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In this review we highlight recent work that has increased our understanding of the
distribution of Shiga toxin-converting phages that can be detected as free phage particles,
independently of Shiga toxin-producing bacteria (STEC). Stx phages are a quite diverse
group of temperate phages that can be found in their prophage state inserted within
the STEC chromosome, but can also be found as phages released from the cell after
activation of their lytic cycle. They have been detected in extraintestinal environments
such as water polluted with feces from humans or animals, food samples or even in
stool samples of healthy individuals. The high persistence of phages to several inactivation
conditions makes them suitable candidates for the successful mobilization of stx genes,
possibly resulting in the genes reaching a new bacterial genomic background by means of
transduction, where ultimately they may be expressed, leading to Stx production. Besides
the obvious fact that Stx phages circulating between bacteria can be, and probably are,
involved in the emergence of new STEC strains, we review here other possible ways in
which free Stx phages could interfere with the detection of STEC in a given sample by
current laboratory methods and how to avoid such interference.
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Shiga toxin-producing Escherichia coli (STEC) are important
food-borne pathogens and represent a challenge for the scientific
community. Effort has been devoted to developing methods for
its isolation, detection and identification, to guarantee the qual-
ity of products and the health of consumers. Many studies have
aimed at gaining an understanding of the mobility of the impor-
tant gallery of virulence factors that compose the virulome of the
E. coli pathogenic strains. The mobility of these factors among
strains is a key factor for the genotypic and phenotypic variability
of this bacterium, and hinders the process of determining what
should be considered a true pathogen and how to detect it effec-
tively (Erickson and Doyle, 2007; Karch et al., 2012; Melton-Celsa
et al., 2012).

Thus, the methods for E. coli detection have focused on those
factors that are clearly related with virulence and, particularly,
those that are closely related with high incidence and severity of
human infections. Among these factors, the Shiga toxin (Stx) is
considered one of the most significant and, if not the only one
determining pathogenicity, the one that leads to the most unde-
sirable complications of the infection, such as HUS (Tarr et al.,
2005).

Stx is a good example of a mobile virulence factor, since the
genes encoding for this toxin are located in the genome of tem-
perate bacteriophages (Newland et al., 1985; Huang et al., 1987;
O’Brien et al., 1989). Many phages simply multiply by infect-
ing bacteria, killing the host by lysis and releasing new phages.
Temperate phages, however, adopt a benign relationship with
their hosts, called lysogeny, which allows an attachment of phage

DNA to a bacterial chromosome. For Stx phages, once a phage
integrates its genome within the bacterial genome, the bacteria
acquires the stx gene and with it the capacity to express the toxin;
thereby becoming a STEC. Temperate phages can revert from the
lysogenic state by entering the lytic cycle, mostly due to environ-
mental conditions or exogenous factors. The lytic pathway starts
by generating multiple copies of its genome, causing an increase
in the Stx produced by the cell during the process (Neely and
Friedman, 1998; Wagner et al., 2001; Tyler et al., 2004). By the
expression of the phage genome, new phage capsids are generated,
assembled with the phage DNA and, once formed, phage particles
are released from the cell by lysis. Once released, phage particles
remain free outside the bacterial cell, and here is where our story
starts.

The major question we address is: what happens to phages
outside the cell and to what extent does their occurrence as free
particles play a role in the evolution of new STEC strains?

Phages are rather simple particles and Stx phages are no
exception. Their persistence outside the cell is guaranteed by
their ability to circumvent natural and artificial inactivation
processes (as reviewed in the next section), many of which
would inactivate their bacterial host. It is the fact that the life
cycle of phages switches to the lytic state that allows phages to
be released once the cell has been threatened by factors that
activate its SOS response (Muhldorfer et al., 1996; Kimmitt
et al., 2000; Köhler et al., 2000; Yamamoto et al., 2003; Aertsen
et al., 2005; Toshima et al., 2007; Pacheco and Sperandio,
2009).
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Stx PHAGES IN FECALLY POLLUTED WATERS
Several reports have shown the occurrence of free Stx phages
in water environments with fecal pollution or directly on
homogenates of fecal samples (Table 1). Most studies have only
focused on the detection of Stx phages in general or Stx2 phages
in particular, and only a few have evaluated Stx1 phages (Dumke
et al., 2006; Yan et al., 2011; Rooks et al., 2012). Those studies
show a clear predominance of Stx2 phages over Stx1 phages and,
despite the fact that there is still a lack of information on the
abundance of Stx1 phages in the environment, the results corre-
late with reported data on the predominance of stx2 phages over
Stx1 phages in lysates induced from environmental E. coli isolates
(Muniesa et al., 2004a; Garcia-Aljaro et al., 2009; Yan et al., 2011).

Regardless of the type of toxin variant, the high occurrence of
free Stx phages detected suggests that Stx phages could do more
than provide intestinal bacteria with a new genetic character.
Although a certain level of human fecal contamination is always

observed in environments where free Stx phages have been
detected (Muniesa and Jofre, 1998; Tanji et al., 2003; Muniesa
et al., 2004b; Dumke et al., 2006; Imamovic et al., 2010; Rooks
et al., 2010, 2012) (Table 1), there is no total correlation between
Stx phage occurrence and fecal pollution, as shown by com-
parison with fecal indicators (Dumke et al., 2006; Imamovic
et al., 2010). This lack of correlation suggests that the fecal ori-
gin is the main but not necessarily the sole source of Stx phages.
Accordingly, the description of Stx2-positive extraintestinal E. coli
strains (Wester et al., 2013) supports the suspicion that stx is
not restricted to a fecal origin. Stx phages are not limited to
waters containing human contamination and they have also been
found to be highly prevalent when analyzing wastewater from
animals (Imamovic et al., 2010; Yan et al., 2011). Water with
lower levels of fecal pollution, such as river water, also shows
the presence of Stx phages (Muniesa et al., 1999; Dumke et al.,
2006).

Table 1 | Occurrence and abundance of free Stx bacteriophages in diverse environments.

