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Persister cells form a multi-drug tolerant subpopulation within an isogenic culture of
bacteria that are genetically susceptible to antibiotics. Studies with different Gram negative
and Gram positive bacteria have identified a large number of genes associated with
the persister state. In contrast, the revelation of persister metabolism has only been
addressed recently. We here summarize metabolic aspects of persisters, which includes
an overview about the bifunctional role of selected carbohydrates as both triggers for
the exit from the drug tolerant state and metabolites which persisters feed on. Also
alarmones as indicators for starvation have been shown to influence persister levels via
different signaling cascades involving the activation of toxin-antitoxin systems and other
regulatory factors. Finally, recent data obtained by 13C-isotopolog profiling demonstrated
an active amino acid anabolism in Staphylococcus aureus cultures challenged with high
drug concentrations. Understanding the metabolism of persister cells poses challenges
but also paves the way for the development of anti-persister compounds.
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INTRODUCTION
The treatment of recurrent bacterial infections is often a tedious
trial due to antibiotic recalcitrance. This is not solely caused by
resistance but also implies persister cells which are (multi-) drug-
tolerant (Lewis, 2010). Persisters were first described in 1944
when killing of S. aureus with penicillin was found to leave a
few survivor cells behind (Bigger, 1944). Notably the antibiotic
tolerance of persisters is not genetically manifested, as progenies
of persisters are as susceptible as the parent strains (Keren et al.,
2004a). Consistent with a number of studies, persisters among an
isogenic bacterial culture temporarily reside in a slow- or non-
growing state and arise both stochastically and in response to
environmental cues. For instance, biofilms accommodate a high
level of persisters (Lewis, 2005) and their number within a cul-
ture depends greatly on the growth stage, with stationary cultures
exhibiting much higher persister levels compared to the expo-
nential phase (Keren et al., 2004a; Lechner et al., 2012). This
correlation was confirmed by further studies that established a
strong influence between inoculum age and persister frequency
(Luidalepp et al., 2011). Retarded protein synthesis as well as
protein aggregate accumulation were found to affect the per-
sister levels of a culture (Kwan et al., 2013; Leszczynska et al.,
2013), as does bacterial compound signaling (Keller and Surette,
2006). Molecules such as indole, 2′ Amino-acetophenone, or CSP
pheromone, some of which are quorum sensing (QS) messen-
gers, can induce drug tolerance and the persister state in different
bacteria (Leung and Levesque, 2012; Vega et al., 2012, 2013;
Que et al., 2013). Akin to QS, some bacteria have been shown
to produce so called resuscitation-promoting factors, converting
dormant cells back to a more active state. Among several exam-
ples apparently based upon similar mechanisms, the addition of
spent culture medium to dormant S. aureus cells led to accel-
erated awakening (Mukamolova et al., 1999; Pinto et al., 2013;

Pascoe et al., 2014). The retention of a viable state over longer
periods of time and particularly the reversion from dormancy
to a growing state requires metabolic activity. One major ques-
tion is how persisters maintain a critical degree of metabolism
over extended periods of time without being killed during hostile
conditions. Here, we sum up recent findings on the involvement
of metabolism in the persister state (Figure 1) and illustrate the
experimental difficulties and challenges accessing this topic. The
reader is also referred to a recent review article by Amato et al.
(2014).

GENES LINKING METABOLISM AND THE PERSISTER STATE
The number of identified genes associated with the persister state
is steadily increasing and toxin-antitoxin (TA) systems act as key
regulators in this regard (Lewis, 2010; Schuster and Bertram,
2013). These systems usually comprise a toxin that blocks or
corrupts essential cellular functions and an antitoxin abrogat-
ing the toxin’s activity. TA systems participate in multiple pro-
cesses in bacteria, ranging from stress response to regulation
of metabolism and survival inside host cells (McKenzie et al.,
2012; Helaine et al., 2014). The issue of how TA systems are
controlled and how this leads to persister formation has been
illuminated in a number of cases. For example, glucose starva-
tion and shortage of amino acids activate RelE-toxin homologs
in E. coli (Christensen-Dalsgaard et al., 2010). Proteome analysis
of starving Mycobacterium tuberculosis cells revealed an increased
abundance of TA system proteins under nutrient limited condi-
tions (Albrethsen et al., 2013). The alarmone ppGpp is part of
the stringent response signaling pathway, which is switched on
in response to amino acid depletion. ppGpp abundance and TA
system activity appear to be tightly intertwined to control the
metabolic state of bacterial cells (Traxler et al., 2008; Bokinsky
et al., 2013; Germain et al., 2013; Maisonneuve et al., 2013). For
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FIGURE 1 | Schematic overview of metabolic aspects associated with

