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Interferons (IFNs) were discovered over a half-century ago as antiviral factors. The role
of type | IFNs has been studied in the pathogenesis of both acute and chronic microbial
infections. Deregulated type | IFN production results in a damaging cascade of cell death,
inflammation, and immunological host responses that can lead to tissue injury and disease
progression. Here, we summarize the role of type | IFNs in the regulation of cell death and
disease during different microbial infections, ranging from viruses and bacteria to fungal
pathogens. Understanding the specific mechanisms driving type | IFN-mediated cell death
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INTRODUCTION

Interferons (IFNs) are broadly classified into three groups, which
are denoted as type I, II, and III based on the specific recep-
tor utilization for their signal transduction. The type I IFN
family comprises subtypes of IFNa (13 subtypes), IFNB, IFNw,
and IFNe (Pestka et al., 2004; Hertzog and Williams, 2013). All
of the type I IFNs bind to a common heterodimeric receptor,
called the IFNa/f receptor (IFNAR), composed of two chains,
IFNARI and IFNAR2, that are associated with the tyrosine kinases
Tyk2 and Jakl. Activated Tyk2 and Jakl recruit and phospho-
rylate several signal transducer and activator of transcription
(STAT) family members (Figure 1) (Pestka et al., 2004; Platanias,
2005). Activated STAT1 forms a dimer with STAT2, leading to
the recruitment of IRF9 and subsequent formation of a het-
erotrimeric complex called IFN-stimulated gene factor 3 (ISGF3)
(Figure 1). This complex translocates to the nucleus, where it
binds upstream IFN-stimulated response elements (ISRE) and
activates the transcription of type I IFN-inducible genes (Pestka
etal., 2004; Platanias, 2005). Type I IFNs are classically known for
their antiviral immune responses; however, several studies have
demonstrated that a wide range of non-viral pathogens can also
induce their expression. However, the specific mechanisms and
physiological consequences of IFN responses to such pathogens
are poorly understood. Various studies have attributed contrast-
ing roles and differential outcomes to type I IFNs in immune
responses to diverse microbial pathogens. The ability of IFNs to
regulate cell death has been known for a long time and recent
studies have started to reveal the specific mechanisms involved.
During the course of evolution, the arms race between
bacterial pathogens and host organisms has resulted in the

Abbreviations: IFN-I, type I interferon; IFNAR, Interferon-o/B receptor; ISRE,
Interferon stimulated response element; ISGs, Interferon stimulated genes; TLR,
TOLL-like receptor; NLR, NOD-like receptor.

and disease could aid in the development of targeted therapies.
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development of virulence mechanisms by microbes and the recip-
rocal development of host counter strategies to efficiently defend
against them. Cell death has emerged as one of the important
aspects of such a race between microbes and the host, exploited
by both, while the final outcome is dependent on the specific
pathogen and cell types involved. The in depth molecular mech-
anisms of how type I IFN signaling causes differential outcomes
during different microbial infections remains to be established.
Here we discuss the role of type I IFNs in regulating cell death
and disease in various infection models and highlight its emerging
role in inflammasome activation.

INTRACELLULAR BACTERIA

LISTERIA

Listeria monocytogenes (LM), a gram-positive intracellular bac-
terium that grows rapidly inside host cells, is known to potently
induce type I IFN production in mouse (Havell, 1986; O’Riordan
et al., 2002) and human (Reimer et al., 2007) macrophages. LM
causes life-threatening infections in immunocompromised indi-
viduals and may lead to septic abortion in pregnant women
(Pamer, 2004). Upon internalization by phagocytes, LM escapes
the early phagosome by secreting a hemolytic toxin, Listeriolysin
O (LLO) (Portnoy et al., 1988). Listeria mutants that do not
express the LLO toxin fail to escape the phagosome or to
induce IFN-B production. LM-induced type I IFN production
is largely independent of TLR signaling and is instead mediated
by cytoplasmic RLR- and STING-dependent pathways through
the TBK1-IRF3 signaling axis (Ishikawa et al., 2009; Woodward
et al,, 2010). In addition, in vivo studies demonstrated that
Irf3~/~ and Ifnar~/~ mice, which neither make nor respond
to type I IFNs, respectively, are highly resistant to L. monocy-
togenes infection (Auerbuch et al., 2004; Carrero et al., 2004;
O’Connell et al., 2004). Furthermore, priming with poly(l:C), a
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FIGURE 1 | Mechanisms involved in type | IFN production and its receptor
signaling. Several different stimuli including pathogen derived LPS,
glycoproteins, RNA and DNA can induce type | IFNs (IFNa and IFNB) via
upstream pattern recognition receptors. TLRs sense the endosomally located
PAMPs (pathogen associated molecular patterns) and DAMPs (damage
associated molecular patterns) and recruit TRIF (TRL3 and TLR4) or Myd88
(TLR4, 7,8, and 9), which further transfer the signals downstream to IRF3 and
IRF7 RLRs, NLRs, DAI, STING, and related receptors sense nucleic acids in the
cytoplasm. The RNA sensors, RIG-I, MDA-5, and LGP2, and DNA sensor STING

