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Inflammasome-mediated cell death in response to bacterial
pathogens that access the host cell cytosol: lessons from
Legionella pneumophila
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Edited by: Cell death can be critical for host defense against intracellular pathogens because
it eliminates a crucial replicative niche, and pro-inflammatory cell death can alert
neighboring cells to the presence of pathogenic organisms and enhance downstream
immune responses. Pyroptosis is a pro-inflammatory form of cell death triggered by
the inflammasome, a multi-protein complex that assembles in the cytosol to activate
caspase-1. Inflammasome activation by pathogens hinges upon violation of the host
cell cytosol by activities such as the use of pore-forming toxins, the use of specialized
secretion systems, or the cytosolic presence of the pathogen itself. Recently, a
non-canonical inflammasome has been described that activates caspase-11 and also leads
to pro-inflammatory cell death. Caspase-11 is activated rapidly and robustly in response
to violation of the cytosol by bacterial pathogens as well. In this mini-review, we describe
the canonical and non-canonical inflammasome pathways that are critical for host defense
against a model intracellular bacterial pathogen that accesses the host cytosol—Legionella
pneumophila.
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INTRODUCTION
Cell death is an important innate immune effector mechanism to
aid in clearance of intracellular pathogens, as it can eliminate a
pathogen’s replicative niche. Additionally, pro-inflammatory cell
death can be critical for alerting neighboring cells to the pres-
ence of invading pathogens (Kono and Rock, 2008; Bergsbaken
et al., 2009). The pro-inflammatory form of cell death known
as pyroptosis is critical both for clearance of bacterial pathogens
and for release of important proinflammatory cytokines in vivo
(Fink and Cookson, 2005; Miao et al., 2010a). Pyroptosis is initi-
ated in response to violation of the host cell cytosol by pathogenic
microbes (Lamkanfi and Dixit, 2009). Violation of the cytosol can
occur either by access via bacterial secretion systems, such as type
IV (T4SS) or type III (T3SS) secretion systems, or by physical
entry of a pathogen into the cytosol. Here, we discuss how cells
induce proinflammatory cell death in response to microbes gain-
ing cytosolic access by using Legionella pneumophila as a model
intracellular pathogen.

NOD-LIKE RECEPTORS RESPOND TO CYTOSOLIC ACCESS BY
PATHOGENS
Pattern recognition receptors (PRRs) are critical initiators of
host defense against invading microorganisms (Janeway and
Medzhitov, 2002; Medzhitov, 2007). Surface and endosomally-
associated PRRs, such as Toll-like receptors (TLRs), recognize
pathogen-associated molecular patterns found in the extracel-
lular space (Janeway and Medzhitov, 2002). However, many
pathogenic organisms have mechanisms for accessing the host
cytosol. Thus, many cells encode cytosolic PRRs, such as

nucleotide-binding oligomerization domain (NOD)-like recep-
tors (NLRs) (Harton et al., 2002), which act as guardians of
cytosolic sanctity (Lamkanfi and Dixit, 2009). NLRs respond
to “patterns of pathogenesis,” such as membrane disruption,
delivery of bacterial molecules into the host cytosol via spe-
cialized secretion systems, or pore-forming toxins, by activat-
ing the inflammasome (Fritz et al., 2006; Lamkanfi and Dixit,
2009; Vance et al., 2009; Davis et al., 2011; Franchi et al.,
2012).

CASPASE-1-DEPENDENT INFLAMMASOMES
The canonical inflammasome is a multi-protein complex that
assembles in the cytosol to activate the enzyme caspase-1,
also known as interleukin-1β (IL-1β)-converting enzyme (ICE)
(Martinon et al., 2002). Caspase-1 regulates secretion of IL-1 fam-
ily cytokines and a pro-inflammatory form of cell death termed
pyroptosis (Rathinam et al., 2012a). Caspase-1 processes IL-1β

and IL-18 into their mature forms and aids in their secretion
(Howard et al., 1991; Thornberry et al., 1992; Ghayur et al.,
1997; Gu et al., 1997). Caspase-1 does not cleave IL-1α, though
it can aid in IL-1α secretion as well (Keller et al., 2008). IL-
1 family cytokines act in vivo to enhance immune responses
against invading microorganisms (Labow et al., 1997; Bohn et al.,
1998; Dinarello, 2009). Additionally, caspase-1-mediated pyrop-
tosis enhances clearance of bacterial pathogens in vivo (Miao
et al., 2010a).

