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Cell death or senescence is a fundamental event that helps maintain cellular homeostasis,
shapes the growth of organism, and provides protective immunity against invading
pathogens. Decreased or increased cell death is detrimental both in infectious and
non-infectious diseases. Cell death is executed both by regulated enzymic reactions and
non-enzymic sudden collapse. In this brief review we have tried to summarize various cell
death modalities and their impact on the pathogenesis of Mycobacterium tuberculosis.
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INTRODUCTION
Cell death is a primordial event in embryogenesis, metamor-
phosis, and in innate immune response against the invading
pathogens. Cell death as a defense mechanism is also documented
in the plant kingdom (Kabbage et al., 2013). Cell death is exe-
cuted in a series of ordered biochemical cascades and is referred
as programmed cell death or PCD.

Till early 2000, cell death was discussed as dichotomy in terms
of either apoptosis or necrosis. However, with the growth of
science many distinct modes of cell death with well-organized
signaling cascades were unraveled. Currently, there exists nine
different forms of cell death namely apoptosis (Fink and
Cookson, 2005), autophagy (Fink and Cookson, 2005), mitopto-
sis (Chaabane et al., 2012), necrosis (Fink and Cookson, 2005),
necroptosis (Galluzzi and Kroemer, 2008), netosis (Remijsen
et al., 2011), oncosis (Fink and Cookson, 2005), pyroptosis (Fink
and Cookson, 2005), and pyronecrosis (Willingham et al., 2007).
It is still a puzzle whether these pathways are different fea-
tures of the same response or physiologically distinct responses.
Apoptosis as an defense mechanism initiates both innate and
adaptive immunity (Behar et al., 2010). However, pathogenic
organisms have developed mechanisms to modulate apopto-
sis for their survival. Apoptosis of the infected cells have been
reported to be a favorable outcome for the dissemination of
infections like Yersinia, Francisella, etc. (Ruckdeschel et al., 1997;
Wickstrum et al., 2009). On the contrary, impairment of apop-
tosis provides a survival niche to many intracellular pathogens
including Mycobacterium tuberculosis (Behar et al., 2010), leads
to auto immunity, cancer and degenerative disorders (Elmore,

2007). Studies in M. tuberculosis have identified a causal rela-
tionship between virulence of the strain and induction of apop-
tosis. Inhibition of apoptosis favors M. tuberculosis survival in
many ways like preventing bactericidal effects, T-cell priming,
etc. (Velmurugan et al., 2007). In contrast, a recent report states
that apoptosis inducing strains could disseminate M. tuberculosis
infection (Aguilo et al., 2013). Necrotic cell death of burdened M.
tuberculosis infected cells was shown to pave way for re-infection
(Butler et al., 2012). In here, we summarize various apoptotic
modalities and their role in the pathogenesis of M. tuberculo-
sis. Furthermore, we share our experience in analyzing these
responses in M. tuberculosis infection.

MODELS OF CELL DEATH
APOPTOSIS
First represented in the article by Kerr, Wyllie, and Currie in
1972 (Elmore, 2007). Apoptosis is an energy dependent reg-
ulatory process that disintegrates the dying cell by enclosing
the cytoplasmic contents inside membrane bound vesicles called
apoptotic bodies. These apoptotic bodies are engulfed by the
phagocytic cells by a process called efferocytosis thereby efficiently
clearing the dying cell without any inflammatory responses (Lee
et al., 2009). Three pathways namely extrinsic/ligand-mediated
pathway, intrinsic/mitochondrial pathway, and the granzyme B-
mediated pathway regulate the process of apoptosis upon activa-
tion by physiological or pathological conditions (Elmore, 2007).
The major players in apoptosis are caspases, adaptor proteins,
tumor necrosis factor (TNF) receptor (TNF-R) super family,
and Bcl-2 family of proteins (Strasser et al., 2000). There are
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three categories of caspases; initiators (caspase-2,-8,-9,-10), effec-
tors or executioners (caspase-3,-6,-7), and inflammatory caspases
(caspase-1,-4,-5) (Elmore, 2007). Caspase-activated DNases acti-
vate endonuclease that produce the typical internucleosomal
DNA cleavage during apoptosis (Strasser et al., 2000). Adapter
proteins play a major role in apoptosis as a link between caspases
and the TNF-R by mediating homotypic interactions between
the domains death domain, the death effector domain, and the
caspase recruitment domains (Strasser et al., 2000).