the persister state. ①, ② Toxin/antitoxin-systems: In a number of
bacteria, Lon or Clp proteases, activated in response to starvation,
degrade antitoxin proteins ①. Liberated toxins (e.g., RelE) can cleave
mRNA or employ a ppGpp-dependent signal transduction ② to induce
growth arrest. ③ Uncharged tRNAs due to amino acid starvation lead to
the synthesis of ppGpp via RelA. ④ Nutrient limitation favors the
synthesis of the second messenger cAMP by adenylate cyclase. cAMP
binds to the cAMP receptor protein (Crp) and the cAMP/Crp complex
activates the expression of both relA and cspD. ⑤ Inhibition of DNA
replication by CspD. ⑥ Modulation of RNA polymerase (RNAP) activity by

the DksA/ppGpp complex. ⑦ Metabolic flux alterations result in a
decreased TCA cycle activity and increased persistence. Synthesis of
methylglyoxal leads to growth inhibition. Acetoin and triglyceride
synthesis represent alternative pathways for the deprivation of pyruvate
and acetyl-CoA from the TCA cycle. ⑧ Different branches of metabolism
can produce reactive oxygen species (ROS) as hazardous side products,
impairing persister formation. Enzymes counteracting ROS activity (e.g.,
KatA) are upregulated in persister cells. ⑨ Biofilms containing protein-
and/or aminosugar-polymer structures (blue meshwork) may represent
environments of low supply of nutrients, such as glucose (glc), which
favors persister formation.

example, the TA toxin HipA phosphorylates the glutamyl-tRNA
synthetase GltX which inhibits the loading of tRNAGlu and conse-
quently mimics nutrient limitation resulting in ppGpp synthesis.
Pseudomonas aeruginosa actively responds to nutrient limitation
via a ppGpp-dependent mechanism directing cells to a state of
increased antibiotic tolerance (Nguyen et al., 2011). Metabolic
stress can also lead to a different scenario, in which ppGpp and
the cognate hydrolase SpoT influence persister formation (Amato
et al., 2013). Low levels of SpoT thus increase ppGpp abundance
that is also associated with DNA gyrase inhibition and reduc-
tion of RNA polymerase activity. In S. aureus a similar role for
ppGpp was demonstrated, as its permanent synthesis leads to
growth inhibition and impaired virulence, facilitating persistent
infections (Gao et al., 2010). Also the E. coli cold shock protein

CspD that is expressed during stationary phase and is induced by
glucose starvation is influenced by ppGpp (Yamanaka and Inouye,
1997). The lack of nutrients leads to a CspD-dependent inhibition
of DNA replication, resulting in increased persister formation
(Kim and Wood, 2010). Interestingly, also another second mes-
senger, cyclic AMP (cAMP), is part of the regulatory network of
CspD. cAMP, whose physiological level is associated with nutri-
ent availability, increases cspD transcription in complex with its
receptor protein Crp (Uppal et al., 2014). Moreover, the cAMP-
Crp complex also activates the expression of relA, resulting in a
further increase of the intracellular ppGpp level (Nakagawa et al.,
2006). This example illustrates how the metabolic state of a cell
can be coupled to persister formation via different pathways to
achieve a subtle and precise regulation. In the light of these results,
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ppGpp seems to be an important mediator between metabolism
and persister formation.

Reports about the genetic alterations in the energy metabolism
of bacterial cells provide a rather inconsistent picture. E. coli
mutants lacking ubiF or sucB, encoding for enzymes involved in
ubiquinone biosynthesis, or the TCA cycle, respectively, showed
decreased persister levels compared to the wild-type strain (Ma
et al., 2010). Both enzymes contribute to the generation of the
intracellular ATP pool. However, the inhibition of ATP synthesis
by carbonyl cyanide m-chlorophenylhydrazone (CCCP) led to an
increased persister formation in another study (Kwan et al., 2013).
The same effect was observed for the membrane binding protein
TisB of the tisAB TA-system. TisB expression decreases the pro-
ton motive force (PMF) and impedes energy production causing
an elevated persister level (Unoson and Wagner, 2008; Dörr et al.,
2010).

