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Human African trypanosomiasis (HAT) is caused by trypanosomes transmitted to humans
by the tsetse fly, in which they accomplish their development into their infective metacyclic
form. The crucial step in parasite survival occurs when it invades the fly midgut. Insect
digestive enzymes and immune defenses may be involved in the modulation of the fly’s
vector competence, together with bacteria that could be present in the fly’s midgut. In
fact, in addition to the three bacterial symbionts that have previously been characterized,
tsetse flies may harbor additional bacterial inhabitants. This review focuses on the diversity
of the bacterial flora in Glossina, with regards to the fly species and their geographical
distribution. The rationale was (i) that these newly identified bacteria, associated with
tsetse flies, may contribute to vector competence as was shown in other insects and (ii)
that differences may exist according to fly species and geographic area. A more complete
knowledge of the bacterial microbiota of the tsetse fly and the role these bacteria play in
tsetse biology may lead to novel ways of investigation in view of developing alternative
anti-vector strategies for fighting human—and possibly animal—trypanosomiasis.

Keywords: human African trypanosomiasis, bacteriome, trypanosome, tsetse flies, interactions

INTRODUCTION
A comprehensive understanding of the biology of insects requires
investigations on the microbial content of their guts (Steinhaus,
1960). Insects are hosts for a large panel of microorganisms that
have developed a variety of interactions ranging from mutualis-
tic to parasitic (Jeyaprakash et al., 2003; Schmitt-Wagner et al.,
2003; Campbell et al., 2004; Hongoh et al., 2005). Some of these
interactions have been quite well characterized, owing to their
ecologic and/or economic importance. However, the exact nature
of many of these interactions remains poorly understood and
poorly documented.

Human African trypanosomiasis (HAT), or sleeping sickness,
caused by trypanosomes transmitted to humans by the tsetse fly
(Glossina spp.), belongs to the neglected tropical diseases affect-
ing more than 1 billion people worldwide (Fèvre et al., 2008;
Welburn et al., 2009). Regarding sleeping sickness itself, 60 mil-
lion people are living in HAT-risk areas in the 36 countries that
are listed by WHO as being endemic for the disease, among which
only 10–15% really undergo epidemiological control (Cattand
et al., 2001). This means that the actual number of HAT cases
is probably much higher than reported and that HAT remains a
serious public health problem even though the prevalence of HAT
now seems to be decreasing (Barrett, 2006; WHO, 2010; Simarro
et al., 2011). Unless treated the disease is fatal. The drugs cur-
rently used to fight the disease are not satisfactory, some are toxic,
and all are difficult to administer (Barrett, 2006). Furthermore,
trypanosome resistance to some drugs has developed and is
increasing (de Koning, 2001). Therefore new strategies to combat
the disease need to be developed.