use the adapter protein MAVS (mitochondrial antiviral signaling protein) to
transfer signals to IRFs for type I IFN transcription. RIG-I and MDA-5 also sense
ligands generated by RNA polymerase Il from cytoplasmic DNA PAMPs. All
these pathways utilize the common downstream kinases, TBK1/IKKe for
activating Interferon transcription factors. Type | IFNs bind to IFNAR receptor
and activate a robust transcriptional pathway through a JAK-STAT signaling
pathway. The transcriptional complexes activated by type | IFN signaling bind to
specific ISRE/GAS sequences and lead to the expression of several genes
important for cell death, cell proliferation and immune responses.

well known type I-inducing agent, results in enhanced death rate
in LM-infected WT mice but not in Ifnar~/~ mice (O’Connell
et al., 2004), indicating a detrimental role for type I IFNs dur-
ing Listeria infection. Moreover, LM-infected Ifnar~/~ mice were
shown to have reduced lymphocyte and splenocyte apoptosis
and antibody-dependent neutralization of LLO controlled infec-
tion that resulted in reduced pathology (Auerbuch et al., 2004;
Carrero et al., 2004; O’Connell et al., 2004). However, Rayamajhi
et al. have proposed an alternative mechanism, where type I
IFNs-dependent down-regulation of IFNy receptor results in
heightened susceptibility of wild type mice to Listeria infection
(Rayamajhi et al., 2010).

Listeria is known to trigger assembly of multiple types of
inflammasomes that include Aim2, Nlrc4, and Nlrp3 for caspase-
1 activation in mouse macrophages. During Listeria infection,
type I IFNs have significant roles in regulation of inflamma-
some activation and pyroptosis (Henry et al., 2007; Kim et al.,
2010; Rathinam et al., 2010; Wu et al., 2010). A few studies have

attempted to dissect the relative contributions of each of these
inflammasomes and demonstrated that the detection of DNA by
AIM2 receptor was indispensable for inflammasome activation
and pyroptosis during Listeria infection in human PBMCs and
mouse macrophages (Kim et al., 2010; Rathinam et al., 2010;
Sauer et al., 2010). In addition, Sauer et al. demonstrated that
pyroptosis was totally dependent on Aim2, while the Nlrp3 and
Nlrc4 inflammasomes were dispensable for this process (Sauer
et al., 2010). These reports implicate that type I IFNs play a
role in the efficient induction of inflammasome activation and
pyroptosis.

LEGIONELLA

Legionella pneumophila is an intracellular, gram-negative bacte-
rial pathogen that replicates in host macrophages and causes a
severe pneumonia called Legionnaires’ disease. Lipmann et al.
reported that L. pneumophila-infected mouse macrophages pro-
duce IFNB in a STING- and IRF3-dependent manner (Stetson
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and Medzhitov, 2006a; Lippmann et al, 2011). By contrast,
Monroe et al. have demonstrated that L. pneumophila RNA also
stimulated a Rig-I-dependent IFN response and proposed that
L. pneumophila RNA, or host RNA, rather than L. pneumophila
DNA, as the primary ligand that stimulates the host IFN response
(Monroe et al., 2009). IFN-af inhibits L. pneumophila replica-
tion in the permissive A/J or CD1 mouse macrophages (Schiavoni
et al., 2004). Furthermore, Bastian et al. have reported that
Legionella is controlled by IFNB induced in human lung epithe-
lial cells via MAVS and IRF3 (Opitz et al., 2006). Dendritic cells
(DCs) and macrophages are capable of restricting L. pneumophila
growth through NAIP5-dependent caspase-1 activation and cell
death. However, DCs were shown to undergo a more rapid
apoptosis than macrophages, leading to enhanced restriction of
Legionella growth (Nogueira et al., 2009). Indeed, eliminating
the pro-apoptotic proteins BAX and BAK or over-expressing the
anti-apoptotic protein BCL-2 were both found to restore L. pneu-
mophila replication in DCs (Nogueira et al., 2009). Furthermore,
a sub-population of DCs, plasmacytoid DCs (pDCs) is known
to express higher levels of IFNs (Liu, 2005), which can poten-
tially contribute to the higher cell death responses to Legionella.
How Legionella-induced type I IFN promotes cell death is not well
understood currently, however, one possible mechanism might
be that Type I IFN-dependent up regulation of pro-cell death
molecules like BAK and TRAIL can potentiate apoptosis (Fuertes
Marraco et al., 2011; Cohen and Prince, 2013).

