Tsoli et al., 2005). The same
is not true of all gold NPs and those of a slightly larger diameter
(15 nm) are considered non-toxic at up to 60-fold higher concen-
trations (Connor et al., 2005; Shukla et al., 2005; Pan et al., 2007;
Villiers et al., 2010).

Other toxicity concerns associated with NP is the accumula-
tion within cells, particularly with continuous exposure or long-
term use. Indeed, fluorescent quantum dots have been observed
in mice 2 years after injection (Fitzpatrick et al., 2009). As pre-
viously mentioned, the methods used to characterize cellular
trafficking of NPs are often carried out using pharmacolog-
ical inhibitors or mutant cell lines. The problem with these
experiments is that seldom are these methods specific for one
mechanism of trafficking so the data can often be difficult to inter-
pret or sometimes contradictory to other literature. For example,
whilst Rejman et al. show that treating B16 cells with chlorpro-
mazine strongly inhibits the uptake of negatively charged 50 nm
polystyrene NPS compared with 200 nm particles, dos Santos
et al. report an opposite result (Rejman et al., 2004; Dos Santos
et al., 2011). In many cases it is perhaps best to use a combina-
tion of various inhibitors and mutated cell lines with carefully
selected controls. Another problem associated with pharmacolog-
ical inhibitors is their cell line specific efficacy, meaning that care
must be taken when interpreting results from such studies and
perhaps highlights the need for using several different cell lines to
draw conclusions applicable to an in vivo model.

There are also some more specific concerns over compo-
nents used in NPs. Despite the number of veterinary vaccines
which utilize ISCOMs, there are uncertainties over the toxicity
of saponin-based adjuvants and this has to date prevented their
licensure for use in humans. When administered intravenously,
Quil A- derived ISCOMs and free Quil A are toxic to rats, and
some mouse strains, at an LD50 of 0.67 mg/kg (Wünscher, 1994).
Similar results have also been documented with subcutaneous
and intraperitoneal administration of Quil A (Pyle et al., 1989;
Stieneker et al., 1995) where it is believed to cause degeneration
of the liver (Kersten et al., 1988). However, this has so far only
been documented in rodents, with little toxicity reported in larger
terrestrial animals including rhesus monkeys, chickens, dogs, or
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cattle (Vanselow et al., 1985; De Vries et al., 1994; Ma et al., 1995;
Sundquist et al., 1996).

DISCUSSION
A wide variety of NP delivery systems have been described, each
offering advantages over current methods of vaccine delivery.
Rather than conventional vaccines which use whole microbes (live
or killed), this new generation of vaccines use components of
microbes to elicit an immune response and mimic the way in
which these antigens would be delivered during a natural infec-
tion. Often these antigens are poor immunogens on their own
and thus require an adjuvant to boost the immune response.
Although previously demonstrated with alum-based adjuvants,
this often fails to induce a cellular immune response and can be
reactogenic toward the host. NPs provide an alternate method
for antigen delivery which not only activates different elements
of the immune system but also have good biocompatibility. One
of the ways in which NPs are able to elicit different immune
responses is through their size; moving into cells via non-classical
pathways and then processed as such. Delivering antigens in dif-
ferent ways also has a profound effect on the resulting immune
response, whether the antigen is decorated on the NP surface
for presentation to antigen-presenting cells or encapsulated for
slow release and prolonged exposure to the immune system. NPs
are also versatile and can be modified with immunostimulatory

compounds to enhance the intensity of the immune response or
with molecules to increase their stability in vivo (polyethylene
glycol).

Many of the NP delivery systems mentioned in this review are
capable of eliciting both cellular and humoral immune responses.
However, an efficient and protective vaccine is likely to induce
a combination of both responses and should be tailored to the
pathogen in question accordingly. Whilst these delivery vehicles
may present as an exciting prospect for future vaccination strate-
gies, it is also worth noting their potential drawbacks, particulary
those associated with cytotoxicity. Since NPs have a relatively
short history in medicine they do not have a longstanding safety
profile in human use. It is therefore essential that further research
is carried out in NP toxicity to fully address these questions if they
are to be accepted as an alternative method for the delivery of
novel vaccines and are licensed more widely for human use.
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