To be transmitted to the mammalian host, trypanosomes must
first establish in the insect midgut and, upon their migration to
the salivary glands, they have to undergo a maturation process.
When the fly feeds on infected mammalian hosts, trypanosomes
enter the fly midgut, where they rapidly differentiate into pro-
cyclic forms. Then they either die in the midgut of refractory
individuals or survive to yield persistent procyclic infections in
susceptible insects. Once established, parasites migrate toward the
salivary glands where they differentiate into epimastigote forms
and, finally, into infectious metacyclic forms (maturation step)
that can be transmitted to naïve mammals by the fly when tak-
ing another blood meal (Vickerman et al., 1988; Van Den Abbeele
et al., 1999). The factors involved in the establishment step are
still largely unknown. However, several factors are believed to be
involved in this step among which the fly’s digestive enzymes and
immune defenses and the intestinal microbial flora (Welburn and
Maudlin, 1999; MacLeod et al., 2007; Wang et al., 2009, 2012;
Weiss and Aksoy, 2011). As reviewed by Dillon and Dillon (2004),
insects harbor, mainly in the intestinal organs, diverse commu-
nities of microorganisms. The tsetse fly harbors three symbiotic
microorganisms (Aksoy, 2000): (i) the obligate primary sym-
biont, Wigglesworthia glossinidia (Aksoy, 2000), which synthesizes
B vitamins (Akman et al., 2002) that the fly is unable to syn-
thesize and which are absent from its blood diet; (ii) Wolbachia
(O’Neill et al., 1993), belonging to the Rickettsiaceae family, which
infects a broad range of insect species, causing a variety of repro-
ductive abnormalities, and cytoplasmic incompatibility in tsetse
flies (Alam et al., 2011); and (iii) Sodalis glossinidius, belong-
ing to the Enterobacteriaceae family, which has been shown to be
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involved in the fly’s vector competence (Dale and Maudlin, 1999).
Although most of the studies dedicated to insect gut microbiota
focused on the contribution of microbial endosymbionts to the
host’s nutritional homeostasis (Dillon and Dillon, 2004), others
examined the role of gut bacteria in preventing pathogen devel-
opment (Pumpuni et al., 1993, 1996; Welburn and Maudlin, 1999;
Gonzalez-Ceron et al., 2003; Azambuja et al., 2004). Since the try-
panosomes have to complete part of their lifecycle within their
vector, particularly in its gut, the concomitant presence of diverse
bacteria, if any, could affect the parasite’s lifecycle and finally the
fly’s vector competence. Therefore, our knowledge on the compo-
sition of the tsetse fly midgut bacterial flora must be improved to
gain more detailed insight into the potential interactions between
these bacteria and the insect harboring Trypanosoma, and/or even
with the parasite itself.

This article reviews the present knowledge on the fly’s gut-
associated bacteria, other than symbionts, and suggests novel
ways of investigation.

DIVERSITY OF MICROBIOTA IN TSETSE FLIES
While the bacterial flora composition of a few of insects
[Drosophila and several mosquitoes (Pumpuni et al., 1993, 1996;

Broderick and Lemaitre, 2012)] has been investigated for years
and is fairly well documented, the bacterial flora composition
of the tsetse fly has only recently gained attention. Studies on
tsetse flies have been conducted on insectary-reared Glossina pal-
palis gambiensis flies and on flies belonging to several Glossina
species collected in HAT foci in two Africa countries—Angola and
Cameroon (Geiger et al., 2009, 2010, 2011)—and on G. fuscipes
fuscipes flies from Kenya (Lindh and Lehane, 2011) (Figure 1). It
is noteworthy that, using a culture-dependent isolation method
and a similar enrichment procedure throughout the studies, the
former group evidenced differences in the bacterial flora compo-
sition not only with respect to the fly species, but also to their
geographical origin. The approach used included dilution series
(which ranged from 10−6 to 10−10, depending on the study) of
the midgut before bacterial enrichment, in order to ensure the
isolation of microorganisms that have actively multiplied in the
gut and that can therefore be considered as true gut inhabitants;
this process rules out bacteria that are merely transient residents.
The isolated bacteria were then identified using molecular phy-
logeny identification. However, this culture-dependent method
does not allow the identification of non-cultivable bacteria. In
contrast, the group (Lindh and Lehane, 2011) working on flies
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FIGURE 1 | Bacterial species characterized in the midgut of tsetse

flies species from sub-Saharan African countries. According,
respectively, to: (1) Geiger et al. (2010); (2) Geiger et al. (2011); (3)
Geiger et al. (2009); (4) Lindh and Lehane (2011). Bacteria from G. f.

fuscipes: athe species between brackets are the closest relatives
according to RDPII (Maidak et al., 2001); bthe species underlined were
identified with culture-independent methods. No bacteria were identified
in G. caliginea.
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FIGURE 2 | G. palpalis palpalis infections in the Maria Teresa focus in

Angola according to Geiger et al. (2009). (A) Prevalence of infection in
tsetse flies; (B) frequency of occurrence for each infection type. “Multiple”
names indicate the occurrence of a mixed infection.

collected in East Africa used both culture-dependent and culture-
independent approaches that are expected to allow the characteri-
zation of not easily cultivated—or even non-cultivable—bacteria,
but possibly also of bacteria that are simply in transit in the
flies’ gut.

