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Lipoarabinomannan is a major immunomodulatory lipoglycan found in the cell envelope
of Mycobacterium tuberculosis and related human pathogens. It reproduces several
salient properties of M. tuberculosis in phagocytic cells, including inhibition of
pro-inflammatory cytokine production, inhibition of phagolysosome biogenesis, and
inhibition of apoptosis as well as autophagy. In this review, we present our current
knowledge on lipoarabinomannan structure and ability to manipulate the endocytic
pathway as well as phagocyte functions. A special focus is put on the molecular
mechanisms employed and the signaling pathways hijacked. Available information is
discussed in the context of M. tuberculosis pathogenesis.
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INTRODUCTION
Mycobacterium tuberculosis (M.tb), the causative agent of tuber-
culosis, is one the most effective human pathogens. Its viru-
lence is multifactorial but initially relies on its ability to parasite
and manipulate phagocytic cells in the lung. Mannose-capped
lipoarabinomannan (ManLAM), a macroamphiphilic lipoglycan
exposed at the surface of M.tb cell envelope (Nigou et al., 2003;
Pitarque et al., 2008), is a key factor allowing the bacilli to
manipulate phagocyte functions (Chatterjee and Khoo, 1998;
Gilleron et al., 2008). Indeed, it reproduces several salient prop-
erties of M.tb in phagocytic cells, including inhibition of pro-
inflammatory cytokines production, inhibition of phagosome
maturation, inhibition of macrophage apoptosis, and inhibi-
tion of autophagy. ManLAM is a Pathogen-Associated Molecular
Pattern recognized by several receptors of the innate immune
system, including the C-type lectins Mannose Receptor (MR),
DC-SIGN and Dectin-2, as well as TLR2 (Gilleron et al., 2008;
Ray et al., 2013). It is a potential ligand for the entry of M.tb
into macrophages via the MR (Schlesinger et al., 1994) and
into dendritic cells (DCs) via DC-SIGN (Maeda et al., 2003;
Tailleux et al., 2003). ManLAM inhibitory properties mainly rely
on its ability to bind these two lectins. ManLAM can be a lig-
and of these receptors not only at the surface of M.tb bacilli but
also as a soluble molecule. Indeed, it is delivered from infected
macrophages, through exosomes or apoptotic vesicles, to non-
infected bystander phagocytic cells (Beatty et al., 2000; Schaible
et al., 2003). This pathway is thought to be critical for shap-
ing immune response but might also be used by the pathogen
as a way to disseminate immunomodulatory molecules such as
ManLAM.

LIPOARABINOMANNAN STRUCTURE AND
PHYSIOLOGICAL ROLE
Lipoarabinomannan (LAM) is ubiquitously found in mycobac-
terial species (Nigou et al., 2003; Briken et al., 2004; Gilleron
et al., 2008; Mishra et al., 2011; Angala et al., 2014). It presents
a tripartite structure including a lipid anchor, namely Mannosyl-
Phosphatidyl-myo-Inositol (MPI), a polysaccharide backbone
composed of D-Mannan and D-Arabinan, and finally caps
(Figure 1A). MPI anchor is based on a sn-glycerol-3-phospho-
(1-D-myo-inositol) unit with one α-D-Mannopyranosyl (α-D-
Manp) unit linked at O-2 of the myo-inositol. Four potential
sites of acylation are present on the anchor: positions 1 and 2
of the glycerol unit, position 6 of the Manp unit and position
3 of the myo-inositol (Nigou et al., 1999; Gilleron et al., 2000)
(Figure 1A). LAM and its biosynthetic precursors, phosphatidyl-
myo-inositol-mannosides (PIMs) and lipomannan (LM), are
predominantly tri- and tetra-acylated by palmitic and tuber-
culostearic (10-methyl-octadecanoic) acids (Khoo et al., 1995;
Gilleron et al., 1999). Position O-6 of myo-inositol is glycosylated
by the mannan core. PIMs comprise different glyco-forms, con-
taining one to six α-D-Manp units (PIM1 to PIM6), PIM2 and
PIM6 being the most abundant ones. The D-mannan core of LAM
and LM is composed of an (α1→6)-Manp backbone substituted
at some O-2 by a single α-D-Manp unit. The D-arabinan por-
tion of LAM contains about 60 arabinofuranosyl (Araf ) units
which are present as a single arabinan chain attached through
an (α1→2) linkage near the middle of the D-mannan core (Kaur
et al., 2014). The innermost region is made of a linear (α1→5)-
Araf backbone and is followed by a branched region. The non-
reducing termini consist of branched hexa-arabinofuranosides
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FIGURE 1 | Structural model of and cell signaling pathways triggered