NLRs respond to different stimuli when activating the inflam-
masome. Few NLRs have been shown to bind directly to their
implicated substrates, and some are activated by a wide variety
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of stimuli. For example, NLRP3 responds to stimuli ranging from
bacterial RNA to extracellular adenosine triphosphate and uric
acid crystals (Kanneganti et al., 2006; Mariathasan et al., 2006;
Martinon et al., 2006). Absent in melanoma 2 (AIM2) responds
to the presence of cytosolic double-stranded DNA (Hornung
et al., 2009; Roberts et al., 2009). In mice, ICE-protease acti-
vating factor (IPAF)/NLR family, CARD domain containing 4
(NLRC4) mediates inflammasome activation in response to three
distinct stimuli—flagellin, the conserved inner rod component
of the bacterial T3SS (PrgJ), and T3SS needle proteins (Franchi
et al., 2006; Miao et al., 2006, 2010b; Lightfield et al., 2011;
Yang et al., 2013). Biochemical studies have shown that the NLRs
neuronal apoptosis inhibitory protein 5 (NAIP5) and NAIP6 co-
immunoprecipitate with flagellin, while NAIP2 interacts specif-
ically with PrgJ and NAIP1 interacts with the needle proteins
(Kofoed and Vance, 2011; Zhao et al., 2011; Yang et al., 2013).
NLRC4 appears to be an important adaptor for the NAIP recep-
tors. The adaptor protein apoptosis-associated speck-like pro-
tein containing a carboxy-terminal caspase recruitment domain
(ASC) often bridges the interaction between NLRs and caspase-1,
allowing for oligomerization and auto-processing of caspase-1 for
activation (Srinivasula et al., 2002). Caspase-1 auto-processing is
required for cytokine cleavage and secretion, though cell death
can occur independently of caspase-1 proteolysis (Broz et al.,
2010).

THE NON-CANONICAL INFLAMMASOME
Experiments examining inflammasome activation were first per-
formed with macrophages from mice that lack caspase-1, and it
was concluded that caspase-1 is solely responsible for inflamma-
some activation. However, the strain of mice used to generate
the original caspase-1 knockout has a caspase-11 polymorphism
that eliminates protein expression. Thus, the original mice lack
both caspase-1 and caspase-11 (Kuida et al., 1995; Kayagaki
et al., 2011). Though it was reported that caspase-11 medi-
ates septic shock in vivo, the cell-intrinsic role of caspase-11 in
response to bacterial pathogens remained unclear (Wang et al.,
1996, 1998). Recently, however, a non-canonical caspase-11-
dependent inflammasome has been described that contributes
to IL-1α, IL-1β, and IL-18 secretion and cell death in response
to many Gram-negative bacteria. Caspase-11 is activated with
delayed kinetics, taking 16–24 h in vitro, in response to bacte-
ria that do not typically access the host cell cytosol, such as
non-pathogenic Escherichia coli (Kayagaki et al., 2011). For many
Gram-negative bacteria, non-canonical inflammasome activation
requires TIR-domain-containing adaptor-inducing interferon-β
(TRIF) and type I interferon (IFN) signaling downstream of
TLR4 (Broz et al., 2012; Gurung et al., 2012; Rathinam et al.,
2012b). Additionally, cytosolic lipopolysaccharide (LPS) acti-
vates caspase-11 independently of TLR4 (Hagar et al., 2013;
Kayagaki et al., 2013). Pathogens that access or enter the
host cytosol also induce non-canonical inflammasome activa-
tion, and this activation is more rapid than for other Gram-
negative bacteria. One robust activator of the non-canonical
inflammasome is the intracellular pathogen Legionella pneu-
mophila (Aachoui et al., 2013; Case et al., 2013; Casson et al.,
2013).