THE BACTERIAL FLORA OF TSETSE FLIES FROM ANGOLA, CAMEROON,
AND KENYA
The fly species collected and studied differed from one country to
another: Glossina palpalis palpalis in Angola, G. p. palpalis, G. pal-
licera, G. nigrofusca, and G. caliginea in Cameroon, and G. fuscipes
fuscipes in Kenya, which allows limited comparisons only between
fly species from different countries (Figure 1). However, one may
note the overall relatively high fly infection rates by bacteria for all
three countries: 54% in Angola, 53% in Cameroon (Figures 2A
and 3A), and 72% in Kenya (42% when discarding the bacteria
isolated from the outer cuticle of the mosquitoes), despite the dif-
ferences observed in the fly species. Similarly, the prevalence of
Gram-negative bacteria was much higher than the Gram-positive
bacteria. Finally, most often an individual fly harbored only
one bacterial species; mixed infections were sometimes observed
whatever the fly species studied (Figures 2B and 3B). However,
the number of bacterial isolates characterized, three per fly, was
low and therefore the prevalence of mixed infection could be
underestimated.

The overall high diversity of bacterial species was also unex-
pected (Figure 1) with respect to (i) the geographic origin of
the flies: 3 bacterial species in flies from Angola, 9 in Cameroon
(Figures 2, 3), 22 in Kenya (+2 identified by the culture-
independent method), and/or (ii) the fly species: 22 (+2 by
molecular approaches) in G. fuscipes fuscipes, 8 in G. p. palpalis,
3 in G. pallicera, 1 in G. nigrofusca, none in G. caliginea. The

number of G. pallicera, G. nigrofusca, and G. caliginea flies col-
lected and analyzed was very low making conclusions about the
number and types of bacterial species in these flies limited at this
time.

Besides these similarities, substantial differences are noted
when comparing the results recorded for different countries; in
fact, the overall bacterial species are assigned to four different
phyla in which they are nevertheless unevenly distributed with
reference to the geographic origin of the flies: Actinobacteria, 4%
in Kenya, 0% in Angola and Cameroon; Proteobacteria: 36% in
Kenya, 66% in Angola, and 44% in Cameroon; Firmicutes: 60%
in Kenya, 33% in Angola and Cameroon, and Bacteroidetes: 0% in
Kenya and Angola, 22% in Cameroon. In addition, when compar-
ing the overall bacteria species identified in the two West African
countries (on G. p. palpalis, G. pallicera, and G. nigrofusca) with
those characterized in Kenya (on G. f. fuscipes), only four species
were found to be common: Enterobacter spp., Providencia spp.,
Pseudomonas spp., and Staphylococcus spp. (Figure 1). However,
differences in bacterial culture conditions (as opposed to dif-
ferences in geographic origin) may account for differences in
bacterial species. Finally, while a large diversity of bacteria was
found in field-collected tsetse flies, only one bacterial species,
a novel one pertaining to the Serratia genus, S. glossinae, was
isolated from insectary-reared fly midguts of G. p. gambiensis,
trapped several years before in Burkina Faso (Geiger et al., 2010)
(Figure 1).

DIFFERENCES IN THE BACTERIAL DIVERSITY IN TSETSE FLIES
COLLECTED IN THREE AREAS BELONGING TO THE SAME HAT FOCUS
In contrast to the substantial differences in the diversity of bacte-
rial gut inhabitants recorded according to the geographic origin
of the flies, it could be expected that such differences would be
much more limited in flies collected in a restricted area. This
was not the case, as shown by the results of an investigation
carried out in three villages (Akak, Campo Beach/Ipono and
Mabiogo) located into the same HAT focus, Campo, in southern
Cameroon.