MYCOBACTERIUM

Mycobacterium spp. are pathogenic intracellular bacteria that
cause tuberculosis (TB) and leprosy. Human and mouse myeloid
cells secrete type I IFNs in response to mycobacterial infec-
tions (Pandey et al., 2009; Berry et al., 2010; Novikov et al.,
2011). Blood based profiling has identified type I IFN-induced
genes as the most striking characteristic signature of active TB
(Berry et al., 2010). In addition, Wu et al. have reported that
several TB-induced genes have key transcription factor bind-
ing sites for STATs, IRF-1, IRF-7, and OCT-1 (Wu et al., 2012).
IFN-B and its downstream genes, including interleukin-10 (IL-
10), were induced in monocytes by M. leprae in vitro and
were preferentially expressed in progressive lepromatous lesions
(Teles et al., 2013). Manca et al. have reported that type I
IFNs enhance the virulence of M. tuberculosis by suppression
of Thl type immune responses. They have also shown that
treatment with purified IFN-a/f increases lung bacterial loads,
resulting in reduced survival in mice (Manca et al., 2001). In
addition, another study reported that treatment with exogenous
type I IFN results in a striking loss of mycobacteriostatic activ-
ity in monocytes and macrophages (Bouchonnet et al., 2002).
Furthermore, Mayer-Barber et al. have shown that both IL-1a
and IL-1B are critical for host resistance to TB and provided
evidence that type I IFNs suppressed IL-1 production (Mayer-
Barber et al.,, 2011). However, early clinical studies suggested
that type I IFNs have beneficial effects against pulmonary TB
(Giosue et al., 1998; Palmero et al., 1999). Together, these studies
indicate that the role of type I IFNs in mycobacterial infections
is debatable and requires further research to establish a clear
consensus.

FRANCISELLA

Francisella tularensis is a gram-negative bacterium and causes
tularemia. F tularensis is classified as a Class A agent (having
a high potential for use as a bioweapon) by United States reg-
ulators, due to its high virulence and ability to spread rapidly.
Cytosolic recognition of Francisella induces type I IFN pro-
duction in an IRF3-dependent manner (Henry et al., 2007).
Francisella induces Aim2 inflammasome-dependent pyroptosis,
which further depends on the ability of the bacterium to induce
type I IEN production (Henry et al., 2007; Fernandes-Alnemri
et al., 2010). Consistent with this, Francisella-induced Aim2
inflammasome activation and IL-1f secretion are abrogated in
macrophages derived from bone marrow of Irf3- and Ifnar-
deficient mice (Fernandes-Alnemri et al., 2010; Jones et al., 2010;
Rathinam et al., 2010). Wild-type Francisella that can escape into
the cytosol induces type I IFN and Aim2 inflammasome activa-
tion and host cell death (Mariathasan et al., 2005; Henry et al,,
2007; Jones et al., 2010). This observation underscores the impor-
tance of cytosolic recognition of bacteria or their components
(DNA in the case of Francisella) as an important innate immune
mechanism to trigger inflammasome activation. Although studies
in mice certainly support an important role for Aim2 in immune
responses to Francisella, its role in human monocytes seems to be
less prominent due to its lack of expression and/or induction in
response to type I IFNs (Gavrilin and Wewers, 2011).

SALMONELLA

Salmonella enterica serovar Typhimurium (S. Typhimurium) is
a gram-negative, intracellular pathogen that is quickly cleared
by macrophages. This pathogen is a leading cause of acute gas-
troenteritis worldwide, which is transmitted primarily via the
consumption of contaminated food or water. Induction of rapid
cell death is a virulence strategy for this pathogen and con-
tributes to dampening host innate immune responses (Lindgren
et al., 1996). Robinson et al. have reported that Salmonella
exploits type I IFN signaling for eliminating macrophages to
establish infection (Robinson et al., 2012). Their studies also
revealed that type I IFN-induced cell death of the macrophages
is mediated by the classical RIP1-RIP3 dependent necropto-
sis pathway (Robinson et al., 2012). Salmonella is detected by
NLRP3 and NLRC4 inflammasomes resulting in casapse-1 acti-
vation and pyroptosis (Franchi et al., 2006; Miao et al., 2006;
Broz et al., 2010). Broz et al. have suggested the existence of an
IFN-inducible regulator of caspase-11 that is crucial for activa-
tion of non-canonical Nlrp3 inflammasome activation in mutant
Salmonella- [type 3 secretion system mutant, i.e., Salmonella
pathogenicity island 1(SPI-1)] infected mouse macrophages
(Broz et al, 2012). Their study revealed that Salmonella
induces expression and activation of caspase-11 through a Toll-
like receptor 4 (TLR4)-dependent and TIR-domain containing
adaptor-inducing IFN-B (TRIF)-mediated IFNP signaling path-
way. Consistent with this, Ifnarl™/~ or Irf3~/~, or Stat-17/~
macrophages infected with mutant Salmonella did not process
the casapase-11 or activate the non-canonical cell death path-
way. Furthermore, in vivo Caspl~/~ mice are more susceptible
to Salmonella infection than the Caspl™/~ CasplI~/~ mice
(Broz et al., 2012). Thus, these results indicate that caspase-11
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mediated cell death results in detrimental effects to the host.
Together, it is evident that Salmonella exploits type I IFN sig-
naling to rapidly kill the immune cells to cause disease in
the host.