by ManLAM and its biosynthetic precursors LM and PIMs. (A)

ManLAM is a 17 kDa heterogenous macromolecule exhibiting a tripartite
structure: (i) a MPI anchor, which can be mono- to tetra-acylated, (ii) a
polysaccharide backbone composed of D-Mannan and D-Arabinan, and
(iii) mannose caps, which are mono-, (α1→2)-di- and
(α1→2)-tri-mannoside units. PIMs and LM are biosynthetic precursors of
LAM. Their structure is based on the MPI anchor, glycosylated by one
to six mannose units (PIMs) or the full mannan domain (LM). To our
present knowledge, the MPI anchor and the Mannose caps are the
main structural determinants of ManLAM biological properties. (B) LM,
and to a much lesser extent PIMs, PILAM and ManLAM, induce
pro-inflammatory cytokines production in DCs and macrophages via the
recognition of tri- or tetra-acylated MPI anchor by TLR2/TLR1
heterodimer. ManLAM elicits cytokines in bone marrow-derived DCs via
mannose caps binding to Dectin-2. But it also inhibits the production of
pro-inflammatory cytokines IL-12, TNF-α, and IL-6, and induces IL-10 by
LPS-stimulated human DCs through DC-SIGN ligation. The signaling

pathway involves activation of Raf-1, which results in the
phosphorylation of the p65 subunit of NF-κB at Ser276, leading to the
acetylation of p65 by two histone acetyltransferases. Translocation of
NF-κB in response to TLR activation, and initially dedicated to the
transcription of the pro-inflammatory cytokine-coding genes, is reoriented
on anti-inflammatory promoter targets, resulting in the decrease of these
cytokines to the benefit of IL-10. ManLAM also inhibits IL-12 and TNF-α
in macrophages independently of IL-10 production, by directly acting on
the TLR4 signaling cascade through induced expression of IRAK-M,
which can compete with IRAK1 for binding to TRAF6 and thus inhibit
NF-κB activation. ManLAM also promotes tyrosine dephosphorylation of
multiple proteins including MAPK, an effect that might be explained by
an increased activity of tyrosine phosphatase SHP-1. MR is likely to
mediate ManLAM immunosuppressive activities in macrophages,
although it has no signaling motif in its cytoplasmic domain, raising the
intriguing question as to whether it associates with adapter molecules
to transduce signals. The ability of ManLAM to bind MR might in part
determine its other inhibitory properties as detailed in Figure 2.

and linear tetra-arabinofuranosides, which end with an Araf -
(β1→2)-Araf -(α1→ motif. Some β-Araf units are substituted
at O-5 by capping motifs. The caps differ according to the
mycobacterial species. LAM from slow-growing mycobacteria,
including the pathogenic species M.tb, Mycobacterium leprae and

Mycobacterium ulcerans, are capped with mono-, (α1→2)-di- and
(α1→2)-tri-mannoside units (mannose-capped LAM is referred
to as ManLAM) (Chatterjee et al., 1992) (Figure 1A). In contrast,
LAM from fast-growing species is either capped by phospho-myo-
inositol units (PILAM), such as in the non-pathogenic model
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organism Mycobacterium smegmatis, or not capped (AraLAM).
LAM in any strain further displays considerable structural micro-
heterogeneity, with various acyl-forms and glyco-forms. In addi-
tion, ManLAM may be substituted by discrete motifs, such
as succinyl residues on the arabinan chain or (α1→4)-linked
methyl-thio-D-xylose (MTX) residues on some terminal Manp
units of the mannose caps or the mannan core.