The flies sampled in Campo belonged to four Glossina
species, G. p. palpalis, G. pallicera, G. caliginea, and G. nigro-
fusca; G. p. palpalis accounted for 94% of the fly community.
Nine bacterial species were isolated and identified from these
sampled flies: Acinetobacter spp., Enterobacter spp., Providencia
spp., Pseudomonas spp., Enterococcus spp., Lactococcus spp., and
Staphylococcus spp., Chryseobacterium spp., and Sphingobacterium
spp.; except for Pseudomonas spp., all of them could be isolated
from G. p. palpalis flies (Figures 1, 3).

The large differences in fly infection rates recorded with ref-
erence to the collecting sites were surprising. In the most rep-
resentative species, G. p. palpalis, 87.5% of the flies collected in
Akak were infected, in contrast to 55.5% of the flies from Campo
Beach/Ipono, and only 20% of those from Mabiogo (Figure 3A).
Furthermore, considering G. p. palpalis, the distribution of the
different bacteria identified was also very uneven with respect
to the origin of the flies. In Mabiogo, the infection rate was the
lowest. Two bacterial species were identified: Chryseobacterium
spp. and Sphingobacterium spp. These bacteria were not identi-
fied in the flies sampled in the two other villages in the performed
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FIGURE 3 | G. palpalis palpalis, G. pallicera and G. nigrofusca fly’

bacterial infections occurring in the different villages (Akak, Campo

Beach/Ipono and Mabiogo) of the Campo focus in Cameroon, according

to Geiger et al. (2011). (A) Prevalence of bacterial infection in the different

tsetse fly species; (B) bacterial infection frequency per fly species and per
village. “n” indicates the number of bacterial infected flies vs. the number of
collected flies. “Multiple” names indicate the occurrence of a mixed
infection.

surveys. Similarly, Enterobacter and Lactococcus spp. infections
were restricted to flies collected in Akak (Geiger et al., 2011), and
finally, four bacteria species were isolated from flies from Campo
Beach/Ipono (Acinetobacter spp., Providencia spp., Enterococcus
spp., and Staphylococcus spp.) (Figure 3B). However, since these
surveys looked at three bacterial isolates per fly, it is possible that
the prevalence of each bacterial species could be underestimated
in the different villages tested.

ORIGIN OF THE GUT BACTERIA AND THEIR DIVERSITY ACCORDING TO
THE FLY SPECIES AND THEIR GEOGRAPHIC LOCATION
The high prevalence and diversity of bacteria in tsetse flies is
unexpected given that these flies are monophagous as they only
feed on vertebrate blood throughout their life span. In wild
populations of mosquitoes, the origin of the midgut bacteria is
unknown (Pumpuni et al., 1996; Straif et al., 1998), as in tsetse
flies. However, differences in the environmental conditions and
in the food supply may influence the diversity of the bacterial
communities harbored. This hypothesis could be acceptable if
one considers that the fly may swallow bacteria present in the
environment, particularly on the skin of the animals on which

it feeds. This possibility cannot be excluded since Poinar et al.
(1979) demonstrated that, when applied to the ears of rabbits
used as tsetse fly-feeding hosts, the bacterium S. marcescens was
ingested during the blood meal and multiplied in the fly’s gut.
Tsetse flies were shown to feed on a variety of hosts (Simo et al.,
2008; Farikou et al., 2010), which probably carry diverse bacte-
ria on their hair and skin, thus implying the possibility of the
flies being infected by these bacteria. Nevertheless, the mechanism
may be more complex since the G. p. palpalis flies collected in the
three villages of the Campo HAT focus differed in their bacterial
inhabitants, even though they developed in similar environmental
conditions.

INVOLVEMENT OF MIDGUT BACTERIA IN THE INSECT
VECTOR COMPETENCE AND ITS SURVIVAL
While investigations on the potential effect of gut microbiota on
tsetse fly vector competence are nearly non-existent, such studies
have been successfully conducted on other insects.