EXTRACELLULAR BACTERIA

STAPHYLOCOCCUS

Staphylococcal infections have recently emerged as a significant
problem to human health, due to the emergence of antibiotic
resistant strains that cause life-threatening infections, especially
in post-influenza exposures (Klevens et al., 2007; Martin et al.,
2009; David and Daum, 2010). S. aureus infected mouse and
human epithelial cells produce type I IFN in a STAT3-dependent
manner in response to its virulent protein A (Martin et al,
2009). In mouse myeloid DCs and macrophages, TLR9 and IRF1
have important roles (Schmitz et al., 2007), while the cell wall
component lipoteichoic acid (LTA) utilizes the IRF1-STAT1 axis
in mouse macrophages to induce type I IFNs (Liljeroos et al,
2008). Absence of IFNAR signaling results in protection against
lethal S. aureus pneumonia infection compared to wild-type
control mice (Martin et al., 2009). Following recognition of S.
aureus a-hemolysin, mouse macrophages undergo pyroptosis in
an NIrp3 inflammasome-dependent manner (Mariathasan et al.,
2006; Craven et al., 2009). In contrast to Martin et al., a recent
report demonstrated that IFNa induces phospholipid scramblase
1 (PLSCR1) in human lung epithelial cells as part of an innate
protective mechanism to a bacterial pore-forming toxin (Lizak
and Yarovinsky, 2012) and another study demonstrated a protec-
tive role of CpG DNA (a potent inducer of type I IFN production)
in a mouse model of S. aureus pneumonia (Roquilly et al., 2010).
Furthermore, Kaplan et al. have shown that phagosomal degra-
dation and cytosolic release of intracellular ligands are essential
for the induction of IFN-f in mouse and human DCs, which
is required for the host defense against S. aureus during cuta-
neous infection in mice (Kaplan et al.,, 2012). Taken together,
these reports suggest that type I IFNs can have both protective
and detrimental roles during S. aureus infection. The disease out-
come is variable and may depend on the immune status of the
host, the site of infection and the specific strains causing the
infection.

STREPTOCOCCUS

S. pneumonia causes acute lung infections and activates type I IFN
expression (Joyce et al., 2009; Parker et al., 2011). DAI (DNA-
dependent activator of IFN-regulatory factors) dependent recog-
nition of bacterial DNA is proposed to be responsible for inducing
type I IFN expression through cytoplasmic DNA sensing pathway
involving STING, TBK1 and IRF3-dependent signaling pathways
(Parker et al., 2011). Type I IFN treatment enhances protection
of mice against S. pneumoniae (Weigent et al., 1986). However,
prior exposure to influenza A virus leads to increased suscepti-
bility to bacterial infections in a type I IFN-dependent manner
(Morens et al., 2008; Shahangian et al., 2009). As opposed to bac-
terial infection alone, type I IFNs produced during secondary
infection with S. prneumonia inhibits production of chemokines
like CXCL1 and CXCL2 and sensitizes hosts to secondary bacterial
pneumonia (Shahangian et al., 2009).

PSEUDOMONAS

Pseudomonas aeruginosa is a causative agent of pneumonia and
infection in cystic fibrosis (CF) patients is associated with signif-
icant mortality (Zhuo et al., 2008). P. aeruginosa induces type I
IEN expression predominantly through the TLR4-TRIF-IRF3 axis
(Parker et al., 2012). TLR4 signaling was shown to be important
for clearance of P. aeruginosa from the lungs and preventing sep-
sis in infected hosts (Faure et al., 2004; Ramphal et al., 2005;
Skerrett et al.,, 2007; Cohen and Prince, 2013). Similarly, Trif
and Irf3 deficiencies in mice resulted in reduced expression of
type I IFN-induced chemokines including CXCL10 (IP-10) and
CCL5 (RANTES) and abrogated neutrophil recruitment to the
lungs leading to impaired bacterial clearance (Power et al., 2007;
Carrigan et al., 2010). These results indicate a protective role for
type I IFNs during P. aeruginosa infection (Roy et al., 2013). P.
aeruginosa infection of mouse macrophages activates the Nlrc4
inflammasome and induces pyroptosis in a flagellin independent
manner (Sutterwala et al., 2007). However, later studies demon-
strated a requirement of cytosolic flagellin for Nlrc4 inflamma-
some activation (Miao et al., 2008; Arlehamn and Evans, 2011).
Bacterial expression of specific adhesins, lipopolysaccharide, and
a functional type III secretion system were all shown to be neces-
sary to evoke apoptosis (Sutterwala et al., 2007) and the cytotoxin,
ExoU-expressing P. aeruginosa strain has been shown to inhibit
caspase-1 dependent pyroptosis (Sutterwala et al., 2007).