Sample Country Detection of Stx phages Detection method References

Stx1 phages Stx2 phages Abundance

Human wastewater Spain – Positive (I) 10 PFU.ml−1 MPN+PCR Muniesa and Jofre, 1998

Human wastewater Germany,
Austria,
France
Ireland
South Africa
New
Zaeland

– Positive
Positive
Positive
Positive
Positive
Positive

≥1 PFU.ml−1

>0.1PFU.ml−1

≥10 PFU.ml−1

≥10 PFU.ml−1

≥10 PFU.ml−1

≥10 PFU.ml−1

PCR Muniesa and Jofre, 2000

Human wastewater Japan – Positive (I) – PCR Tanji et al., 2003

Human wastewater Spain – Positive (I) 4.24 log10 PFU.ml−1 Plaque count+PCR Muniesa et al., 2004b

Cattle wastewater Spain – Positive (I) 4.45 log10 PFU.ml−1 Plaque count+PCR Muniesa et al., 2004b

Human wastewater Germany Positive (I) Positive (I) 0.34 PFU.ml−1stx1

3.4 PFU.ml−1 stx2

Plaque count
PCR estimation

Dumke et al., 2006

Human treated
waste water

Germany Negative Positive (I) – Plaque count+PCR Dumke et al., 2006

River water Germany Positive (I) Positive (I) – Plaque count+PCR Dumke et al., 2006

Human wastewater UK Negative Positive (I) 9.41 log10 PFU.ml−1 Plaque count+PCR Rooks et al., 2010

Human wastewater UK Negative Positive 2.39 log10 GC.ml−1 qPCR Rooks et al., 2010

Human wastewater Spain – Positive 1.37 log10 GC.ml−1 qPCR Imamovic et al., 2010

Cattle wastewater Spain – Positive 2.77 log10 GC.ml−1 qPCR Imamovic et al., 2010

Pig wastewater Spain – Positive 4.59 log10 GC.ml−1 qPCR Imamovic et al., 2010

Poultry wastewater Spain – Positive 1.11 log10 GC.ml−1 qPCR Imamovic et al., 2010

Cattle feces Spain – Positive 2.32 log10 GC.g−1 qPCR Imamovic et al., 2010

Beef Spain – Positive (I) 4.10 log10 GC.g−1 qPCR Imamovic and Muniesa,
2011

Salad Spain – Positive (I) 3.36 log10 GC.g−1 qPCR Imamovic and Muniesa,
2011

Swine feces China Positive (I) Positive (I) – Plaque count+PCR Yan et al., 2011

Wastewater UK – Positive (I) – Lysogen isolation Rooks et al., 2012

Human feces Spain – Positive (I) 4.41 log10 GC.g−1 qPCR Martinez-Castillo et al.,
2013

GC, gene copy; PFU, plaque forming unit; MPN, most probable number. (I) those studies reporting infectious Stx phages.
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Stx PHAGES IN FECES
If fecally polluted waters present Stx phages, and assuming that
Stx phages could have been generated in the intestinal gut, the
question that remains to be answered is whether the phages are
released into wastewaters by induction from STEC strains present
in these environments, or whether free Stx phages are directly
excreted through feces. Recent reports indicate that free infec-
tious (those able to infect and propagate in a host strain), Stx2
phages are present in 62% of human feces (Martinez-Castillo
et al., 2013). Sequencing of the PCR amplimers suggested that
subtypes stx2a, stx2c, and stx2d were the most frequently detected
(Martinez-Castillo et al., 2013). From the positive samples, 90%
showed infectious Stx phages. Two facts are to be highlighted from
that study: there is not a high incidence of STEC in the area of this
study; and the stool samples were taken from healthy individuals
without reported gastrointestinal symptoms, and that STEC were
not detected in or isolated from these samples.

Stx PHAGES IN FOOD
Assuming that Stx phages are excreted in feces, they must have
been ingested, either as free phages or as STEC bacteria that were
later induced, once in the intestinal tract. If they are ingested
as free phages, then they must be present in food or drinking
water, assuming that these are free of significant levels of bac-
teria. The occurrence of infectious Stx2 phages in commercial
samples of beef and salad (Imamovic and Muniesa, 2011), that
were acceptable for process hygiene microbiological criteria under
EU regulation (Anonymous, 2005), highlights the gap that exists
in legislation regarding the presence of phages in food samples.

The fact that phages detected in food were infectious is inter-
esting, considering the likelihood of transduction in food matri-
ces at different pH and temperatures (Imamovic et al., 2009) as
well as under dairy processing conditions (Picozzi et al., 2012).
This fact is of special relevance considering the observations that
many food-processing conditions, such as thermal treatment,
high hydrostatic pressures, or UV or other irradiation (Yamamoto
et al., 2003; Aertsen et al., 2005; Yue et al., 2012), and the addition
of certain compounds during the food production, such as chelat-
ing agents (Imamovic and Muniesa, 2011), salt (Harris et al.,
2012) or antimicrobials (Kimmitt et al., 2000), not only fail to
inactive of the Stx phages, but can enhance Stx phage induction
from their STEC hosts.

PERSISTENCE OF Stx PHAGES
Generally speaking, phages could persist in different environ-
ments or under disinfection processes or inactivation conditions
(Dee and Fogleman, 1992; Durán et al., 2002; Jofre, 2007; Lee and
Sobsey, 2011). In habitats in which the host bacteria are alien,
as fecal bacteria are in the environment, it is likely that phages
persist much better than the bacteria (Ogunseitan et al., 1990;
Muniesa et al., 1999; Durán et al., 2002). Because of their struc-
tural characteristics, their persistence in the environment is high,
and these survival capabilities make bacteriophages especially
suited for movement and gene transfer between different
biomes.

Certain morphologies can be considered more persistent than
others, tailed phages being the ones showing higher persistence

(Muniesa et al., 1999; Prigent et al., 2005; Lin et al., 2010).
Notably, these are the most abundant in different water envi-
ronments (Prigent et al., 2005; Lin et al., 2010). Stx phages
mostly belong to the Siphoviridae and Podoviridae morpholog-
ical types (Rietra et al., 1989; Muniesa et al., 2004a,b; Beutin
et al., 2012), showing similar persistence to that of other groups
of phages (Muniesa et al., 1999; Dumke et al., 2006; Allué-
Guardia et al., 2014) and higher persistence than STEC (Muniesa
et al., 1999; Mauro and Koudelka, 2011; Rode et al., 2011; Allué-
Guardia et al., 2014). Stx phages have been shown to be very
stable under food-processing conditions (Yamamoto et al., 2003;
Aertsen et al., 2005; Imamovic et al., 2009; Rode et al., 2011;
Harris et al., 2012; Yue et al., 2012; Langsrud et al., 2013; Allué-
Guardia et al., 2014). In contrast, they do not seem to persist
so well under strict treatments such as that linked to the com-
post model (Johannessen et al., 2005). Nevertheless, their per-
sistence, as for other phages, enhances their mobility between
the different environments (feces-food-water) (Mauro and
Koudeljka).

Another question is whether the STEC hosts could survive
the time necessary to allow phage release before being killed
by the treatment applied, or if phages, once released, could
remain infectious. Infectivity of Stx phages has been demon-
strated after exposure to certain conditions, and some Stx phages
remain able to generate lysogens, hence to transduce stx (Muniesa
and Jofre, 1998; Imamovic et al., 2009; Rode et al., 2011; Yue
et al., 2012). The capacity to remain infectious after being sub-
jected to a given condition will determine the chances of stx
transduction, the real threat in the generation of new STEC
strains.

INTERFERENCE OF Stx PHAGES IN STEC DETECTION
The identification of STEC by culture methods in food or clini-
cal samples is advisable to confirm the presence of the pathogen
and to further characterize it. However, sometimes strain recov-
ery is not possible because of the low number of STEC cells in
a specific sample, the fact that cells could be stressed or in a
non-culturable state, or because of the interference of accom-
panying microbiota, particularly other E. coli strains that could
confound the detection of the pathogen even when using a
specific culture medium. Culture detection of STEC is, in addi-
tion, a time-consuming method that hinders early diagnosis
of STEC.