Bcl-2 family of proteins are classified into three types that
fall into pro-survival and pro-apoptotic categories based on
the amino acid sequence homology to Bcl-2 homology regions
BH1–BH4. Pro -survival Bcl-xL, Bcl-w, A1/Bfl-1, Mcl-1, and
Boo/Diva have three or four bcl-2 homology regions while the
pro-apoptotic members called Bax-like death factors Bax, Bcl-
xS, Bak, and Bok/Mtd contain two or three homology regions
(Pecina-Slaus, 2010). The third group of proteins Bad, Bik/Nbk,
Bid, Hrk/DP5, Bim/Bod, and Blk, etc. that possess only a BH3
region are potent inducers of apoptosis (Strasser et al., 2000).

Apoptotic pathways
• Extrinsic pathway is initiated by binding of the ligands like

TNF-α, FasL, CD95L, TRAIL, etc. to their respective receptors
TNFR, Fas/CD95, and DR3 on the cell surface. This acti-
vates the initiator caspases such as caspases 8 and 10 that
results in the formation and activation of death inducing sig-
naling complex (DISC) that activates caspase 3 (Pecina-Slaus,
2010; Kalimuthu and Se-Kwon, 2013). Caspase 3 activation
leads to cleavage of various death substrates that results in the
characteristic hallmarks of apoptosis like DNA fragmentation,
membrane blebbing, etc. (Kalimuthu and Se-Kwon, 2013).

• Intrinsic pathway of apoptosis is trigged due to the intra-
cellular death signals. Mitochondrial enzyme endonuclease G,
Bcl-2 family of proteins like Bax, Bid, and other mitochondrial
proteins AIF, DIABLO [SMAC (second mitochondria-derived
activator of caspases)], and cytochrome C plays a major role
in this response (Kalimuthu and Se-Kwon, 2013). Upon the
stimulus, the BH3-only protein Bid activates Bax and Bak that
results in conformational change and oligomerization, form-
ing an oligomeric pore in the outer mitochondrial membrane
called permeability transition pores (Ferri and Kroemer, 2001;
Kalimuthu and Se-Kwon, 2013). This results in the release of
cytochrome C and other pro-apoptotic factors from the mito-
chondria into the cytosol. Cytochrome C interacts with Apaf
and activates caspase-9 forming a multi-protein subunit com-
plex called casposome (apoptosome) comprising cytochrome
C, Apaf-1, procaspase-9, and ATP. In the absence of death stim-
ulus, inhibitor of apoptosis family proteins (IAP) inactivates
the caspase activity by direct binding. However, upon apoptotic
stimuli IAPs are negatively regulated by SMAC and that leads to
the activation of caspase-3 (Pecina-Slaus, 2010; Kalimuthu and
Se-Kwon, 2013). Furthermore, extrinsic pathway was found to
influence the intrinsic pathway of apoptosis by truncation of
Bid (Cillessen et al., 2007).

• Granzyme B-mediated pathway utilizing the extrinsic mode
of apoptosis is used by cytotoxic T lymphocytes as a mech-
anism to kill its target. Besides this, the secretion of pore

forming granules containing serine proteases granzyme A and
granzyme B also execute apoptosis that is both dependent and
independent of caspase activation (Elmore, 2007).

AUTOPHAGY
It is a regulated homeostatic response conserved in all living cells
degrading their own cytoplasm. Autophagy is a predominant cell
survival response that is involved either in nutrient turnover or
energy production during stress or removal of long lived cells
or to protect against invading intracellular pathogens (Chaabane
et al., 2012). Three forms of autophagy namely macroau-
tophagy, microautophagy, and chaperone-mediated autophagy
exist. During the autophagy, damaged organelle is lined with an
isolation membrane called the phagophore that enlarges form-
ing the double membrane structure called autophagosome. The
autophagosome fuses either with late endosomes or lysosomes
causing cell death (Levine and Deretic, 2007; Remijsen et al.,
2011). Autophagy is regulated by autophagy-related proteins, ser-
ine/threonine kinase, mammalian target of rapamycin (mTOR),
class I and class III phosphoinositide 3-kinases (PI3Ks) (Levine
and Deretic, 2007; Su et al., 2013).