ANTHRAX

Bacillus anthracis is a gram-positive, aerobic bacterium that
causes severe pulmonary, gastrointestinal, and cutaneous infec-
tions (Dixon et al., 1999). Production of the lethal toxin (LeTx)
by this bacterium causes extensive cell death, tissue damage and
systemic disease. LeTx is composed of a protective antigen (PA)
and lethal factor (LF). Gold et al. found that endogenous IFNs
(type I and II) inhibit the germination of B. anthracis spores, but
exogenous application enhanced inflammation thereby increas-
ing mortality (Gold et al., 2007). In addition, Walberg et al.
showed that recombinant murine IFNP or type I IFN induc-
ers like poly(I:C) provide marked protection against “Inhalation
Anthrax” (Walberg et al., 2008). B. anthracis LeTxs activate the
Nlrplb inflammasome and pyroptosis in mice (Boyden and
Dietrich, 2006; Bergsbaken et al., 2009). It is recognized that
macrophages from inbred mice may or may not be sensitive to
B. anthracis-induced pyroptosis based on the presence of the
Nlrplb inflammasome responsive Nlrp1bS/S or non-responsive
NIrpIbR/R alleles (Moayeri et al., 2010; Terra et al., 2010). In this
case, pyroptosis of macrophages is believed to counter anthrax
infection since IL-1p released during this process helps to gener-
ate protective neutrophil responses. It will be essential to study
the contribution of type I IFN in pyroptosis induction dur-
ing B. anthracis infection and investigate whether type I IFN
can promote apoptosis of neutrophils and initiate other possible
detrimental effects.

VIRUSES

IFNs were originally discovered as antiviral molecules. Viruses are
considerably smaller than other microbial pathogens but repre-
sent a major threat to human and other animal health. Extensive
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progress has been made in understanding the mechanisms of type
I IFN production in response to viruses (Stetson and Medzhitov,
2006b; Gonzalez-Navajas et al., 2012; MacMicking, 2012). The
diverse mechanisms of cellular entry and tropism of viruses are
detected by different TLRs that are strategically located in differ-
ent cellular compartments (Figure 1). Endosomally-located PRRs
including TLR3, 7, 8, and 9 are known to trigger type I IFNs
(Figure 1). TLR7 and TLR9 have particularly important roles in
plasmacytoid DCs. Once the virus enters the host cytoplasm, sev-
eral cytoplasmic receptors such as RIG-I-like receptors (RLRs
RIG-I, MDA5 and LGP2) and NOD-like receptors (NODI1 and
NOD2) monitor the cytoplasm for microbial PAMPs and ini-
tiate type I IFN production and associated immune responses
(Figure 1).

Programmed cell death is a critical host defense against viruses
and type I IFNs are known to be involved to this process. Multiple
viruses have been discovered to encode proteins that func-
tion to subvert host-induced cell death during infection (Bowie
and Unterholzner, 2008; Galluzzi et al., 2010; Kaminskyy and
Zhivotovsky, 2010; Gregory et al., 2011). Death of the infected
cells is detrimental to viral replication and amplification of viral
progeny. However, death of the infected cells can also facilitate
viral egress and enhance pathogenesis. Therefore, different viruses
have evolved complex mechanisms to enhance or inhibit dif-
ferent forms of cell death (Kaminskyy and Zhivotovsky, 2010).
Microarray based studies revealed that a large number of genes are
regulated by type I IFNs and several of them are involved in cell
death (Der et al., 1998; de Veer et al., 2001; Hertzog and Williams,
2013; Rusinova et al., 2013). However, the mechanisms driving
cell death that involve proteins encoded by many of these genes
are still awaited.

Uncontrolled chronic viral infections can result in sustained
expression of type I IFNs with detrimental pathophysiological
outcomes. Two recent studies reported the role of type I IFNs
in viral persistence during lymphocytic choriomeningitis virus
(LCMV) infection (Teijaro et al., 2013; Wilson et al., 2013).
Results from these reports show that robust and acute type I IFNs
secreted during early in the infection serve to control viral repli-
cation and spread by promoting apoptosis of infected cells and
enhancing T cell activation. During chronic infection, prolonged
expression and exposure to type I IFNs leads to lymphocyte
exhaustion, and reduced viral clearance due to the presence of
increased immunosuppressive molecules like IL-10 and PD-L1.
Loss of circulating pDCs has been documented in chronic viral
infections in mice and humans, which correlates with uncon-
trolled viral loads, reduced T cell counts and onset of opportunis-
tic infections (Swiecki et al., 2011). However, the mechanism of
type I IFN-dependent pDC apoptosis is not entirely clear and
represents an important subject for future research.