Gonzalez-Ceron et al. (2003) reported that the Plasmodium
vivax sporogonic development in field-collected Anopheles albi-
manus was blocked by bacteria inhabiting the mosquitoes’
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midgut (Gonzalez-Ceron et al., 2003). When feeding laboratory-
reared adult anopheline species with either Gram-negative or
Gram-positive bacteria together with Plasmodium falciparum
gametocytes, it was shown that Gram-negative, but not Gram-
positive, bacteria partially or totally inhibited the formation
of oocysts (Pumpuni et al., 1993, 1996). In contrast, work-
ing on field-collected mosquitoes, Straif et al. (1998) showed
that the presence of Gram-negative bacteria in the midgut did
not influence the number of Anopheles funestus infected with
P. falciparum sporozoites, while Gram-positive bacteria signif-
icantly enhanced the incidence of mosquitoes that contained
sporozoites. Furthermore, feeding mosquitoes with gentam-
icin significantly increased the number of Plasmodium-infected
mosquitoes (Beier et al., 1994). In Anopheles albimanus, co-
infections with S. marcescens and Plasmodium vivax resulted
in only 1% of mosquitoes being infected with parasites, com-
pared to a 71% infection rate in control mosquitoes (Gonzalez-
Ceron et al., 2003). Recently, a significant positive correlation
was observed between P. falciparum infection and the pres-
ence of Enterobacteriaceae in the mosquitoes’ midgut (Boissière
et al., 2012). In sandflies (Phlebotomus papatasi), microbial infec-
tions significantly reduced the rates of infection with Leishmania
major (Schlein et al., 1985). In addition, strains of Pseudomonas
fluorescens (Mercado and Colon-Whitt, 1982), as well as of
S. marcescens (which was isolated from Rhodnius prolixus)
(Azambuja et al., 2004) have been reported to be able to lyse
Trypanosoma cruzi in vitro. All these examples show poten-
tial implication of bacteria isolated from insects in their vector
competence.

Some of the bacterial genera/species that were found in at
least one species of tsetse fly (Geiger et al., 2009, 2011) have
been shown to affect other insects. Stomoxys calcitrans fly larvae
require the presence of Acinetobacter spp. for complete devel-
opment (Lysyk et al., 1999). Conversely, several other bacterial
species including Providencia spp. and Pseudomonas spp. are
close relatives of known insect bacteria (Jackson et al., 1995;
Lacey, 1997). In addition, a number of Gram-negative and Gram-
positive bacteria such as S. marcescens, Providencia rettgeri, and
several Bacillus spp. induce mortality in G. m. morsitans (Kaaya
and Darji, 1989). Furthermore, S. marcescens has been shown
to cause increased mortality in Anopheles albimanus mosquitoes
and in G. pallidipes flies (Poinar et al., 1979; Gonzalez-Ceron
et al., 2003). Other bacteria isolated from field tsetse flies (Geiger
et al., 2009, 2011; Lindh and Lehane, 2011) were assigned to the
genus Lactobacillus, some members of which are reported to be
pathogenic to plants and animals whereas other Lactobacilli are
commonly found as members of human microbiota (Hammes
and Hertel, 2006).

Symbionts have also been implicated in vector competence
and/or tsetse fly survival. Studies from Weiss et al. (2011,
2012) have shown that Wigglesworthia protect against Escherichia
coli infection and promote tsetse immune system development.
Moreover, interactions between Wigglesworthia and the tsetse
peptidoglycan recognition protein (PGRP-LB) may be involved
in trypanosome transmission (Wang et al., 2009). Weiss et al.
(2013) showed that trypanosome infection in the tsetse fly gut
was influenced by microbiota-regulated host immune barriers.

Geiger et al. (2007) showed an association between the presence
of specific genotypes of Sodalis and G. p. gambiensis midgut infec-
tion by Trypanosoma brucei gambiense or Trypanosoma brucei
brucei.