MITOPTOSIS
Apoptotic changes inside the mitochondria are called mitopto-
sis. Mitoptosis is still in infancy and no specific factors have been
identified. The identification is based on morphological changes
like disintegrating cristae, swollen mitochondria, etc. (Chaabane
et al., 2012).

NECROSIS
Accidental cell death induced due to pathological or physio-
logical conditions are called necrosis. During necrosis, swelling
of organelles like endoplasmic reticulum, mitochondria occurs
thereby rupturing the plasma membrane. This leaks the intracel-
lular contents of the necrotic cell into the intercellular space caus-
ing inflammatory responses (Fink and Cookson, 2005; Chaabane
et al., 2012).

NECROPTOSIS
In the year 2008, Hitomi et al. reported that necrosis could be a
regulated process of cell death. The activation of serine/threonine
kinase RIP1, BH3 only protein Bmf, and mitochondrial dysfunc-
tion executes necroptosis (Galluzzi and Kroemer, 2008).

NETosis
In 2004, the findings of Brinkman group unveiled another cell
death program named by Steinberg in 2007 called NETosis (Mesa
and Vasquez, 2013). One among the defense mechanisms used
by neutrophils is the extrusion of intracellular material in the
form of extracellular traps (ETs) to the surrounding extracellular
medium. This concentrates the microbicidal substances to trap
and kill pathogens (Mesa and Vasquez, 2013). Release of ETs by
neutrophils is called NETs and mast cells as MCETs. NETs are
composed of DNA and histones, and they are resistant to degra-
dation by proteases, insensitive to caspase inhibition and necro-
statins (cytoprotective agents) (Mesa and Vasquez, 2013). During
NETosis both the nuclear and granular membranes disintegrate
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leaving the plasma membrane intact (Remijsen et al., 2011).
NETosis is activated by pathogens, platelets activated with LPS
and in eosinophils (Remijsen et al., 2011). Formation of NET is
both nuclear and mitochondrial in origin.

ONCOSIS
It is the swelling of cells that involves rapid plasma membrane
breakdown, and swollen nuclei without internucleosomal DNA
fragmentation. Oncosis depletes cellular energy and leads to fail-
ure of the ionic pumps in the plasma membrane. It is elicited
by agents that disrupt the ATP production of the cell (Fink and
Cookson, 2005).

PYROPTOSIS
Apoptosis in general does not induce an inflammatory response.
However, apoptosis in Shigella, Salmonella, Francisella, and
Legionella infections produce inflammatory responses that are
called as pyroptosis (Carneiro et al., 2009; Lee et al., 2011).
Pyroptosis is executed by the formation of inflammasomes by
bacterial products involving NLRC 4 (Nod-like receptor—NLR),
that activates caspase-1 and the processing of IL-1β and IL-
18 cytokines promoting cell death (Fink and Cookson, 2005;
Carneiro et al., 2009).

PYRONECROSIS
Cathepsin B-dependent apoptosis that is independent of caspase-
1 activation and inflammasome formation is called pyronecrosis.
This mode of apoptosis is observed in shigellosis (Willingham
et al., 2007; Carneiro et al., 2009).

OTHER APOPTOTIC MODELS
• Tumor suppressor protein 53 (TP53) induced apoptosis

involves the transcriptional induction of redox proteins, gen-
eration of reactive oxygen species, and oxidative degradation
of mitochondrial components that results in cell death. TP53
was shown to transcriptionally regulate proapoptotic proteins
like Bax and NOXA (Yamada et al., 2002).