Type I IFNs promote cell death in multiple ways. Balachandran
et al. have demonstrated that type I IFN and protein kinase
R (PKR) can sensitize cells to apoptosis primarily through
the FADD/caspase-8 pathway (Balachandran et al., 2000). In
this study, stimulation of mouse cells with IFN-o/f resulted
in enhanced apoptosis and reduced viral replication. In a fol-
low up study, Ezelle et al. showed that the poxvirus-encoded
protein CrmA was able to inhibit both viral infection- and

dsRNA-mediated apoptosis (Ezelle et al., 2001). Both HSV and
vaccinia virus affect PKR and RNase L-mediated apoptosis path-
ways that are activated by dsRNA products released during viral
replication (Der et al., 1997; Diaz-Guerra et al.,, 1997; Kibler
et al., 1997). Influenza viruses cause severe lung pathology lead-
ing to lung failure and mortality. Type I IFNs have been rec-
ognized to mediate induction of pro-apoptotic TRAIL leading
to excessive cell death and tissue injury (Hogner et al., 2013).
Infection or treatment with type I IFN induces pro-apoptotic
genes; IFN-stimulated gene 54 (ISG54) or IFN-induced gene with
tetratricopeptide repeats 2 (IFIT2) that promotes apoptosis by
mitochondrial-associated BCL2 family proteins (Reich, 2013).

FUNGI

While type I IFNs are widely known as anti-viral factors, which
are either protective or detrimental in bacterial infections, their
role in fungal infections is poorly defined. Recently, two reports
have shown that Candida spp. induce IFN-B in mouse bone
marrow-derived DCs (BMDCs) and macrophages (Biondo et al.,
2008, 2012; Bourgeois et al., 2011). Different forms of fungal glu-
cans and mannans are sensed by a wide range of innate pattern
receptors like TLRs, CLRs, dectins, and mannose receptors and
initiate MyD88-mediated NF-kB and MAPK pathways or SYK-
CARD? signaling for cytokine induction and cell death (Netea
et al., 2008; Brown, 2011). During fungal infections, type I IFNs
are also produced by a TLR-independent pathway requiring RNA
sensor MAVS and IRF3 (Inglis et al., 2010). In contrast, Del
Fresno et al. have recently reported that Candida albicans induces
type I IFN in DCs through a DECTIN-1, SYK-, and CARD9-
dependent pathway that requires IRF5-mediated transcription
but not IRF3 or IRF7 (Del Fresno et al., 2013). Jensen et al. have
reported that poly(I:C)-induced or exogenously added IFNa and
IFNB treatments of macrophages suppress anti-Candida immune
responses and cause death of infected mice (Worthington and
Hasenclever, 1972; Jensen et al., 1992; Jensen and Balish, 1993). In
addition, Ifnar~/~ mice are extremely resistant to otherwise lethal
Candida and Histoplasma infections (Inglis et al., 2010; Majer
et al., 2012). These studies demonstrated that type I IFNs induce
severe kidney damage by promoting excessive recruitment and
activation of inflammatory monocytes and neutrophils. However,
other reports suggest that type I IFN can be beneficial as part of
the host immune response to C. albicans (Biondo et al., 2011; Del
Fresno et al., 2013).

ROLE OF INTERFERONS IN INFLAMMASOME ACTIVATION
AND PYROPTOSIS

Type I IFNs are innate immune effector molecules with strong
pro-inflammatory activities, and have been shown to con-
tribute to the high mortality rates in septic shock syndromes
(Karaghiosoff et al., 2003; Huys et al., 2009). Type I IFNs also con-
tribute to inflammasome-dependent caspase-1 activation leading
to pro-inflammatory pyroptotic cell death (Figure2) (Anand
et al., 2011; Franchi et al., 2012). There have been multiple dif-
ferent inflammasomes identified that sense a diverse array of
microbial- and damage-associated PAMPs. These include the
Naip-Nlrc4 inflammasome (Mariathasan et al., 2004; Kofoed
and Vance, 2011; Zhao et al., 2011), the Nlrp1b inflammasome
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inflammasome in response to enteropathogenic bacteria, such as Citrobacter
rodentium and Escherichia coli. Second, they prime the expression of
inflammasome-forming NLRP3, RIG-I and AIM2 molecules for potentiating
inflammasome activation.