Early diagnosis of STEC infection in humans is nevertheless
critical for the treatment of the disease, particularly because of the
contraindication for treating STEC using antimicrobial agents,
and the intense supportive care needed if renal failure occurs
(Wong et al., 2000). The need for fast detection and the associated
difficulties of STEC isolation from stools in patients treated with
antibiotics makes the use of fast and robust molecular methods
advisable for STEC detection.

Current laboratory methods for STEC detection, some stan-
dardized and approved by national legislation, include PCR-based
techniques: either end-point or real-time PCR (Paton and Paton,
2003; Perelle et al., 2004; Gould et al., 2009; Kagkli et al., 2011;
Bibbal et al., 2014). Recently, ISO 13136:2012 (Anonymous,
2012), which uses real-time PCR as the reference technology for
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the detection of the virulence and serogroup-associated genes,
has been included in the amended EU regulation for microbi-
ological criteria for sprouts and the sampling rules for poultry
carcasses and fresh poultry meat (European commission regu-
lation No. 209/2013). With the same aim in mind, molecular
techniques, many based on the information obtained by the
use of next-generation sequencing (NGS) methods, are being
explored and advised (Baquero and Tobes, 2013; Underwood
et al., 2013).

As indicated above, the genomic plasticity of STEC represents
a challenge for discriminating pathogenic strains from other non-
pathogenic E. coli strains present in a given sample. Thus, PCR-
based molecular methods are mainly focused on genes related
with virulence and on genes that identify a specific serotype, such
as rfb genes encoding different O antigens (Maurer et al., 1999).
Identification of the serotype could be useful for epidemiologi-
cal purposes and, generally, virulent strains belong to one of the
serogroups that account for the non-O157 serotype, including
O26, O45, O103, O111, O121, and O145, plus O157:H7 (USDA
FSIS, 2012). Lessons learnt from the last outbreak in Germany
(Karch et al., 2012) forced researchers to include O104:H4 on
the list, and showed that identification of serotype, albeit very
useful when treating known pathotypes or for epidemiological
purposes, is of limited value for dealing with a newly emerging

strain. If STEC isolation is not possible, identifying virulence
genes, alone or preferably in combination, appears to be the best
approach for assessing the presence of STEC in a sample.

However, when dealing with molecular methods applied to a
sample, the presence of free Stx phages, and also other phages
that could harbor virulence genes, represents a challenge for the
use of PCR-based and NGS methodologies. Moreover, when the
protocols include a previous step of selective enrichment of the
target bacteria, this step could also maintain or even propagate
bacteriophages. This is even more significant if we assume that
the methods used for bacterial DNA extraction in these com-
plex matrices will also extract phage DNA (Paton and Paton,
2003; Monday et al., 2007; Grys et al., 2009; ISO 13136:2012).
Therefore, any virulence genes present in phage DNA, notably
stx genes, but also other virulence genes reported in prophages
(e.g., cdt, cif, etc.) (Asakura et al., 2007; Loukiadis et al., 2008)
would generate amplimers (PCR) or reads (NGS) that will be
interpreted as belonging to STEC, while it could be that they orig-
inated in phages. Since in STEC these genes belong to prophages,
and therefore are flanked by phage sequences, there is no easy way
to distinguish whether the target detected is a bacteria or a phage.
If it is a phage, the threat of virulence in humans must be dis-
cussed, but it obviously has reduced potential for virulence and
would not be enough to raise the alarm.

Table 2 | Frequency of STEC isolation by various methods in samples showing positive result for stx (either stx1 or stx2) by PCR methods.

No of stx- No of stx-positive Percentage of PCR stx- References

positive samples by PCR with positive samples with

samples by PCR STEC isolation STEC isolation (%)

Human stools (healthy slaughterhouse workers) 90 8 8.9 Hong et al., 2009

Humans stools (asymptomatic) 196 47 24 Stephan et al., 2000

Human stools (volunteers) 21 1 4.8 Urdahl et al., 2012

Human stools (hospital) 150 1 0.67 Urdahl et al., 2012

Human stools (hospital) 20* 10* 50 Buchan et al., 2013

Children stools (hospital) 21 5 24 Vallières et al., 2013

Children stools (hospital) 19 10 52.6 Pradel et al., 2000

Cattle feces 145 80 55.2 Fremaux et al., 2006

Cattle feces 154 67 43.5 Rogerie et al., 2001

Cattle feces 417 18 4.3 Hofer et al., 2012

Cattle feces 330 162 49.0 Pradel et al., 2000

Bovine hides 301 25 8.3 Monaghan et al., 2012

Bovine carcasses 122 5 4.1 Monaghan et al., 2012

Bovine carcasses 77 16 20.8 Breum and Boel, 2010

Bovine carcasses 91 16 17.6 Rogerie et al., 2001

Cattle environment 179 38 21.2 Fremaux et al., 2006

Beef meat 47 16 34.0 Pradel et al., 2000

Dairy buffalo (feces and milk) 56 20 35.7 Beraldo et al., 2014

Milk (bulk) 32 1 3.1 Trevisani et al., 2014

Milk (filters) 68 7 10.3 Trevisani et al., 2014

Cheese 60 5 8.3 Pradel et al., 2000

Healthy pigs feces 255 62 24.3 Meng et al., 2014

Swine feces 484 196 40.5 Fratamico et al., 2004

Meat products 36 8 22.2 Díaz-Sánchez et al., 2012

*Calculated from the % of positive samples.
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In addition to those well-characterized phages encoding viru-
lence genes in STEC, many lytic phages could mobilize bacterial
genes by generalized transduction. In transduction, after random
packaging of bacterial DNA fragments, the genetic material can
be mobilized by a phage from a donor bacterium and inserted
into a recipient bacterium when it becomes infected by the phage
particle. Despite a lack of clear evidence of generalized trans-
duction relating to STEC, any bacterial gene can be mobilized
via generalized transduction, including chromosome fragments,
though plasmids, transposons and insertion elements, and exam-
ples in enterobacteria can also be found (Mann and Slauch, 1997;
Schmieger and Schicklmaier, 1999).

Generalized transduction is considered a rare event (Bushman,
2002); however, many approaches for STEC detection based on
genomic techniques envisage preliminary steps for the selective or
non-selective enrichment of the target microorganism (Hussein
and Bollinger, 2008). Enrichment to propagate bacteria can cause
the propagation of any sort of phages present in a sample too, a
fact that, firstly, would cause a bias in the population of enriched
bacteria (Muniesa et al., 2005), and secondly, by increasing the
number of phages, would also theoretically cause an increase
in the frequency of generalized transduction. As an example
to illustrate this point, the protocols for P1 generalized trans-
duction include a propagation step between the donor and the
phage to increase the number of generalized transducing particles
(Thomason et al., 2007).