• NF-kB expression is implicated in the survival of living cells.
NF-kB family contains five proteins namely c-Rel, RelA, RelB,
p50/p105, and p52/p100. NF-kB as a homo or hetero dimers
bind to the kB sites on their target DNA and regulate their
expression (Barkett and Gilmore, 1999). NF-kB is activated
by various stimuli like pathogens, mitogens, proinflamma-
tory cytokines, etc. It plays a major role in immune responses
and affects the expression of genes c-IAP-1 and c-IAP-2, Fas
ligand, c-myc, p53, etc. involved in apoptosis (Zhang and
Ghosh, 2001). Two TNF receptors TNFRSF8 and TNFRSF9
were shown to promote apoptosis, former activating, and latter
inactivating NF-kB expression (Wang et al., 2008).

APOPTOSIS AND MYCOBACTERIUM TUBERCULOSIS
M. tuberculosis infections with virulent strains have been reported
to inhibit macrophage apoptosis (Behar et al., 2010). Varied
mechanisms of apoptotic suppression have been reported in M.
tuberculosis infections (Table 1) unraveling the tactics of this
pathogen to generate a protective niche inside the host. Among
the various cell death modalities described above, only three
apoptotic responses were documented in M. tuberculosis infection

Table 1 | Apoptotic mechanisms in the pathogenesis of M.

tuberculosis.

S.no Mechanisms of apoptosis Year References

1 Treatment of macrophages
post-infection with exogenous
ATP reduces viability

1994 Molloy et al., 1994

2 Extrinsic apoptosis 1997 Keane et al., 1997

3 Virulent strains induce
IL-10-dependent sTNFR2 forming
inactive TNF-α-TNFR2 complex

1998 Fratazzi et al., 1999

4 Granulysin and perforin reduce
the viability of M. tuberculosis

1998 Stenger et al.,
1998

5 Treatment of Fas ligand
post-infection reduces the viability

1998 Oddo et al., 1998

6 Degree of apoptosis is
strain-dependent

2000 Keane et al., 2000

7 ManLam prevents apoptosis by
altering Ca2+ levels

2000 Rojas et al., 2000

8 M. tuberculosis apoptosis down
regulates CD14

2000 Santucci et al.,
2000

9 Apoptosis of avirulent strains
dependent on group IV cytosolic
phospholipase A2 and TNF-α

2001 Duan et al., 2001

10 Reduced viability using
exogenous ATP is executed using
P2X7 receptor

2001 Fairbairn et al.,
2001

11 Anti-apoptotic Mcl-1expression by
virulent strains decreases
apoptosis

2003 Sly et al., 2003

12 Detour pathway of antigen
presentation

2003 Schaible et al.,
2003

13 19 kDa lipoprotein induces
apoptosis by TLR2 signaling

2003 Lopez et al., 2003

14 Virulent strains induce necrosis 2006 Park et al., 2006

15 Methyl glyoxal plays role in
apoptosis

2006 Rachman et al.,
2006

16 TLR-2-mediated activation of
NF-kB and c-FLIP protects
infected cells from FasL-induced
apoptosis

2006 Loeuillet et al.,
2006

17 PE_PGRS33 induces TNF-α
secretion using TLR-2 signaling
and genetic alterations in
PE_PGRS33 decreases TNF-α
secretion

2006 Basu et al., 2007

18 High MOI induces TNF-α
independent apoptosis leading to
mycobacterial spread

2007 Lee et al., 2006

(Continued)
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Table 1 | Continued