(Boyden and Dietrich, 2006; Masters et al., 2012), the Nlrp3
inflammasome (Kanneganti et al., 2006b; Mariathasan et al.,
2006; Sutterwala et al., 2006; Anand et al., 2011), the Nlrp6
inflammasome (Elinav et al., 2011), the Nlrp12 inflammasome
(Vladimer et al., 2012), the Aim2 inflammasome (Fernandes-
Alnemri et al., 2010; Jones et al., 2010; Rathinam et al., 2010;
Sauer et al., 2010), the RIG-I inflammasome (Poeck et al., 2010;
Pothlichet et al., 2013), and the IFI16 inflammasome (Kerur
etal, 2011). Inflammasome-dependent casapase-1 activation and
pyroptosis are associated with the production of mature IL-1p
and IL-18 cytokines, which generates a pro-inflammatory envi-
ronment in host tissues (Figure2). Inflammasome-dependent
pyroptosis shares features of both apoptosis and necrosis and is
tightly regulated by distinct signaling pathways.

NLRP3

NLRP3 is the most widely studied inflammasome and it requires
two signals for its assembly into an active complex (Kanneganti,
2010; Anand et al, 2011). The first signal is TLR-dependent
expression of NLRP3, while the second is often a damage related
factor such as production of reactive oxygen species (ROS) or
membrane damage (Anand et al., 2011). Activated TLRs transfer
signals through two major adapters that specify the downstream
signaling pathways (Takeuchi and Akira, 2010). The first one,
MyD88 is required for NF-kB activation downstream of all TLRs

except TLR3. The second, TRIF plays a dominant role in TLR3-
dependent NF-kB activation and TLR4-mediated IRF signaling
(Fitzgerald et al., 2003a,b; Sato et al., 2003; Yamamoto et al.,
2003).

Recently, our lab and other groups have shown that the
TLR4-TRIF axis regulates caspase-11 expression and non-
canonical Nlrp3 inflammasome-mediated host defense against
enteropathogens, Escherichia coli (EHEC), Citrobacter rodentium,
and Salmonella Typhimurium (Kayagaki et al., 2011; Broz et al.,
2012; Gurung et al., 2012; Rathinam et al., 2012). Consistent
with this, Sander et al. have reported that the gram-negative
bacterium E. coli induces IFN-B and activates the Nlrp3 inflam-
masome in the absence of virulence factors other than micro-
bial mRNA (Sander et al., 2011). In addition, Rathinam et al.
demonstrated that the IRF3-type I IEN-IFNAR-STAT-1 signaling
pathway is indispensable for caspase-11 expression and acti-
vation of the Nlrp3 inflammasome and pyroptosis (Rathinam
et al., 2012). Furthermore, they demonstrated that IFNf treat-
ment significantly increased pro-caspase-11 expression and that
once induced, caspase-11 undergoes spontaneous activation. Broz
et al. have observed that IFNAR-STAT-1 axis is important for
caspase-11 activation, but not for its expression in Salmonella
infected macrophages (Broz et al., 2012). In a subsequent review,
they speculated that type I IFN-dependent expression of a yet-
unidentified host molecule may trigger caspase-11 activation or
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that a unknown bacterial signal is required (Broz and Monack,
2013).

Two recent studies have revealed that several gram-negative
bacteria, but not gram-positive bacteria, can activate the non-
canonical Nlrp3 inflammasome and identified LPS as their com-
mon PAMP responsible for the activation of Caspase-11 (Hagar
et al., 2013; Kayagaki et al., 2013). Both of these studies have
shown that intracellular LPS is sufficient to induce the activation
of caspase-11. Furthermore, these studies revealed that a sub-
component of LPS, lipid A is sufficient to activate the casaspe-11-
dependent non-canonical Nlrp3 inflammasome. They presented
evidence that when transfected, intracellular LPS or lipid A could
activate the non-canonical Nlrp3 inflammasome independent of
TLR4 or the TLR4-associated lipid A-binding proteins MD1 and
MD?2 and even the TLR4 downstream signaling molecules TRIF
and IFNAR receptor molecules. In contrast, a study by Guarda
et al. reported that type I IFNs suppress Nlrpl and Nlrp3 inflam-
masomes in a STAT1-dependent manner (Guarda et al., 2011).
Further studies are required to clarify the role of type I IFNs and
their precise mechanisms in the regulation of inflammasome acti-
vation. Of particular importance is that the intracellular sensor of
lipid A is yet to be identified.

Together, regardless of the exact mechanisms, type I IFNs have
clearly emerged as crucial regulators of inflammasome activation
and pyroptosis (Figure 2). Physiologically, caspase-11 triggered
pyroptosis is required for surveillance against bacteria that enter
the cytosol, such as the sifA mutant of S. Typhimurium, an
sdhA mutant of Legionella pneumophila and Burkholderia species
(Aachoui et al., 2013). However, type I IFNs are known to be
exploited by microbial pathogens to induce the death of immune
cells and suppress host immune responses. In support of this,
caspase-11-mediated cell death is responsible for pathology and
detrimental effects in vivo (Wang et al., 1998; Kayagaki et al.,
2011). For example, Broz et al. showed that wild type Salmonella
induces caspase-11-mediated cell death in caspase-1-deficient
mouse macrophages, and that caspase-11 increases the bacterial
virulence and host cell susceptibility to infection (Broz et al.,
2012). In addition, Salmonella also exploits type I IFN signaling to
induce the RIP1-RIP3-dependent necroptotic cell death pathway
to kill macrophages (Lindgren et al., 1996; Robinson et al., 2012).