LAM is not restricted to mycobacteria. Indeed, LAM-like
molecules are also produced by phylogenetically close rel-
atives of bacteria of the suborders Corynebacterineae and
Pseudonocardineae, including Corynebacterium (Tatituri et al.,
2007), Rhodococcus (Garton et al., 2002; Gibson et al., 2003b),
Tsukamurella (Gibson et al., 2004), Turicella (Gilleron et al.,
2005), Amycolatopsis (Gibson et al., 2003a), or Saccharothrix
(Gibson et al., 2005) genera. In these bacteria, lipoglycans are
thought to functionally replace lipoteichoic acid otherwise pro-
duced by low G+C Gram-positive bacteria. These macroam-
phiphiles play a fundamental role in the physiology of bacteria,
although yet not fully understood (Ray et al., 2013). Defective
or deficient lipoglycans synthesis is associated with lethality or
growth defects (Gilleron et al., 2008) and changes in lipogly-
can structures have a significant impact on the cell wall integrity
of mycobacteria (Fukuda et al., 2013). For example, structural
defects in LM and LAM in M. smegmatis result in loss of acid-
fast staining, increased sensitivity to β-lactam antibiotics, and
faster killing by macrophages (Fukuda et al., 2013). Accordingly,
mycobacterial D-arabinan biosynthesis is the target of etham-
butol (Deng et al., 1995), a first-line drug in the treatment of
tuberculosis, as well as of benzothiazinones (Makarov et al.,
2009), which are new antituberculous drug candidates in preclin-
ical development. The elucidation of the complete biosynthetic
pathways of these important molecules is therefore expected to
afford novel therapeutic targets (Angala et al., 2014).

In the context of host-pathogen interaction, to our present
knowledge, the MPI anchor and the mannose caps are the main
structural determinants of ManLAM biological properties, the
role of the discrete motifs remaining elusive. The MPI anchor
is recognized by TLR2/TLR1 heterodimer, whereas the mannose
caps allow the binding to C-type lectins (Gilleron et al., 2008; Ray
et al., 2013).

MANIPULATION OF PHAGOCYTES RESPONSES
The success of M.tb as an intracellular pathogen relies on its
extraordinary capacity to disarm phagocyte antibacterial defenses
whereby turning hostile phagocytes into safe havens for repli-
cation. Beyond their impact on innate immune responses such
manipulations can also be detrimental in development of an
efficient adaptive immunity. Interestingly, several of these manip-
ulations can be mirrored by purified ManLAM.

PRO-INFLAMMATORY CYTOKINES PRODUCTION
The inflammatory response is crucial to control M.tb infec-
tion through macrophage activation and granuloma formation.
LM, and to a much lesser extent PIMs, PILAM, and ManLAM,
induce pro-inflammatory cytokines production via the recogni-
tion of tri- or tetra-acylated MPI anchor by TLR2/TLR1 (Gilleron
et al., 2003, 2006; Vignal et al., 2003; Quesniaux et al., 2004;

Nigou et al., 2008; Ray et al., 2013) (Figure 1B). However,
a prolonged stimulation of TLR2 has been shown to result
in inhibition of MHC class II transactivator expression, MHC
class II molecule expression and antigen presentation (Gehring
et al., 2004). M.tb might have subverted this general mechanism
of negative-feedback regulation that prevents excessive T cell-
mediated inflammation to evade recognition by CD4+ T cells
(Harding and Boom, 2010).