S.no Mechanisms of apoptosis Year References

19 Higher MOI leads to caspase
independent apoptosis involving
both mitochondria and lysosymes

2007 O’Sullivan et al.,
2007

20 ESAT-6 induces apoptosis 2007 Derrick and Morris,
2007

21 Bystander apoptosis elicited by
avirulent strains are independent
of TNF-α,Fas,TRAIL, TGF-β, TLR2,
and MyD88

2008 Kelly et al., 2008

22 Virulent strains prevents apoptotic
envelope formation leading to
necrosis

2008 Gan et al., 2008

23 Virulent strains produce more
lipoxinA4 promoting necrosis and
avirulent strain induces PGE2 that
prevents necrosis

2008 Chen et al., 2008

24 Formation of NETs unable to kill
M. tuberculosis

2008 Ramos-Kichik
et al., 2009

25 Prevents pyroptosis using zmp1
by inhibiting inflammasome
formation required for IL-1β

secretion

2008 Master et al., 2008

26 pstS1 induces TNF-α, FasL,Fas
TNFR1, TNFR2, and TLR-2
mediated apoptosis

2008 Sanchez et al.,
2009

27 TNF-α-mediated caspase-8
apoptosis by p38MAPK, ASK-1,
and FLIPS degradation

2009 Kundu et al., 2009

28 Virulent strains inhibit plasma
membrane repair promoting
necrosis

2009 Divangahi et al.,
2009

29 Neutrophil activation leads to
ectososme release

2010 Gonzalez-Cano
et al., 2010

30 nuoG neutralize NOX2 derived
ROS inhibiting extrinsic apoptosis

2010 Miller et al., 2010

31 Rv3654c and Rv3655c genes
prevent extrinsic apoptosis

2010 Danelishvili et al.,
2010

32 eis is involved in suppressing
autophagy in a redox dependent
JNK activation

2010 Shin et al., 2010

33 Higher MOI induces host cell
lipolysis and PHOPR kinase plays
a role in this response

2011 Divangahi et al.,
2009

(Continued)

Table 1 | Continued

S.no Mechanisms of apoptosis Year References

34 PE_PGRS33 interacts with host
mitochondria and probably
involved in primary necrosis

2011 Cadieux et al.,
2011

35 Dendritic cells undergo caspase
independent apoptosis

2011 Ryan et al., 2011

36 ROS mediated necrosis as a
survival strategy in neutrophils

2012 Corleis et al., 2012

37 ESAT-6 induced apoptosis is
regulated by BAT3

2012 Grover and Izzo,
2012

38 Rv3364c prevents pyroptosis by
inhibiting cathepsinG

2012 Danelishvili et al.,
2012

39 pknE inhibits various modes of
apoptosis in response to nitric
oxide stress of the macrophages

2012 Kumar and
Narayanan, 2012

40 nuoG mutant reveals decreased
neutrophil apoptosis reduces CD4
T cell activation

2012 Blomgran et al.,
2012

41 Virulence determines cytotoxicity
whereas strain characteristics
determine the mode of cell death

2012 Butler et al., 2012

42 ESAT-6 is involved in inhibiting
autophagy

2012 Romagnoli et al.,
2012

43 sigH or its regulated genes
suppresses apoptosis, modulates
innate immune responses, and
reduces chemotaxis

2012 Dutta et al., 2012

44 Infection with avirulent
mycobacteria induces
mitochondrial exhaustion while
virulent promotes mitochondrial
function thereby increasing ATP
synthesis

2012 Jamwal et al., 2013

45 LpqH induces both extrinsic and
intrinsic apoptosis

2012 Sanchez et al.,
2012

46 Virulent Mycobacterial strains
induce apoptosis by ESX-1
system and colonize new cells

2013 Aguilo et al., 2013

47 Validation of burst size hypothesis
in in vivo model

2013 Repasy et al., 2013

48 pknE involved in the
copathogenesis of HIV/TB
coinfection

2014 Parandhaman
et al., 2014

This table illustrates varied apoptotic mechanisms identified in the pathogene-

sis of M. tuberculosis. The abbreviations MOI denote multiplicity of infection,

ManLam, mannosylated lipoarabinomannan; PGE2, prostaglandinE2; ROS, reac-

tive oxygen species; ATP, adenosine tri phosphate.
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namely apoptosis (nuoG, SecA2, pknE, lpqH, esxA (ESAT-6),
PE_PGRS33, pstS-1, Rv3654c, and Rv3655c), pyroptosis (zmp1,
Rv3364c), and autophagy (eis) (Hinchey et al., 2007; Velmurugan
et al., 2007; Jayakumar et al., 2008; Master et al., 2008; Sanchez
et al., 2009, 2012; Danelishvili et al., 2010, 2012; Shin et al., 2010).