EXPERIMENTAL APPROACHES AND METABOLIC
PECULIARITIES OF PERSISTER CELLS
Major drawbacks in the analysis of persister cells’ metabolism
are both the natural heterogeneity of the bacterial population
and the fact that antibiotics used to isolate persisters destroy
their naïve state. Furthermore, the persister state is of tempo-
rary nature only and these cells usually merely represent a small
subpopulation within a culture. It is therefore of utmost impor-
tance to distinguish between results stemming from persister
and non-persister cells, which requires efficient means to sepa-
rate them. Lytic antibiotics or unstable GFP-variants have been
used before to address this issue (Keren et al., 2004b; Shah et al.,
2006). Obtained transcriptome patterns of suchlike differentiated
M. tuberculosis or E. coli persisters indicated a downregulation of
metabolic genes, and therefore a decreased metabolism in persis-
ters (Shah et al., 2006; Keren et al., 2011). Different approaches
have been taken to examine the metabolism of persisters more
directly. The group of Brynildsen used phenotype microarrays
and a fluorescent dye to assay the activity of bacterial reduc-
tases as a proxy for metabolic activity (Orman and Brynildsen,
2013a,b). Based on these results, a less active metabolism is
apparently not a requirement, but it increases the chance for
a cell to enter the persister state. Another powerful technique,
termed isotopolog profiling, is based upon feeding of 13C-isotope
labeled carbohydrates to cultures and subsequent analysis of
labeled intermediates. This allows deducing relative activities of
metabolic pathways or even networks in a time-resolved man-
ner by comparing ratios of labeled and unlabeled compounds
(Eisenreich et al., 2010). Isotopolog profiling provides informa-
tion of relative metabolic fluxes but not on the quantities or
absolute concentrations of metabolites. Measuring the decrease
of energy substrates in the medium over time can be theoreti-
cally used to determine the metabolic level. We used isotopolog
profiling to investigate, which metabolic pathways are active in
stationary growth phase S. aureus cells that had been challenged
with daptomycin (Lechner et al., 2014). De novo biosynthesis of
amino acids was observed, and their labeling patterns suggested
an active glycolysis, TCA cycle and pentose phosphate pathway.
Of note, analysis of 13C-labeling pattern of Asp and Glu indicated
an increased activity of the TCA cycle.

Recent studies provided first insights into the metabolic state
of persisters associated with biofilms that provide a protective
niche for bacteria against antibiotics and other harmful con-
ditions (Mah and O’Toole, 2001; Donlan and Costerton, 2002;
Davenport et al., 2014). This is due, in part, to metabolic down-
shifts in biofilm dwelling cells. Impaired nutrient penetration
and consumption by peripheral cells result in decreased nutri-
ent supply in this environment. Genes involved in TCA cycle
and energy production were downregulated in tobramycin chal-
lenged and biofilm embedded Burkholderia cenocepacia persisters
(Van Acker et al., 2013). Metabolic activity can lead to H2O2

generation by the reduction of molecular oxygen caused by the
respiratory chain (Gonzalez-Flecha and Demple, 1995). H2O2

can thereby accidentally drive the Fe2+-dependent Fenton reac-
tion leading to the formation of reactive oxygen species (ROS),
which attack essential cellular functions (Imlay et al., 1988).
Therefore, long-term survival of a bacterial cell could benefit
from an impaired metabolism. In addition, a reduced energy
level simultaneously prevents the PMF-dependent uptake of the
aminoglycoside tobramycin, as detailed below. In M. tubercu-
losis, redirections in the carbon flux were correlated to growth
arrest and antibiotic tolerance (Baek et al., 2011). Acyl-CoA is
thereby converted to triglycerides, draining the fuel for the TCA
cycle. A further example for increased persistence due to the
change of metabolic fluxes is the synthesis of methylglyoxal, which
impedes growth of E. coli (Girgis et al., 2012). Single deletions
of the genes encoding the two metabolic enzymes glycerol-3-
phosphate dehydrogenase (glpD) or transketolase A (tktA) lead
to accumulation of dihydroxyacetone phosphate (DHAP) which
is finally converted to methylglyoxal. Interestingly, the glyoxylate
shunt is upregulated in B. cenocepacia persister cells, bypassing
NADH production and possible ROS formation via the TCA
cycle, illustrating an additional protective mechanism. Another
link between persister level and ROS formation in biofilm was
established in P. aeruginosa, where mutants defective in the strin-
gent response were more susceptible toward antibiotic treatment
(Nguyen et al., 2011). Starvation apparently leads to increased
antioxidant countermeasures by an upregulation of catalase activ-
ity and the restriction of the synthesis of pro-oxidant substances.
Furthermore, the metabolic regulator catabolite repression con-
trol (Crc) protein decreases the metabolic activity of P. aeruginosa
in biofilms conferring increased tolerance toward ciprofloxacin
(Zhang et al., 2012). These results indicate that a metabolic adap-
tation process especially in regard to the TCA cycle is involved
in the maintenance of the persister state. Besides biofilm cells,
the importance of a metabolic downshift was also confirmed by
long-term survival assays of planktonic S. aureus cells, in which
mutants lacking the TCA cycle enzymes aconitase or succinate
dehydrogenase showed an enhanced stationary-phase survival
level (Somerville et al., 2002; Gaupp et al., 2010). Retarded
metabolic flux through or disruption of the TCA cycle was found
in clinical S. epidermidis isolates with enhanced survival during
β-lactam treatment (Thomas et al., 2013). Reduced ROS forma-
tion was determined as one critical feature in this regard. In line,
ROS activity seems to be involved in programmed cell death,
as shown in S. aureus (Thomas et al., 2014). ROS formation is
apparently linked to acetate production which is again tightly
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regulated by the two antagonistic factors CidC and AlsSD. CidC is
an oxidase converting pyruvate to acetate and is activated by the
CidR regulator during the presence of glucose. The CidR regulon
also comprises the alsSD operon encoding for an α-acetolactate
synthase/decarboxylase leading to acetoin synthesis from pyru-
vate, thereby reducing the amount of acetate by CidC. These data
illustrate the strong connection of TCA cycle dependent ROS for-
mation and its negative influence on the long-term survival of
cells thereby requiring alternative metabolic pathways to avoid
their production.