Legionella pneumophila
L. pneumophila is a Gram-negative bacterium that causes the
severe pneumonia Legionnaires’ disease (Fraser et al., 1977;
McDade et al., 1977). L. pneumophila uses its dot/icm-encoded
T4SS to translocate effector proteins into the host cytosol to
establish an endoplasmic reticulum-derived vacuole that sup-
ports bacterial replication (Marra et al., 1992; Berger and Isberg,
1993; Sadosky et al., 1993; Roy et al., 1998; Segal et al., 1998;
Vogel et al., 1998). The natural host for L. pneumophila is amoe-
bae in aquatic reservoirs (Rowbotham, 1980; Fliermans et al.,
1981), so while it has evolved to evade amoebic host defenses,
it is not thought to have evolved to evade mammalian-specific
immune responses. Therefore, as a consequence of accessing the
host cytosol in mammalian cells, L. pneumophila triggers mul-
tiple pathways that elicit cell-intrinsic immune responses and
induce cell death. These robust immune responses make the bac-
terium valuable for studying host defense against intracellular
pathogens.

L. pneumophila AND CASPASE-1-DEPENDENT
INFLAMMASOME ACTIVATION
It is well-understood that L. pneumophila triggers inflamma-
some activation and pyroptosis as a consequence of flagellin
expression and T4SS activity (Figure 1). In murine macrophages,
detection of flagellin by BIRC1e/NAIP5 mediates pyroptosis and
contributes to restriction of L. pneumophila replication both
in vitro and in vivo (Growney and Dietrich, 2000; Diez et al., 2003;
Wright et al., 2003; Derré and Isberg, 2004; Zamboni et al., 2006;
Kofoed and Vance, 2011; Zhao et al., 2011). Flagellin-deficient
L. pneumophila (�flaA Lp) evade NAIP5-mediated restriction
and replicate in NAIP5-sufficient macrophages from C57BL/6
(B6) mice, in part because they do not induce as much caspase-1-
dependent cell death as wild-type (WT) Lp (Molofsky et al., 2006;
Ren et al., 2006). NLRC4 also acts upstream of caspase-1 to induce
flagellin-mediated restriction of replication, pore formation in
the host membrane, and IL-1β release (Zamboni et al., 2006;
Silveira and Zamboni, 2010). NLRC4 co-immunoprecipitates
with NAIP5, consistent with the model that NLRC4 is an adaptor
for NAIP5 (Zamboni et al., 2006; Kofoed and Vance, 2011; Zhao
et al., 2011). The NAIP5/NLRC4-dependent cell death induced
in B6 macrophages requires cytosolic access, as T4SS-deficient
mutants (�dotA Lp) do not activate the inflammasome. These
data suggest that flagellin is translocated through the T4SS into
the host cytosol during infection, though this has not been shown
experimentally.

A/J mice express a hypomorphic allele of NAIP5 (Diez et al.,
2000), and A/J macrophages still activate caspase-1 in response
to WT Lp under certain infection conditions (Lamkanfi et al.,
2007). However, using Naip5−/− macrophages, it was shown that
NAIP5 is required for caspase-1 activation in response to WT
Lp (Lightfield et al., 2008). Interestingly, NAIP6 also interacts
with L. pneumophila flagellin (Kofoed and Vance, 2011; Zhao
et al., 2011). However, NAIP6 is insufficient for the restriction
of L. pneumophila, as Naip5−/− macrophages and mice are per-
missive for infection (Lightfield et al., 2008), potentially due
to lower expression levels of NAIP6 relative to NAIP5 in pri-
mary macrophages (Wright et al., 2003). NAIP5 and NLRC4 also
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FIGURE 1 | The inflammasome-mediated response to L. pneumophila

in murine macrophages. L. pneumophila that do not express a functional
T4SS (�dotA Lp) traffic to the lysosome, but wild-type L. pneumophila (WT
Lp) use the T4SS to translocate effectors into the host cytosol to establish
a replicative niche, the Legionella-containing vacuole (LCV), and block fusion
with lysosomes. WT Lp triggers canonical caspase-1-dependent
inflammasome activation through detection of translocated flagellin by
NAIP5/NLRC4. NLRP3 and ASC contribute to IL-1β secretion in response to
WT Lp. Detection of T4SS activity through an unknown sensor leads to
caspase-11 activation, which contributes to inflammasome activation.
Caspase-11 also responds to bacteria that aberrantly enter the cytosol
(�sdhA Lp) due to loss of LCV membrane integrity. Translocated flagellin
triggers trafficking of WT Lp to the autophagosome, and induction of
autophagy negatively regulates pyroptosis if there are low levels of flagellin
in the host cell cytosol. Dashed lines represent vesicular trafficking
patterns. Solid lines represent pathways for activation of the host response.
Arrows at the end of lines represent induction, while flat bars at the end of
lines represent inhibition.