RIG-1 AND NLRP3

Viruses are by far the best-known inducers of type I [FNs and have
also been recognized to induce activation of distinct inflamma-
somes, including those comprised of NLRP3, AIM2, and RIG-1.
The first evidence of Nlrp3 inflammasome involvement in antivi-
ral responses showed its role in sensing of both viral RNA and
its analog poly(I:C) in mouse macrophages (Kanneganti et al.,
2006a,b). In vivo, Nlrp3 inflammasome activation protected mice
from influenza infection (Allen et al., 2009; Thomas et al., 2009).
Poeck et al. have reported that Rig-I from mouse macrophages
senses cytoplasmic RNA viruses and assembles an inflamma-
some (Poeck et al., 2010). More recently, RIG-1 was reported
to induce type I IFN through a MAVS/TRIM25/RNF135 signal-
ing axis following influenza infection, and was shown to have
profound effects on NLRP3 inflammasome activation and IL-
1B secretion in human lung epithelial cells (Pothlichet et al.,
2013). Together, these studies demonstrate that RIG-I can itself

assemble an inflammasome and also contributes toward, type I
IFN-dependent potentiation of NLRP3 expression (Figure 2).

AIM2

The cytosolic bacteria Francisella novicida and Listeria both
induce killing of myeloid and lymphoid cells in a manner depen-
dent on Type I IEN signaling, an effect which has been shown to
be detrimental to the host (Auerbuch et al., 2004; Carrero et al.,
2004; O’Connell et al., 2004; Henry et al., 2007). Several pub-
lished studies have clearly established that both Listeria (Henry
et al., 2007; Warren et al., 2008; Kim et al., 2010; Tsuchiya et al,,
2010; Wu et al., 2010) and Francisella (Henry and Monack, 2007;
Fernandes-Alnemri et al., 2010; Jones et al., 2010; Rathinam et al.,
2010) activate the Aim2 inflammasome and pyroptosis in mouse
macrophages. Type I IFNs prime AIM?2 expression (Kotredes and
Gamero, 2013) and potentiate cytosolic bacterial DNA recog-
nition for inflammasome activation (Fernandes-Alnemri et al.,
2010). Although mice studies show that type I IFN dependent
caspase-11 expression is important for the activation of the non-
canonical Nlrp3 inflammasome (Kayagaki et al., 2011; Gurung
et al.,, 2012; Rathinam et al., 2012), it is not known if it is also
required for AIM2 and RIG-I mediated caspase-1 activation or
cell death.

CONCLUSIONS

IFNs were the first cytokines discovered to have immune regula-
tory capacity. Despite their clinical application in some treatment
regimens, we still do not have a complete understanding of the
mechanistic effects of IFNs required to further develop treat-
ments that capitalize their full potential therapeutic effects. A vast
amount of past research has been focused on the role of IFNs as
anti-viral molecules with a limited number of studies for other
microbial infections. Recent studies have clearly indicated a dual
role for type I IFNs both in infectious and inflammatory diseases.
Despite the potential benefits, it is often challenging to manip-
ulate type I IFNs for therapeutic purposes due to their role in
regulating the expression and activation of a huge number of
downstream genes, often complicating the conclusions. Part of
the problem is that types I IFNs exert differential immunomod-
ulation on diverse cell types, environments, and varying physi-
ological conditions. The pathogen- and host-mediated counter
regulatory pathways further complicate IFN-induced responses in
cell death and disease.

Recently, type I IFNs were recognized as crucial regulators
of non-canonical NLRP3 inflammasome activation and pyrop-
tosis. Although the majority of literature indicates a positive
role for inflammasomes in anti-microbial host defense, recent
reports indicate detrimental effects due to excessive cell death,
inflammation, and collateral tissue damage in vital organs (Lupfer
and Kanneganti, 2012). A paradox exists, where inflammasomes
intended to defend against cytoplasmic invaders by pyroptosis,
which is predominantly protective in vitro, however in in vivo,
if exceeds a certain level, can lead to cell and tissue damage and
organ failure resulting in negative outcomes. The paradox for
type-I IFNs is that their ability to inhibit microbial spread by
inducing cell death is counteracted by apoptotic depletion of
immune cells and inhibiting anti-microbial immune responses
leading to immune suppression. Future research should explore
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the detailed molecular mechanisms that are responsible for type
I IFN-dependent cell death and inflammasomes activation in
the context of immunity and immunopathology. These find-
ings may lead to better-targeted therapeutic interventions to treat
inflammatory and infectious diseases.
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