ANTI-PERSISTER STRATEGIES AND THE INTERPLAY
BETWEEN CARBOHYDRATE SUPPLY AND PERSISTER
KILLING
The importance of persisters in bacterial infections is more and
more corroborated (Fauvart et al., 2011). Recent studies indi-
cate that physiology and metabolism could be an Achilles heel
for the development of new anti-persister strategies (Allison
et al., 2011). A number of compounds counteract the per-
sister state by targeting indispensable cellular processes or by
activating resuscitation. These drugs include the acyldepsipep-
tide ADEP4 which permanently activates Clp proteases or a
biphenyl-derivative termed C10 that reverts cells to an antibi-
otic susceptible state (Kim et al., 2011; Conlon et al., 2013).
Manipulating bacterial signaling via artificial QS inhibitors is
another approach (Pan and Ren, 2013) and also ppGpp was iden-
tified as a potential anti-persister/-biofilm target. A dodecamer
peptide termed 1018 was reported to label the alarmone for
degradation, thereby inhibiting formation or dispersal of biofilms
as sources for recurrent and persistent infections. This peptide
was active against at least seven Gram positive or Gram negative
bacterial species (de la Fuente-Nunez et al., 2014). In 2011 the
group of James J. Collins described that the addition of selected
carbohydrates enhanced the killing of persisters by aminogly-
coside antibiotics. They established a relationship between the
metabolism of selected sugars, the generation of PMF and the
enhanced uptake of the drug (Allison et al., 2011). The rate of
increased killing is thereby mainly determined by the rate of sub-
strate utilization. Particularly fructose was an effective compound
in combination with gentamicin to eradicate E. coli as well as
S. aureus persisters. Subsequent to this finding on metabolite
enabled killing, the non-susceptibility of persisters toward amino-
glycosides treatment aided in the identification of the most uti-
lizable substrates for such cells (Orman and Brynildsen, 2013b).
Another successful approach of metabolite induced killing was
demonstrated by combating P. aeruginosa biofilms with a com-
bination of mannitol and tobramycin (Barraud et al., 2013) and
also arginine and nitrate were described as useful additives in
this regard (Borriello et al., 2006). By contrast, an excess of glu-
cose in S. epidermidis led to a higher level of dormant cells in
a biofilm, presumably due to the accumulation of acidic degra-
dation products resulting from glucose metabolism (Cerca et al.,
2011).

CONCLUSION
Recent studies highlight the importance of investigating the two
interconnected fields of persister state and metabolic activity in

bacteria in more detail. Adaptation of the metabolism is a key
prerequisite for persisters to cope with hostile conditions. In
particular, the modulation of TCA cycle activity appears as a hall-
mark in persister metabolism. This regulation must be precisely
controlled to avoid ROS formation with potentially destructive
implications for persister cells. Multiple lines of evidence sug-
gest that the metabolism of persisters can be tuned to alter their
susceptibility toward antibiotics or to trigger programmed cell-
death-like processes (Rice and Bayles, 2003). In a number of cases,
this is achieved simply by supplementing selected carbohydrates.
Based upon these findings, new effective anti-persister therapies
could be developed to reduce the risk of relapsing or chronic
infections. This could result in the development of concerted
combination therapies, exploiting the natural metabolic activity
of persister cells.
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