contribute to the control of L. pneumophila replication by enhanc-
ing fusion of the Legionella-containing vacuole (LCV) with lyso-
somes during infections performed at a low multiplicity of infec-
tion (MOI) (Amer et al., 2006; Fortier et al., 2007). In addition,
flagellin-dependent NLRC4 signaling leads to caspase-7-mediated
restriction of L. pneumophila via enhanced lysosomal degradation
of the bacterium (Akhter et al., 2009). NLRC4-mediated restric-
tion in vivo is also partially caspase-1-independent through an
unknown mechanism (Pereira et al., 2011). However, caspase-1
activation downstream of NLRC4 clearly induces pyroptosis and
leads to IL-18 secretion both in vitro and in vivo, contributing to
IFN-γ production and the subsequent resolution of pulmonary
infection (Brieland et al., 2000; Spörri et al., 2006; Archer et al.,
2009; Case et al., 2009). Thus, the NAIP5/NLRC4 inflamma-
some may control L. pneumophila replication through multiple
mechanisms. Further studies are needed to determine the relative
contributions of these mechanisms.

Not surprisingly, infection conditions, including MOI, can
affect the detection of caspase-1 activation in response to
L. pneumophila, as higher MOIs likely enhance the num-
ber of macrophages that harbor bacteria. At higher MOIs,
infection of B6 macrophages induces both NLRC4-dependent

and NLRC4-independent inflammasome activation. NLRC4-
independent caspase-1 activation and IL-1β and IL-18 secre-
tion require ASC and NLRP3, although the identity of the
L. pneumophila-derived signal sensed via NLRP3 is unknown
(Case et al., 2009, 2013; Casson et al., 2013). Caspase-1 cleavage
in the absence of ASC can be detected in either the supernatant or
the cytosol, depending on the MOI (Case et al., 2009; Abdelaziz
et al., 2011a). ASC also drives formation of a punctate struc-
ture containing caspase-1 and NLRC4 in L. pneumophila-infected
macrophages (Case and Roy, 2011). At early timepoints, pore
formation is not observed in the absence of NLRC4, though
cell death still occurs in the absence of ASC. Recruitment of
NLRC4 into the ASC complex appears to dampen NLRC4 activ-
ity because pyroptosis occurs at a higher rate in the absence of
ASC (Case and Roy, 2011). Further studies are needed to elu-
cidate the temporal and spatial coordination of the ASC- and
NLRC4-dependent inflammasomes and how they are triggered by
L. pneumophila.

INFLAMMASOME ACTIVATION IN HUMAN CELLS
Unlike macrophages from most inbred mouse strains, human
cells are permissive for L. pneumophila replication. The mech-
anisms underlying inflammasome-mediated control of L. pneu-
mophila replication in human cells are unclear. Humans express
only one homolog of the numerous murine NAIP paralogs
(Scharf et al., 1996). The homolog, human NAIP (hNAIP),
restricts growth of WT Lp (Vinzing et al., 2008). Additionally,
the human NLRC4 homolog, human IPAF (hIPAF), also restricts
L. pneumophila replication. Overexpression of full-length hNAIP
in HEK293T cells increases cell death in response to L. pneu-
mophila (Boniotto et al., 2012), and overexpression of hNAIP in
the murine macrophage RAW264.7 cell line mediates flagellin-
induced pyroptosis and IL-1β secretion (Katagiri et al., 2012),
suggesting that it may function similarly to NAIP5. However,
unlike NAIP5, hNAIP does not co-immunoprecipitate with flag-
ellin and instead interacts with T3SS needle proteins (Zhao
et al., 2011; Yang et al., 2013). Thus, it is unclear whether
hNAIP senses flagellin or another L. pneumophila-derived lig-
and, how hNAIP restricts L. pneumophila replication, and if
hNAIP contributes to cell death or IL-1β secretion in primary
human cells.