Since Shiga toxin is the main virulence threat in STEC, there
are many examples of stx positive PCR results from samples show-
ing negative detection of culturable STEC. The percentage of
samples showing STEC isolates among PCR stx-positive samples
(either stools of food samples) is in many reports no higher than
50% (Table 2). In clinical stools samples this could be attributable
to previous treatment with antimicrobial agents or to a disease
being diagnosed late in its course. In food samples it could also
be attributable to the presence of non-culturable microorganisms
or the presence of bacteria in very low numbers. However, con-
sidering the presence of phages as described above, their role in
these positive PCR detections or their involvement in sequences
generated by NGS cannot be excluded.

AVOIDING PHAGE INTERFERENCE
The issue that arises is how to avoid phage interference. In theory,
several methods could be applied to eliminate phages from the
equation. These are mostly based on dismissing the phage pop-
ulation from the sample without interfering with the bacterial
population and avoiding complicated steps in the methodology.
Some protocols use a centrifugation step after the enrichment
culture, and only the pellet containing bacteria is used for DNA
extraction (Feng et al., 2011). This method would reduce the
number of phages present in the supernatant of the enrichment;
though to what extent, has not been tested. Still, phages present
in the original samples would have propagated and would still be
present in the bacterial pellet.

Filtration has also been proposed to separate phages from
the sample and has been widely used to purify phage stocks
or phages from a sample before counting (Brock, 1983; EPA,
2000). Microfiltration is mostly applied to retain viruses using

the filter and clarify the sample (Van Reis and Zydney, 2001;
Saxena et al., 2008), while here the aim is to eliminate phages
by passing them through the filter but retaining the bacteria. The
selection of the most efficient membrane, in terms of pore size
and chemical structure, would be critical with this purpose in
mind. The use of 0.22 or 0.45 µm low protein binding mem-
branes that do not retain phages would be advisable. Among
these, polyvinylidene fluoride (PVDF), polyethersulfone (PES) or
cellulose ester membranes saturated with beef extract have been
proposed (Anonymous, 2000; EPA, 2000; Papageorgiou et al.,
2000; Mocé-Llivina et al., 2003), and PVDF membranes have been
shown to reduce by 2–3 log10 the phages present in a bacterial
enrichment culture (Muniesa et al., 2005). Complete elimination
of all phages present in the samples will probably not be accom-
plished only by adding a single filtration step, but optimization
of this approach would reduce the phage population enough to
avoid interference in the molecular detection methods without
adding complicated steps to the already-established protocols and
without reducing the bacterial population. However, it must be
borne in mind that filtration would turn out to be more use-
ful when treating aqueous samples or clear homogenates of solid
samples and with a variable efficiency depending on the complex-
ity of the matrix, with lower recoveries expected when it is applied
to solid or mixed samples that could clog the membranes.

ACKNOWLEDGMENTS
This study was supported by the Spanish Ministry of Education
and Science (AGL2012-30880) and the Generalitat de Catalunya
(2009SGR1043) and by the Spanish Reference Network of
Biotechnology (XeRBa). Alex Martínez-Castillo has a grant from
the Spanish Ministry.

REFERENCES
Aertsen, A., Faster, D., and Michiels, C. W. (2005). Induction of Shiga toxin-

converting prophage in Escherichia coli by high hydrostatic pressure. Appl.
Environ. Microbiol. 71, 1155–1162. doi: 10.1128/AEM.71.3.1155-1162.2005

Allué-Guardia, A., Martínez-Castillo, A., and Muniesa, M. (2014). Persistence
of infectious Stx bacteriophages after disinfection treatments. Appl. Environ.
Microbiol. 80, 2142–2149. doi: 10.1128/AEM.04006-13

Anonymous. (2000). ISO 10705-2: Water Quality. Detection and Enumeration
of Bacteriophages -Part 2: Enumeration of Somatic Coliphages. Geneva:
International Organisation for Standardisation.

Anonymous. (2005). Commission Regulation (EC) No 2073/2005 of 15 November
2005 on microbiological criteria for foodstuffs. Official J. Eur. Commun.
338, 11–25.

Anonymous. (2012). ISO 13136:2012. Microbiology of Food and Animal Feed – Real-
time Polymerase Chain Reaction (PCR)-Based Method for the Detection of Food-
borne Pathogens – Horizontal Method for the Detection of Shiga Toxin-producing
Escherichia coli (STEC) and the Determination of O157, O111, O26, O103 and
O145 Serogroups. Geneva: International Organisation for Standardisation.

Asakura, M. A., Hinenoya, M. S., Alam, K., Shima, S. H., Zahid, L., Shi, N., et al.
(2007). An inducible lambdoid prophage encoding cytolethal distending toxin
(Cdt-I) and a type III effector protein in enteropathogenic Escherichia coli. Proc.
Natl. Acad. Sci. U.S.A. 104, 14483–14488. doi: 10.1073/pnas.0706695104

Baquero, F., and Tobes, R. (2013). Bloody coli: a gene cocktail in Escherichia coli
O104:H4. MBio 4:e00066-13. doi: 10.1128/mBio.00066-13

Beraldo, L. G., Borges, C. A., Maluta, R. P., Cardozo, M. V., Rigobelo, E. C., and de
Ávila, F. A. (2014). Detection of Shiga toxigenic (STEC) and enteropathogenic
(EPEC) Escherichia coli in dairy buffalo. Vet. Microbiol. 170, 162–166. doi:
10.1016/j.vetmic.2014.01.023

Beutin, L., Hammerl, J. A., Strauch, E., Reetz, J., Dieckmann, R., Kelner-Burgos,
Y., et al. (2012). Spread of a distinct Stx2-encoding phage prototype among

Frontiers in Cellular and Infection Microbiology www.frontiersin.org April 2014 | Volume 4 | Article 46 | 5

http://www.frontiersin.org/cellular_and_infection_microbiology
http://www.frontiersin.org
http://www.frontiersin.org/cellular_and_infection_microbiology/archive


Martínez-Castillo and Muniesa Implications of free Stx phages

Escherichia coli O104:H4 strains from outbreaks in Germany, Norway, and
Georgia. J. Virol. 86, 10444–10455. doi: 10.1128/JVI.00986-12

Bibbal, D., Loukiadis, E., Kérourédan, M., Peytavin de Garam, C., Ferré, F., Cartier,
P., et al. (2014). Intimin gene (eae) subtype-based real-time PCR strategy for
specific detection of shiga toxin-producing Escherichia coli serotypes O157:H7,
O26:H11, O103:H2, O111:H8, and O145:H28 in cattle feces. Appl. Environ.
Microbiol. 80, 1177–1184. doi: 10.1128/AEM.03161-13

Breum, S. O., and Boel, J. (2010). Prevalence of Escherichia coli O157 and verocyto-
toxin producing E. coli(VTEC) on Danish beef carcasses. Int. J. Food Microbiol.
141, 90–96. doi: 10.1016/j.ijfoodmicro.2010.03.009

Brock, T. D. (1983). Membrane Filtration: A User’s Guide and Reference Manual.
Madison, WI: Science Technology Springer-Verlag.