ManLAM was recently shown to elicit TNF-α, IL-6, and IL-
10 in bone marrow-derived DCs via mannose caps binding to
Dectin-2 (Yonekawa et al., 2014) (Figure 1B). However, we previ-
ously found that M.tb ManLAM can also inhibit the production of
pro-inflammatory cytokines IL-12 and TNF-α by LPS-stimulated
human DCs (Nigou et al., 2001, 2002) (Figure 1B). We initially
proposed the C-type lectin MR to mediate ManLAM inhibitory
activity because the latter (i) relied on the presence of both the
mannose caps and the fatty acids which are also required for
ManLAM binding to MR and (ii) could be mimicked by an ago-
nist anti-MR monoclonal antibody. However, it was later shown
that ManLAM binding to DCs is not inhibited by anti-MR but
rather by anti-DC-SIGN antibodies and that a blocking anti-DC-
SIGN antibody inhibits ManLAM-induced IL-10 production by
LPS-stimulated DCs (Geijtenbeek et al., 2003). Why ManLAM
only binds DC-SIGN on DCs, although MR is expressed on these
cells, remains unclear (Blattes et al., 2013). ManLAM also inhibits
IL-12 and TNF-α in human THP-1 (Knutson et al., 1998) and
murine RAW 264.7 (Pathak et al., 2005) macrophage cell lines
although DC-SIGN is absent. MR is likely to mediate ManLAM
effect in these cells, as the ability of MR to trigger an anti-
inflammatory signal was confirmed by other independent studies
(Chieppa et al., 2003; Zhang et al., 2005).

How DC-SIGN or MR signal into the cells and interfere with
LPS-induced TLR4 signaling is not yet completely understood
(Figure 1B). DC-SIGN displays intracellular motifs that are able
to constitutively recruit the lymphocyte-specific adaptor protein
LSP1 which associates the complex KSR1-CNK-Raf-1 (Gringhuis
et al., 2009) (Figure 1B). Upon ligand binding, activation of Raf-
1 results in the phosphorylation of the p65 subunit of NF-κB
at Ser276, leading to the acetylation of p65 (Gringhuis et al.,
2007). NF-κB activity is then prolonged and increases the tran-
scription rate at the IL-10 anti-inflammatory cytokine promoter.
However, Raf-1 signaling alone does not induce cytokine expres-
sion. Translocation of NF-κB in response to TLR activation and
initially dedicated to the transcription of the pro-inflammatory
IL-12p35, IL-12p40, IL-6, and TNF-α cytokine-coding genes is
reoriented on anti-inflammatory promoter targets, resulting in
the decrease of these cytokines to the benefit of IL-10 (Gringhuis
et al., 2007) (Figure 1B). Gringhuis et al. (2009) proposed that
DC-SIGN may discriminate among mannosylated and fucosy-
lated ligands and modulate the TLR signaling into a pro- or
anti-inflammatory response respectively. However, this appears to
be in contradiction with the set of data showing that ManLAM
or synthetic mannosylated analogs engaging DC-SIGN inhibit
pro-inflammatory cytokines production (Nigou et al., 2001;
Geijtenbeek et al., 2003; Blattes et al., 2013). MR has no signaling
motif in its cytoplasmic domain, raising the intriguing question
as to whether it associates with adapter molecules to transduce

Frontiers in Cellular and Infection Microbiology www.frontiersin.org January 2015 | Volume 4 | Article 187 | 3

http://www.frontiersin.org/cellular_and_infection_microbiology
http://www.frontiersin.org
http://www.frontiersin.org/cellular_and_infection_microbiology/archive


Vergne et al. Manipulation of phagocytes by lipoarabinomannan

signals. Pathak et al. (2005) demonstrated that ManLAM damp-
ens IL-12 in RAW 264.7 macrophages independently of IL-10
production, by directly acting on the TLR4 signaling cascade
through induced expression of IRAK-M, which can compete with
IRAK1 for binding to TRAF6 and thus inhibit NF-κB activation
(Figure 1B).