The implication that the IPAF/NAIP/caspase-1 inflammasome
contributes to restriction of L. pneumophila is pervasive, though
caspase-1 activation in response to L. pneumophila has not been
explicitly shown in primary cells from humans, a naturally sus-
ceptible host. Immortalized human alveolar epithelial cells acti-
vate caspase-1 in response to L. pneumophila, though primary
human monocytes and monocyte-derived macrophages (MDMs)
do not produce detectable levels of processed or active caspase-1
(Santic et al., 2007; Furugen et al., 2008; Abdelaziz et al., 2011b).
Additionally, the expression of ASC is moderately down-regulated
in infected monocytes, potentially contributing to evasion of
inflammasome activation in human cells by L. pneumophila
(Abdelaziz et al., 2011b). Future studies in primary MDMs and
human alveolar macrophages are needed to clarify the role of
the inflammasome in restricting L. pneumophila replication in
human cells (Figure 2).
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FIGURE 2 | The inflammasome-mediated response to L. pneumophila

in human cells. L. pneumophila that do not express a functional T4SS
(�dotA Lp) traffic to the lysosome, but wild-type L. pneumophila (WT Lp)
use the T4SS to translocate effectors into the host cytosol to establish a
replicative niche, the Legionella-containing vacuole (LCV), and block fusion
with lysosomes. The presence of flagellin triggers signaling through
hNAIP/hIPAF that blocks replication of WT Lp, though it is unclear if
caspase-1 is involved in restriction. T4SS activity down-regulates the
expression of ASC. Dashed lines represent vesicular trafficking patterns.
Solid lines represent pathways for activation of the host response. Arrows
at the end of lines represent induction, while flat bars at the end of lines
represent inhibition.

INFLAMMASOME ACTIVATION AND AUTOPHAGY
In murine macrophages, autophagy is induced shortly after
phagocytosis of L. pneumophila, as components of the autophagy
pathway co-localize with the LCV (Amer and Swanson, 2005).
LCVs in A/J macrophages show delayed autophagosome matura-
tion compared to LCVs in B6 macrophages, potentially contribut-
ing to increased replication of the bacterium. When expression
of the autophagy component ATG5 is silenced, L. pneumophila
replication in A/J macrophages increases. Additionally, replica-
tion of L. pneumophila decreases slightly when autophagy is
induced exogenously, suggesting that autophagy contributes to
restriction of L. pneumophila replication (Matsuda et al., 2009).
Under low MOI infection conditions where there is minimal
induction of pyroptosis, it was revealed that the induction of
autophagy dampens pyroptosis in response to L. pneumophila,
and turnover of autophagosomes requires NAIP5, NLRC4, and
caspase-1 (Byrne et al., 2013). Collectively, these data suggest that
NAIP5 inflammasome activation contributes to the restriction of
L. pneumophila replication by inducing autophagy and/or pyrop-
tosis, depending on the MOI and amount of flagellin present.
How competing host and bacterial factors influence the outcome
of inflammasome activation and autophagy during infection
remains unclear and may be clarified by studies examining the
temporal regulation of inflammasome activation and autophagy
at a single-cell level.