Buchan, B. W., Olson, W. J., Pezewski, M., Marcon, M. J., Novicki, T., Uphoff,
T. S., et al. (2013). Clinical evaluation of a real-time PCR assay for identifica-
tion of Salmonella, Shigella, Campylobacter (Campylobacter jejuni and C. coli),
and shiga toxin-producing Escherichia coli isolates in stool specimens. J. Clin.
Microbiol. 51, 4001–4007. doi: 10.1128/JCM.02056-13

Bushman, F. (2002). Lateral DNA Transfer. New York, NY: Cold Spring Harbor
Laboratory.

Dee, S. W., and Fogleman, J. C. (1992). Rates of inactivation of waterborne
coliphages by monochloramine. Appl. Environ. Microbiol. 58, 3136–3141.

Díaz-Sánchez, S., Sánchez, S, Sánchez, M., Herrera-León, S., Hanning, I., and Vidal,
D. (2012). Detection and characterization of Shiga toxin-producing Escherichia
coli in game meat and ready-to-eat meat products. Int. J. Food Microbiol. 160,
179–182. doi: 10.1016/j.ijfoodmicro.2012.09.016

Dumke, R., Schroter-Bobsin, U., Jacobs, E., and Roske, I. (2006). Detection
of phages carrying the Shiga toxin 1 and 2 genes in waste water and
river water samples. Lett. Appl. Microbiol. 42, 48–53. doi: 10.1111/j.1472-
765X.2005.01809.x

Durán, A. E., Muniesa, M., Méndez, X., Valero, F., Lucena, F., and Jofre, J. (2002).
Removal and inactivation of indicator bacteriophages in fresh waters. J. Appl.
Microbiol. 92, 338–347. doi: 10.1046/j.1365-2672.2002.01536.x

Environmental Protection Agency (EPA). (2000). Method 1602: Male-specific
(F+) and Somatic Coliphages in Water by Single Agar Layer (SAL) Procedure.
Washington DC: Office of Water. United States Environmental Protection
Agency.

Erickson, M. C., and Doyle, M. P. (2007). Food as a vehicle for transmission of
Shiga toxin-producing Escherichia coli. J. Food Prot. 70, 2426–2449.

Feng, P., Weagant, S. D., and Jinneman, K. (2011). “Diarrheagenic Escherichia
coli,” in Inited States Food and Drug Administration. Bacteriological Analytical
Manual. Available online at: http://www.fda.gov/Food/FoodScienceResearch/
LaboratoryMethods/ucm070080.htm

Fratamico, P. M., Bagi, L. K., Bush, E. J., and Solow, B. T. (2004). Prevalence and
characterization of shiga toxin-producing Escherichia coli in swine feces recov-
ered in the National Animal Health Monitoring System’s Swine 2000 study.
Appl. Environ. Microbiol. 70, 7173–7178. doi: 10.1128/AEM.70.12.7173-71
78.2004

Fremaux, B., Raynaud, S., Beutin, L., and Rozand, C.V. (2006). Dissemination and
persistence of Shiga toxin-producing Escherichia coli (STEC) strains on French
dairy ferms. Vet. Microbiol. 117, 180–191. doi: 10.1016/j.vetmic.2006.04.030

Garcia-Aljaro, C., Muniesa, M., Jofre, J., and Blanch, A. R. (2009). Genotypic and
phenotypic diversity among induced, stx2-carrying bacteriophages from envi-
ronmental Escherichia coli strains. Appl. Environ. Microbiol. 75, 329–336. doi:
10.1128/AEM.01367-08

Gould, L. H., Bopp, C., Strockbine, N., Atkinson, R., Baselski, V., Body, B., et al.
(2009). Recommendations for diagnosis of shiga toxin–producing Escherichia
coli infections by clinical laboratories. MMWR Recomm. Rep. 58, 1–14.

Grys, T. E., Sloan, L. M., Rosenblatt, J. E., and Patel, R. (2009). Rapid and sen-
sitive detection of Shiga toxin-producing Escherichia coli from non-enriched
stool specimens by real-time PCR in comparison to enzyme immunoassay and
culture. J. Clin. Microbiol. 47, 2008–2012. doi: 10.1128/JCM.02013-08

Harris, S. M., Yue, W. F., Olsen, S. A., Hu, J., Means W. J., McCormick, R. J., et al.
(2012). Salt at concentrations relevant to meat processing enhances Shiga toxin
2 production in Escherichia coli O157:H7. Int. J. Food Microbiol. 159, 186–192.
doi: 10.1016/j.ijfoodmicro.2012.09.007

Hofer, E., Stephan, R., Reist, M., and Zweifel, C. (2012). Application of a real-time
PCR-based system for monitoring of O26, O103, O111, O145 and O157 Shiga
toxin-producing Escherichia coli in cattle at slaughter. Zoonoses Public Health 59,
408–415. doi: 10.1111/j.1863-2378.2012.01468.x

Hong, S., Oh, K. H., Cho, S. H., Kim, J. C., Park, M. S., Lim, H. S., et al. (2009).
Asymptomatic healthy slaughterhouse workers in South Korea carrying Shiga
toxin-producing Escherichia coli. FEMS Immunol. Med. Microbiol. 56, 41–47.
doi: 10.1111/j.1574-695X.2009.00545.x

Huang, A., Friesen, J., and Brunton, J. L. (1987). Characterization of a bacterio-
phage that carries the genes for production of Shiga-like toxin 1 in Escherichia
coli. J. Bacteriol. 169, 4308–4312.

Hussein, H. S., and Bollinger, L. M. (2008). Influence of selective media
on successful detection of Shiga toxin-producing Escherichia coli in food,
fecal, and environmental samples. Foodborne Pathog. Dis. 5, 227–244. doi:
10.1089/fpd.2008.0081

Imamovic, L., Ballesté, E., Jofre, J., and Muniesa, M. (2010). Quantification
of Shiga toxin-converting bacteriophages in wastewater and in fecal samples
by real-time quantitative PCR. Appl. Environ. Microbiol. 76, 5693–5701. doi:
10.1128/AEM.00107-10

Imamovic, L., Jofre, J., Schmidt, H., Serra-Moreno, R., and Muniesa, M. (2009).
Phage-mediated Shiga toxin 2 gene transfer in food and water. Appl. Environ.
Microbiol. 75, 1764–1768. doi: 10.1128/AEM.02273-08

Imamovic, L., and Muniesa, M. (2011). Quantification and evaluation of infec-
tivity of shiga toxin-encoding bacteriophages in beef and salad. Appl. Environ.
Microbiol. 77, 3536–3540. doi: 10.1128/AEM.02703-10

Jofre, J. (2007). “Indicators of waterborne enteric viruses in human viruses
in water,” in Series Perspectives in Medical Virology, Vol. 17, ed A. Bosch
(Amsterdam: Elsevier), 227–249. doi: 10.1016/S0168-7069(07)17011-7

Johannessen, G. S., James, C. E., Allison, H. E., Smith, D. L., Saunders, J.
R., and McCarthy, A. J. (2005). Survival of a Shiga toxin-encoding bac-
teriophage in a compost model. FEMS Microbiol. Lett. 245, 369–375. doi:
10.1016/j.femsle.2005.03.031