SERINE/THREONINE PROTEIN KINASES (STPK)
Two component signaling systems were considered as the stan-
dalone mechanism of signaling in prokaryotes in response to
environmental cues. However with the availability of various
molecular techniques serine, threonine, and tyrosine mediated
phosphorylation events unique to eukaryotes were documented
in pathogenic prokaryotes like M. tuberculosis, Streptococcus
species, Staphylococcus spp, Pseudomonas spp, etc. (Chao et al.,
2009; Chakraborti et al., 2011). Among the 11 STPKs that
M. tuberculosis encodes, only five of them pknE, pknG, pknH,
pknI, and pknK were reported to support intracellular sur-
vival (Walburger et al., 2004; Papavinasasundaram et al., 2005;
Jayakumar et al., 2008; Gopalaswamy et al., 2009; Malhotra et al.,
2010). Our data for the first time proved that PknE was the only
STPK to inhibit apoptosis (Jayakumar et al., 2008).

PknE IN INNATE IMMUNITY
The function of pknE was established from our studies using the
deletion mutant �pknE generated using specialized transduction.
Deletion of pknE had reduced intracellular survival, increased
apoptosis, and reduced proinflammatory responses (Jayakumar
et al., 2008). Subsequent molecular pathogenesis studies revealed
that the deletion of pknE promotes macrophage cell death depen-
dent on intrinsic pathway of apoptosis, TP53, and Arg2. This
apoptosis was independent of TNF-α, iNOS, Akt, Arg1, and
pro-inflammatory cytokines (Kumar and Narayanan, 2012). M.
tuberculosis encounters reactive nitrogen and oxygen intermedi-
ates inside the macrophages as one among the host defenses.
Characterization of the promoter of the pknE gene showed its
elevated expression during nitric oxide (NO) stress (Jayakumar
et al., 2008). Macrophage experiments performed using NO
donor sodium nitroprusside to mimic the host microbicidal activ-
ity confirmed that, pknE in response to NO stress suppresses
innate immune responses (Kumar and Narayanan, 2012). In vitro
studies carried with the deletion mutant showed defective growth
in pH 7.0 and lysozyme (a cell wall-damaging agent) with bet-
ter survival in pH 5.5, SDS (surfactant stress), and kanamycin (a
second-line anti-tuberculosis drug). �pknE was reduced in cell
size during growth in liquid media and exhibited hypervirulence
in a guinea pig model of infection (Kumar et al., 2012). The data
from the in vitro studies highlighted the role of pknE in adaptive
responses of M. tuberculosis. Recently we reported that, deletion
of pknE results in defective phosphorylation kinetics of MAPKs
(p38MAPK, Erk½, and SAPK/JNK) and their transcription fac-
tors ATF-2 and c-JUN. Deletion of pknE also revealed crosstalks
in the host macrophages where Erk½ signaling was found to
be influenced by SAPK/JNK and p38 pathways independently.
Modulations in intra cellular signaling altered the expression of
coreceptors CCR5 and CXCR4 in macrophages infected with
the deletion mutant of pknE that were authenticated using HIV
tropic strains (Parandhaman et al., 2014). For the first time,

our data showed that difference in apoptosis and intracellular
signaling events, and the virulence capacity of the M. tubercu-
losis strain could influence the copathogenesis of HIV infection
(Parandhaman et al., 2014). Collectively the reports show that
pknE has a role suppression of innate immunity and help M.
tuberculosis to adapt to the different environmental condition that
it encounters.

CONCLUSION
Molecular techniques have revolutionized our understanding of
pathogenic organisms and their interactions with the immune
system. Pathogenic organisms have evolved host mimicking prop-
erties and utilize the host responses for their own survival
and propagation. This review has addressed the various mech-
anisms of cell death that is vital for initiating an innate and
adaptive immunity against the invading pathogen. As novel
cell death paradigms evolve, it adds to the complexity of how
temporally and spatially the immune system coordinates these
responses. Most of the cell death models described here disrupt
the energy source of the cell, mitochondria indicating whether
these paradigms are interconnected response of a single biochem-
ical event and this still remains a puzzle. Adding complexity to this
conundrum is that, pathogenic organisms like M. tuberculosis is
able to inhibit the various apoptotic models that were discovered
so far. This arise the question whether M. tuberculosis by educat-
ing itself avoids cell death or has antigens that are poor inducers
of cell death and that await further studies.
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