L. pneumophila AND NON-CANONICAL INFLAMMASOME
ACTIVATION
Though �flaA Lp avoid NAIP5/NLRC4-mediated pyroptosis and
can replicate in B6 macrophages, �flaA Lp trigger an addi-
tional form of cell death. Recently, caspase-11 has been shown to
contribute to inflammasome activation in response to L. pneu-
mophila (Figure 1). After MyD88 and TRIF-dependent upregula-
tion of caspase-11, host cells undergo rapid caspase-11-mediated
cell death, occurring in less than 4 h, in response to �flaA Lp
(Case et al., 2013; Casson et al., 2013). Non-canonical inflamma-
some activation in response to �flaA Lp requires T4SS-mediated
cytosolic access, as �dotA Lp do not activate caspase-11. Like
caspase-1-mediated pyroptosis, caspase-11-dependent cell death
leads to release of important inflammatory mediators, such as
IL-1α, IL-1β, and IL-18. Caspase-11 is required for cell death
and IL-1α release and additionally enhances NLRP3-dependent
caspase-1 activation and IL-1β and IL-18 secretion (Case et al.,
2013; Casson et al., 2013). IL-1α release in vivo is critical
for host defense, including neutrophil recruitment to the air-
way space and control of bacterial burden, though there are
caspase-11-independent sources of IL-1α in vivo as well (Barry
et al., 2013; Casson et al., 2013). Caspase-11 also contributes to
NAIP5/NLRC4-mediated inflammasome activation and restricts
WT Lp by enhancing phago-lysosomal fusion (Akhter et al.,
2012). In its non-lytic role, caspase-11 modulates actin poly-
merization and phosphorylation of cofilin to promote lysoso-
mal trafficking of pathogenic, but not non-pathogenic, bacteria.
Additionally, caspase-11 contributes to control of WT Lp replica-
tion in vivo (Akhter et al., 2012).

Caspase-11 responds not only to vacuolar bacteria that access
the host cytosol through the T4SS but also to L. pneumophila that
escape from the vacuole and aberrantly enter the cytosol (Aachoui
et al., 2013). The T4SS-translocated effector SdhA is critical for
bacterial growth in primary macrophages (Laguna et al., 2006;
Liu et al., 2008). Macrophages infected with �sdhA Lp undergo
cell death because SdhA is required to maintain LCV membrane
integrity (Creasey and Isberg, 2012). Therefore, �sdhA Lp aber-
rantly enter the host cytosol where they become degraded, induce
type I IFN, and activate caspase-1 via AIM2 (Monroe et al., 2009;
Creasey and Isberg, 2012; Ge et al., 2012). In addition, �sdhA
Lp induce rapid caspase-11-dependent cell death independently
of bacterial flagellin (Aachoui et al., 2013). It appears that AIM2
responds to cytosolic L. pneumophila by producing IL-1β, whereas
caspase-11 mediates cell death. However, L. pneumophila does
not normally enter the cytosol, so the upstream mediators of
caspase-11 activation may be different for �sdhA�flaA bacteria
that enter the cytosol and �flaA bacteria that remain within the
vacuole. Whether the bacteria physically enter the cytosol or not,
these unique pathways upstream of caspase-11 are likely relevant
for defense against other pathogens that lack or down-regulate
flagellin during infection.

Non-canonical inflammasome activation is a recently
described phenomenon, so there are many questions that remain
unanswered. Currently, no NLRs have been identified that act
upstream of caspase-11 to induce non-canonical inflammasome
activation. As L. pneumophila rapidly and robustly activates
caspase-11, it will be a valuable tool for future studies aiming
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to identify NLRs or other host factors critical for caspase-11
activation. The only bacterial factor that has been shown to
initiate non-canonical inflammasome activation is cytosolic
LPS (Hagar et al., 2013; Kayagaki et al., 2013). For some Gram-
negative bacteria, it is thought that bacterial RNA may access
the host cytosol to activate NLRP3 and caspase-11 (Kanneganti
et al., 2006; Rathinam et al., 2012b). However, translocation of
L. pneumophila RNA to initiate inflammasome activation has
not been verified experimentally. Additionally, though cytosolic
LPS may trigger caspase-11 during infection with �sdhA Lp that
aberrantly enter the cytosol, it is unclear if LPS is sensed by host
cells to initiate non-canonical inflammasome activation in the
context of infection with L. pneumophila that remain within the
LCV. Further studies are needed to clarify what triggers the host
response to �flaA Lp and to elucidate the molecular pathways
that lead to caspase-11-mediated cell death.

CONCLUDING REMARKS
Studying the inflammasome pathways triggered by the pathogen
L. pneumophila has shaped our knowledge of how host cells
are poised to respond to violation by intracellular pathogens.
Whether the bacterium utilizes its T4SS to access the host cytosol,
additionally delivers flagellin into the cytoplasm, or physically
enters the cytosol itself, the host has evolved multiple ways to
restrict replication of the pathogen and trigger immunity.
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