Kagkli, D. M., Weber, T. P., Van den Bulcke, M., Folloni, S., Tozzoli, R., Morabito,
S., et al. (2011). Application of the modular approach to an in-house validation
study of real-time PCR methods for the detection and serogroup determination
of verocytotoxigenic Escherichia coli. Appl. Environ. Microbiol. 77, 6954–6963.
doi: 10.1128/AEM.05357-11

Karch, H., Denamur, E., Dobrindt, U., Finlay, B. B., Hengge, R., Johannes,
L., et al. (2012). The enemy within us: lessons from the 2011 European
Escherichia coli O104:H4 outbreak. EMBO Mol. Med. 4, 841–848. doi:
10.1002/emmm.201201662

Kimmitt, P. T., Harwood, C. R., and Barer, M. R. (2000). Toxin gene expression by
Shiga toxin-producing Escherichia coli: the role of antibiotics and the bacterial
SOS response. Emerg. Infect. Dis. 6, 458–465. doi: 10.3201/eid0605.000503

Köhler, B., Karch, H., and Schmidt, H. (2000). Antibacterials that are used as
growth promoters in animal husbandry can affect the release of Shiga-toxin-
2-converting bacteriophages and Shiga toxin 2 from Escherichia coli strains.
Microbiology 146, 1085–1090.

Langsrud, S., Heir, E., and Rode, T. M. (2013). Survival of Shiga toxin-producing
Escherichia coli and Stx bacteriophages in moisture enhanced beef. Meat Sci. doi:
10.1016/j.meatsci.2013.09.022. [Epub ahead of print].

Lee, H. S., and Sobsey M. D. (2011). Survival of prototype strains of somatic
coliphage families in environmental waters and when exposed to UV low-
pressure monochromatic radiation or heat. Water Res. 45, 3723–3734. doi:
10.1016/j.watres.2011.04.024

Lin, L., Honh, W., Ji, X., Han, J., Huang, L., and Wei, Y. (2010). Isolation
and characterization of an extremely long tail Thermus bacteriophage
from Tegchong hot springs in China. J. Basic Microbiol. 50, 452–456. doi:
10.1002/jobm.201000116

Loukiadis, E., Nobe, R., Herold, S., Tramuta, C., Ogura, Y., Ooka, T., et al.
(2008). Distribution, functional expression, and genetic organization of Cif, a
phage-encoded type III-secreted effector from enteropathogenic and enterohe-
morrhagic Escherichia coli. J. Bacteriol. 190, 275–285. doi: 10.1128/JB.00844-07

Mann, B. A., and Slauch, J. M. (1997). Transduction of low copy numbers of
plasmids by bacteriophages by bacteriophage P22. Genetics 146, 447–456.

Martinez-Castillo, A., Quirós, P., Navarro, F., Miró, E., and Muniesa, M. (2013).
Shiga toxin 2-encoding bacteriophages in human fecal samples from healthy
individuals. Appl. Environ. Microbiol. 79, 4862–4868. doi: 10.1128/AEM.01
158-13

Maurer, J. J., Schmidt, D., Petrosko, P., Sanchez, S., Bolton, L., and Lee, M.
D. (1999). Development of primers to O-antigen biosynthesis genes for spe-
cific detection of Escherichia coli O157 by PCR. Appl. Environ. Microbiol. 65,
2954–2960.

Frontiers in Cellular and Infection Microbiology www.frontiersin.org April 2014 | Volume 4 | Article 46 | 6

http://www.fda.gov/Food/FoodScienceResearch/LaboratoryMethods/ucm070080.htm
http://www.fda.gov/Food/FoodScienceResearch/LaboratoryMethods/ucm070080.htm
http://www.frontiersin.org/cellular_and_infection_microbiology
http://www.frontiersin.org
http://www.frontiersin.org/cellular_and_infection_microbiology/archive


Martínez-Castillo and Muniesa Implications of free Stx phages

Mauro, S. A., and Koudelka, G. B. (2011). Shiga toxin: expression, distribution, and
its role in the environment. Toxins 3, 608–625. doi: 10.3390/toxins3060608

Melton-Celsa, A., Mohawk, K., Teel, L., and O’Brien, A. (2012). Pathogenesis
of Shiga-toxin producing Escherichia coli. Curr. Top Microbiol. Immunol. 357,
67–103. doi: 10.1007/82_2011_176

Meng, Q., Bai, X., Zhao, A., Lan, R., Du, H., Wang, T., et al. (2014).
Characterization of Shiga toxin- producing Escherichia coli isolated from healthy
pigs in China. BMC Microbiol. 14:5. doi: 10.1186/1471-2180-14-5

Mocé-Llivina, L., Jofre, J., and Muniesa, M. (2003). Comparison of polyvinylidene
fluoride and polyether sulfone membranes in filtering viral suspensions. J. Virol.
Methods. 109, 99–101. doi: 10.1016/S0166-0934(03)00046-6

Monaghan, A., Byrne, B., Fanning, S., Sweeney, T., McDowell, D., and Bolton,
D. J. (2012). Serotypes and virulotypes of non-O157 shiga-toxin producing
Escherichia coli (STEC) on bovine hides and carcasses. Food Microbiol. 32,
223–229. doi: 10.1016/j.fm.2012.06.002

Monday, S. R., Beisaw, A., and Feng, P. C. (2007). Identification of Shiga toxigenic
Escherichia coli seropathotypes A and B by multiplex PCR. Mol. Cell Probes 21,
308–311. doi: 10.1016/j.mcp.2007.02.002

Muhldorfer, I., Hacker, J., Keusch, G. T., Acheson, D. W. K., Tschaepe, H., Kane, A.
V., et al. (1996). Regulation of the Shiga-like toxin II operon in Escherichia coli.
Infect. Immun. 64, 495–502.

Muniesa, M., Blanch, A. R., Lucena, F., and Jofre, J. (2005). Bacteriophages may
bias outcome of bacterial enrichment cultures. Appl. Environ. Microbiol. 71,
4269–4275. doi: 10.1128/AEM.71.8.4269-4275.2005

Muniesa, M., Blanco, J. E., De Simón, M., Serra-Moreno, R., Blanch, A. R., and
Jofre, J. (2004a). Diversity of stx2 converting bacteriophages induced from
Shiga-toxin-producing Escherichia coli strains isolated from cattle. Microbiology
150, 2959–2971. doi: 10.1099/mic.0.27188-0

Muniesa, M., and Jofre, J. (1998). Abundance in sewage of bacteriophages that
infect Escherichia coli O157:H7 and that carry the Shiga toxin 2 gene. Appl.
Environ. Microbiol. 64, 2443–2448.