ManLAM anti-inflammatory activity relies on its ability to
bind DC-SIGN or MR and both the mannose caps and the
fatty acids are required for efficient binding (Nigou et al., 2001,
2002). Indeed, fatty acids induce a supramolecular organization
of ManLAM in aqueous solution, resulting in the formation of
a 30 nm spherical structure (Figure 1B), composed of approx-
imately 450 molecules with the mannose caps exposed at the
surface (Riviere et al., 2004). This multivalent supramolecular
structure allows multipoint attachment of ManLAM, via man-
nose caps, to the Carbohydrate Recognition Domains (CRD) of
multimeric DC-SIGN receptors (Feinberg et al., 2001; Mitchell
et al., 2001), thereby ensuring high affinity binding (Nigou et al.,
2001; Riviere et al., 2004) (Figure 1B). Following this rationale,
we were able to design fully synthetic compounds mimicking
the bioactive supramolecular structure of ManLAM, i.e., mann-
odendrimers, that display potent anti-inflammatory activity both
in vitro and in vivo and that could be of therapeutic use (Blattes
et al., 2013).

The ability of ManLAM to bind MR might in part determine
its other inhibitory properties as described below (Figure 1B)
(Gilleron et al., 2008).

PHAGOSOME MATURATION
One main function of professional phagocytes is the uptake of
microorganisms through phagocytosis. This event results in for-
mation of a vacuole called phagosome which then matures into
a phagolysosome through a series of fusion reactions with the
endocytic and secretory pathways and ultimately fusion with lyso-
somes (Flannagan et al., 2012). Maturation endows phagosome
with new bactericidal properties predominantly hydrolase activi-
ties, acidic pH and antimicrobial peptides. Therefore, phagosome
maturation process is crucial for killing of captured microbes as
well as their antigen presentation to T lymphocytes. Inhibition
of phagosome maturation by M.tb was reported more than 40
years ago (Armstrong and Hart, 1971). Since then, numerous
mycobacterial factors have been identified and characterized as
disruptors of phagosome maturation (Russell, 2011), including
ManLAM and PIMs (Fratti et al., 2001; Vergne et al., 2004).
Importantly, the ability of M.tb to block phagosome maturation is
shared by other pathogenic mycobacteria such as Mycobacterium
avium and Mycobacterium marinum which produce ManLAM
but not by non-pathogenic M. smegmatis which produces PILAM
(Anes et al., 2006; Appelmelk et al., 2008; de Chastellier et al.,
2009).

Early work by Deretic and colleagues showed that mycobac-
teria block phagosome maturation between stages orchestrated
by Rab5 and Rab7, two small GTPases involved in membrane
trafficking and present on early and late endosomes, respec-
tively (Via et al., 1997). Later on, they pinpointed this block
to impairment in recruitment of EEA1, a tethering protein and
Rab5 effector, essential for phagosome maturation (Fratti et al.,

2001). EEA1 recruitment is instrumental in delivering hydro-
lases such as Cathepsin D and H+-ATPase subunit Vo from
Trans-Golgi-Network (TGN) to the phagosome (Fratti et al.,
2003). EEA1 is recruited to the phagosomal membrane via Rab5
and phosphatidylinositol 3-phosphatase (PI3P) which is synthe-
sized by type III PI3Kinase, hVPS34 (Fratti et al., 2001). In
the same report, authors showed that ManLAM-coated beads,
in contrast to control beads, prevent EEA1 recruitment to the
phagosomal membrane, delivery of Cathepsin D, and phagosome
acidification (Fratti et al., 2001, 2003). Inhibition of phagosome
maturation by ManLAM was later confirmed by several groups
(Hmama et al., 2004; Kang et al., 2005; Welin et al., 2008).