MECHANISMS POTENTIALLY INVOLVED IN THE
MODULATION OF PARASITE INFECTION BY MIDGUT
MICROBIOTA
Several mechanisms may be involved in the modulation of
parasite infection by midgut microbiota. One could be the com-
petition for limited resources or the production of antipara-
sitic molecules by the bacteria inhabiting the vectors’ gut. Toxic
molecules (Figure 4) with potential antiparasitic activity have
been identified. Among them are cytotoxic metalloproteases pro-
duced, for example, by S. marcescens and Pseudomonas aerug-
inosa (Maeda and Morihara, 1995) or hemolysins secreted by
Enterobacter spp., E. coli, S. marcescens, and Enterococcus spp.
(Hertle et al., 1999; Coburn and Gilmore, 2003). Antibiotics can
be produced by Serratia spp.(Thomson et al., 2000); hemagglu-
tinins (Gilboa-Garber, 1972) and siderophore by P. aeruginosa
(Schalk et al., 2002). An antitrypanosomal factor has been shown
to be produced by P. fluorescens (Mercado and Colon-Whitt,
1982). Pigments such as prodigiosin are produced by the Gram-
negative bacteria such as Serratia spp. and Enterobacter spp.
(Moss, 2002). They induce the fragmentation of DNA, charac-
terizing an apoptotic action of the toxin (Díaz-Ruiz et al., 2001;
Montaner and Perez-Tomas, 2003). Prodigiosin was shown to be
toxic for P. falciparum (Lazaro et al., 2002) and T. cruzi (Azambuja
et al., 2004). Free hemoglobin, resulting from the hemolysis of
the blood meal in the digestive tract of vector insects (Azambuja
et al., 2004) has been suggested to be a ready source of iron for
bacteria and would contribute to the massive increase in the gut
bacteria population, following feeding. However, toxic molecules
have not been shown to be constitutively expressed and the pro-
duction of these may even be indirectly correlated with bacterial
density.

Dong et al. (2009) suggested the bacteria-mediated anti-
plasmodium effect was due to the mosquito’s antimicrobial
immune responses, possibly through the activation of basal
immunity. Recently, in Zambia, Enterobacter spp. were isolated
from wild mosquitoes resistant to infection with P. falciparum. It
was suggested the anti-Plasmodium effect was caused by bacterial
generation of reactive oxygen species (Cirimotich et al., 2011).

PERSPECTIVES
It is crucial to investigate whether any of the recently identified
bacteria in tsetse could modulate the fly vector’s competence,
as do the flies’ endosymbionts (Welburn and Maudlin, 1999),
and as has already been reported in other insect parasite vec-
tors (Pumpuni et al., 1993, 1996; Straif et al., 1998; Gonzalez-
Ceron et al., 2003). Such modulation may occur through direct
inhibitory bioactivity, by secreted enzymes or toxins focused on
the parasitic trypanosomes. Alternatively, microbiota may con-
strain pathogen development indirectly by activating or enhanc-
ing the host immune system that in turn could clear the parasite;
this effect was previously reported for Wigglesworthia affecting
PGRP-LB (Wang et al., 2009; Weiss et al., 2013). Investigations
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FIGURE 4 | Possible mechanism involved in the modulation, by the midgut microbiota, of the tsetse fly infection by trypanosomes.

on several insect systems indicate that both direct and indi-
rect microbiota-induced phenotypes occur (Dong et al., 2009;
Cirimotich et al., 2011). Finally, understanding the mechanisms
governing the association between of tsetse flies and the hosted
bacteria, and determining how the association is controlled, are
important issues. These issues could be addressed by moni-
toring the diversity and density of bacteria in flies throughout
their life cycle and by investigating the possible transmission
of these bacteria species by the female fly to its progeny, as
occurs for the maternal transmission of the three Glossina
endosymbionts.

In wild populations, differences in environmental conditions
and in food supply may influence the diversity of the bac-
terial communities harbored by the flies. This could explain
the diversity in the flies’ gut bacterial inhabitants and in fly

infection rates reported in tsetse fly communities from Angola,
Cameroon and Kenya, and therefore point out the need to
multiply and diversify the fly collecting areas. Moreover, a
greater number of samples has to be collected in order to
better assess the occurrence of co-infections and to evidence
the possible involvement of the gut-hosted bacteria in the
tsetse fly.

All these investigations deserve to be undertaken as they may
open novel avenues for tsetse vector competence control through
manipulation of gut microbial communities, which in turn may
result in novel HAT control strategies.
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