Muniesa, M., and Jofre, J. (2000). Occurrence of phages infecting Escherichia coli
O157H7 carrying the stx 2 gene in sewage from different countries. FEMS
Microbiol. Lett. 183, 197–200. doi: 10.1111/j.1574-6968.2000.tb08957.x

Muniesa, M., Lucena, F., and Jofre, J. (1999). Comparative survival of free shiga
toxin 2-encoding phages and Escherichia coli strains outside the gut. Appl.
Environ. Microbiol. 65, 5615–5618.

Muniesa, M., Serra-Moreno, R., and Jofre, J. (2004b). Free Shiga toxin bac-
teriophages isolated from sewage showed diversity although the stx genes
appeared conserved. Environ. Microbiol. 6, 716–725. doi: 10.1111/j.1462-
2920.2004.00604.x

Neely, M. N., and Friedman, D. I. (1998). Functional and genetic analysis of
regulatory regions of coliphage H-19B: location of shiga-like toxin and lysis
genes suggest a role for phage functions in toxin release. Mol. Microbiol. 28,
1255–1267. doi: 10.1046/j.1365-2958.1998.00890.x

Newland, J. W., Strockbine, N. A., Miller, S. F., O’Brien, A. D., and Holmes,
R. K. (1985). Cloning of Shiga-like toxin structural genes from a toxin con-
verting phage of Escherichia coli. Science 230, 179–181. doi: 10.1126/science.
2994228

O’Brien, A. D., Marques, L. R., Kerry, C. F., Newland, J. W., and Holmes, R. K.
(1989). Shiga-like toxin converting phage of enterohemorrhagic Escherichia coli
strain 933. Microb. Pathog. 6, 381–390. doi: 10.1016/0882-4010(89)90080-6

Ogunseitan, O. A., Sayler, G. S., and Miller, R. V. (1990). Dynamic interactions
of Pseudomonas aeruginosa and bacteriophages in lake water. Microb. Ecol. 19,
171–185.

Pacheco, A. R., and Sperandio, V. (2009). Inter-kingdom signaling: chemical lan-
guage between bacteria and host. Curr. Opin. Microbiol. 12, 192–198. doi:
10.1016/j.mib.2009.01.006

Papageorgiou, G. T., Mocé-Llivina, L., Christodoulou, C. G., Lucena, F., Akkelidou,
D., Ioannou, E., et al. (2000). A simple methodological approach for count-
ing and identifying culturable viruses adsorbed to cellulose nitrate membrane
filters. Appl. Environ. Microbiol. 66, 194–198. doi: 10.1128/AEM.66.1.194-
198.2000

Paton, J. C., and Paton, A. W. (2003). “Methods for detection of STEC in humans:
an overview,” in Escherichia coli: Shiga Toxin Methods and Protocols. Methods in
Molecular Medicine. Vol. 73, eds D. Philpott and F. Ebel (Totowa, NJ: Humana
Press), 9–26.

Perelle, S., Dilasser, F., Grout, J., and Fach, P. (2004). Detection by 5′-nuclease PCR
of Shiga-toxin producing Escherichia coli O26, O55, O91, O103, O111, O113,

O145 and O157:H7, associated with the world’s most frequent clinical cases.
Mol. Cell. Probe. 18, 185–192. doi: 10.1016/j.mcp.2003.12.004

Picozzi, C., Volponi, G., Vigentini, I., Grassi, S., and Foschino, R. (2012).
Assessment of transduction of Escherichia coli Stx2-encoding phage in
dairy process conditions. Int. J. Food Microbiol. 153, 388–394. doi:
10.1016/j.ijfoodmicro.2011.11.031

Pradel, N., Livrelli, V., De Champs, C., Palcoux, J. B., Reynaud, A., Scheutz, F., et al.
(2000). Prevalence and characterization of Shiga toxin-producing Escherichia
coli isolated from cattle, food, and children during a one-year prospective study
in France. J. Clin. Microbiol. 38, 1023–1031.

Prigent, M., Leroy, M., Confalonieri, F., Dutertre, M., and DuBow, M. S. (2005). A
diversity of bacteriophages forms and genomes can be isolated from the surface
sands of Sahara Desert. Extremophiles 9, 289–296. doi: 10.1007/s00792-005-
0444-5

Rietra, P. J., Willshaw, G. A., Smith, H. R., Field, A. M., Scotland, S. M., and Rowe,
B. (1989). Comparison of Vero-cytotoxin-encoding phages from Escherichia
coli of human and bovine origin. J. Gen. Microbiol. 135, 2307–2318. doi:
10.1099/00221287-135-8-2307

Rode, T. M., Axelsson, L., Granum, P. E., Heir, E., Holck, A., and L’abée-Lund,
T. M. (2011). High stability of Stx2 phage in food and under food-processing
conditions. Appl. Environ. Microbiol. 77, 5336–5341. doi: 10.1128/AEM.00
180-11

Rogerie, F., Marecata, A., Gambadeb, S., Duponda, F., Beauboisb, P., and Langea,
M. (2001). Characterization of Shiga toxin producing E. coli and O157 serotype
E. coli isolated in France from healthy domestic cattle. Int. J. Food Microbiol.
63, 217–223. doi: 10.1016/S0168-1605(00)00422-0

Rooks, D. J., Libberton, B., Woodward, M. J., Allison, H. E., and McCarthy, A.
J. (2012). Development and application of a method for the purification of
free shigatoxigenic bacteriophage from environmental samples. J. Microbiol.
Methods 91, 240–245. doi: 10.1016/j.mimet.2012.08.017

Rooks, D. J., Yan, Y., McDonald, J. E., Woodward, M. J., McCarthy, A. J., and
Allison, H. E. (2010). Development and validation of a qPCR-based method for
quantifying Shiga toxin-encoding and other lambdoid bacteriophages. Environ.
Microbiol. 12, 1194–1204. doi: 10.1111/j.1462-2920.2010.02162.x

Saxena, A., Tripathi, B. P., Kumar, M., and Shahi, V. K. (2008). Membrane-based
techniques for the separation and purification of proteins: an overview. Adv.
Colloid Interface 145, 1–22. doi: 10.1016/j.cis.2008.07.004

Schmieger, H., and Schicklmaier, P. (1999). Transduction of multiple drug resis-
tance of Salmonella enterica serovar Typhimurium DT104. FEMS Microbiol.
Lett. 170, 251–256. doi: 10.1111/j.1574-6968.1999.tb13381.x

Stephan, R., Ragettli, S., and Untermann, F. (2000). Prevalence and character-
istics of verotoxin-producing Escherichia coli (VTEC) in stool samples from
asymptomatic human carriers working in the meat processing industry in
Switzerland. J. Appl. Microbiol. 88, 335–341. doi: 10.1046/j.1365-2672.2000.
00965.x

Tanji, Y., Mizoguchi, K., Yoichi, M., Morita, M., Kijima, N., Kator, H., et al. (2003).
Seasonal change and fate of coliphages infected to Escherichia coli O157:H7 in
a waste water treatment plant. Water Res. 37, 1136–1142. doi: 10.1016/S0043-
1354(02)00464-5

Tarr, P. I., Gordon, C. A., and Chandler, W. L. (2005). Shiga-toxin-producing
Escherichia coli and haemolytic uraemic syndrome. Lancet 365, 1073–1086. doi:
10.1016/S0140-6736(05)71144-2

Thomason, L. C., Costantino, N., and Court, D. L. (2007). E. coli genome manip-
ulation by P1 transduction. Curr. Protoc. Mol. Biol. Chapter 1:Unit 1.17. doi:
10.1002/0471142727.mb0117s79

Toshima, H., Yoshimura, A., Arikawa, K., Hidaka, A., Ogasawara, J., Hase, A.,
et al. (2007). Enhancement of Shiga toxin production in enterohemorrhagic
Escherichia coli serotype O157:H7 by DNase colicins. Appl. Environ. Microbiol.
73, 7582–7588. doi: 10.1128/AEM.01326-07

Trevisani, M., Mancusi, R., Delle, Donne, G., Bacci, C., Bassi, L., et al. (2014).
Detection of Shiga toxin (Stx)-producing Escherichia coli (STEC) in bovine
dairy herds in Northern Italy. Int. J. Food. Microbiol. doi: 10.1016/j.ijfoodmicro.
2013.12.033. [Epub ahead of print].

Tyler, J. S., Miller, M. J., and Friedman, D. I. (2004). The operator and early pro-
moter region of the Shiga toxin type 2-ecoding bacteriophage 933W and control
of toxin expression. J. Bacteriol. 186, 7670–7679. doi: 10.1128/JB.186.22.7670-
7679.2004

Underwood, A. P., Dallman, T., Thomson, N. R., Williams, M., Harker, K., Perry,
N., et al. (2013). Public health value of next-generation DNA sequencing of

Frontiers in Cellular and Infection Microbiology www.frontiersin.org April 2014 | Volume 4 | Article 46 | 7

http://www.frontiersin.org/cellular_and_infection_microbiology
http://www.frontiersin.org
http://www.frontiersin.org/cellular_and_infection_microbiology/archive


Martínez-Castillo and Muniesa Implications of free Stx phages

enterohemorrhagic Escherichia coli isolates from an outbreak. J. Clin. Microbiol.
51, 232–237. doi: 10.1128/JCM.01696-12

Urdahl, A. M., Solheim, H. T., Vold, L., Hasseltvedt, V., and Wasteson, Y. (2012).
Shiga toxin-encoding genes (stx genes) in human fecal samples. APMIS 121,
202–210. doi: 10.1111/j.1600-0463.2012.02957.x

USDA FSIS. (2012). Risk Profile for Pathogenic Non-O157 Shiga Toxin-
Producing Escherichia coli (non-O157 STEC). Available online at:
http://www.fsis.usda.gov/PDF/Non_O157_STEC_Risk_Profile_May2012.pdf

Vallières, E., Saint-Jean, M., and Rallu, F. (2013). Comparison of three different
methods for detection of Shiga toxin-producing Escherichia coli in a tertiary
pediatric care center. J. Clin. Microbiol. 51, 481–486. doi: 10.1128/JCM.02219-12

Van Reis, R., and Zydney, A. (2001). Membrane separations in biotechnology. Curr.
Opin. Biotechnol. 12, 208–211. doi: 10.1016/S0958-1669(00)00201-9

Wagner, P. L., Neely, M. N., Zhang, X., Acheson, D. W., Waldor, M. K., and
Friedman, D. I. (2001). Role for a phage promoter in Shiga toxin 2 expres-
sion from a pathogenic Escherichia coli strain. J. Bacteriol. 183, 2081–2085. doi:
10.1128/JB.183.6.2081-2085.2001

Wester, A. L., Brandal, L. T., and Dahle, U. R. (2013). Extraintestinal pathogenic
Escherichia coli carrying the Shiga Toxin gene stx2. J. Clin. Microbiol. 51,
4279–4280. doi: 10.1128/JCM.01349-13

Wong, C. S., Jelacic, S., Habeeb, R. L., Watkins, S. L., and Tarr, P. I. (2000).
The risk of the hemolytic-uremic syndrome after antibiotic treatment of
Escherichia coli O157:H7 infections. N. Engl. J. Med. 342, 1930–1936. doi:
10.1056/NEJM200006293422601

Yamamoto, T., Kojio, S., Taneike, I., Nakagawa, S., Iwakura, N., and Wakisaka-
Saito, N. (2003). 60Co irradiation of Shiga toxin (Stx)-producing Escherichia
coli induces Stx phage. FEMS Microbiol. Lett. 222, 115–121. doi: 10.1016/S0378-
1097(03)00259-3

Yan, Y., Shi, Y., Cao, D., Meng, X., Xia, L., and Sun, J. (2011). Prevalence of Stx
phages in environments of a pig farm and lysogenic infection of the field E.
coli O157 isolates with a recombinant converting Phage. Curr. Microbiol. 62,
458–464. doi: 10.1007/s00284-010-9729-8

Yue, W. F., Du, M., and Zhu, M. J. (2012). High temperature in combination with
UV irradiation enhances horizontal transfer of stx2 gene from E. coli O157:H7
to non-pathogenic E. coli. PLoS ONE 7:e31308. doi: 10.1371/journal.pone.
0031308

Conflict of Interest Statement: The authors declare that the research was con-
ducted in the absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Received: 06 March 2014; paper pending published: 22 March 2014; accepted: 27
March 2014; published online: 16 April 2014.
Citation: Martínez-Castillo A and Muniesa M (2014) Implications of free Shiga
toxin-converting bacteriophages occurring outside bacteria for the evolution and the
detection of Shiga toxin-producing Escherichia coli. Front. Cell. Infect. Microbiol. 4:46.
doi: 10.3389/fcimb.2014.00046
This article was submitted to the journal Frontiers in Cellular and Infection
Microbiology.
Copyright © 2014 Martínez-Castillo and Muniesa. This is an open-access arti-
cle distributed under the terms of the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction in other forums is permitted, pro-
vided the original author(s) or licensor are credited and that the original pub-
lication in this journal is cited, in accordance with accepted academic practice.
No use, distribution or reproduction is permitted which does not comply with
these terms.

Frontiers in Cellular and Infection Microbiology www.frontiersin.org April 2014 | Volume 4 | Article 46 | 8

http://www.fsis.usda.gov/PDF/Non_O157_STEC_Risk_Profile_May2012.pdf
http://dx.doi.org/10.3389/fcimb.2014.00046
http://dx.doi.org/10.3389/fcimb.2014.00046
http://dx.doi.org/10.3389/fcimb.2014.00046
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.frontiersin.org/cellular_and_infection_microbiology
http://www.frontiersin.org
http://www.frontiersin.org/cellular_and_infection_microbiology/archive

	Implications of free Shiga toxin-converting bacteriophages occurring outside bacteria for the evolution and the detection of Shiga toxin-producing Escherichia coli
	Stx Phages in Fecally Polluted Waters
	Stx Phages in Feces
	Stx Phages in Food
	Persistence of Stx Phages
	Interference of Stx Phages in Stec Detection
	Avoiding Phage Interference
	Acknowledgments
	References