Another important player in phagosome maturation is Ca2+
signaling. Phagocytosis of dead M.tb but not of live M.tb trig-
gers an increase of cytosolic Ca2+ that results in activation of
calmodulin-dependent kinase II (CaMKII) (Malik et al., 2000,
2001). Inhibition of Ca2+, Calmodulin (CaM) and CaMKII pre-
vents phagosome containing dead M.tb to fuse with lysosomes.
Vergne et al. showed that Ca2+ signaling is central for PI3P syn-
thesis on phagosomal membrane, consequently for EEA1 recruit-
ment (Vergne et al., 2003). CaM and CaMKII seem to play a role
in hVPS34 recruitment and/or activation. Notably, in contrast to
PILAM, ManLAM limits Ca2+ influx in cytosol, thus explain-
ing its effect on EEA1 recruitment and phagosome maturation
(Figure 2). Interestingly, PIMs can also inhibit phagosome acidi-
fication, not by preventing EEA1 recruitment, but by promoting
fusion between phagosome and early endosomes (Vergne et al.,
2004). How PIMs trigger early endosome fusion remains to be
elucidated but it might involve Rab14, a small GTPase specif-
ically recruited by live mycobacteria to favor phagosome-early
endosomes fusion and block phagosome acidification (Kyei et al.,
2006) (Figure 2).

What are ManLAM molecular targets, upstream of Ca2+
signaling, responsible for phagosome maturation arrest? Two
main mechanisms, non-mutually exclusive, have been uncov-
ered. Schlesinger’s group has demonstrated that ManLAM limits
phagosome maturation by binding to MR (Kang et al., 2005).
Interestingly, ManLAM acyl chains are important to maintain
this blockade beyond 1 h, suggesting a possible additional mech-
anism for ManLAM action. ManLAM can insert into lipid
microdomains, called rafts, via the MPI anchor, resulting in
membrane disorganization and inhibition of membrane fusion
(Hayakawa et al., 2007; Welin et al., 2008). However, it is
still unclear whether rafts disruption and/or MR are responsi-
ble of Ca2+ signaling inhibition or are completely independent
mechanisms.

APOPTOSIS
The role(s) of apoptosis and other cell-death pathways in
Tuberculosis remain(s) a matter of intense debate. Several reports
suggest that inhibition of excessive apoptosis may be beneficial
for the pathogen during early stage of infection for maintaining
its replicative niche and limiting cross-presentation and cross-
priming of CD8+ T-cells through phagocytosis of apoptotic
bodies by DCs. M.tb seems to be able to block both extrinsic
pathway of host cell apoptosis which relies on activation of death
receptors (Fas/CD95, TNFR1) and the intrinsic pathway triggered
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FIGURE 2 | Schematic representation of ManLAM and PIM action on

phagosome maturation and autophagy. Right part: After
phagocytosis, mycobacteria reside in a vacuole, called phagosome.
Phagosome maturation consists in a series of fusion events with
exocytic and endocytic pathways. One key step is the delivery of
Cathepsin D and H+-ATPase subunit Vo from Trans-Golgi-Network (TGN)
to the phagosome. This step is mediated by tethering protein EEA1
which is recruited to the phagosome by small GTPase Rab5 and
phosphatidylinositol 3-phosphate (PI3P). ManLAM blocks phagosome
maturation through inhibition of Ca2+/CaM/CaMKII signaling pathway
involved in PI3P production by type III PI3Kinase hVPS34. ManLAM can
also block phagosome maturation by engaging mannose receptor and
disrupting membrane microdomains, rafts, however, the link with
Ca2+/CaM signaling has not been studied. PIMs, ManLAM precursor,
impair phagosome maturation by stimulating fusion between phagosome
and early endosomes. Mycobacterium tuberculosis recruits Rab14 to
phagosome to promote early endosome fusion thus impairs phagosome

maturation. It remains to be established whether PIMs promotes early
endosome fusion through Rab14 recruitment. Left part: Mammalian
target of rapamycin (mTOR) kinase, activated by Ser/Thr kinase Akt and
inhibited by AMP-activated Protein Kinase (AMPK), is a master repressor
of autophagy. Beclin-1, an autophagy-related protein in complex with
hVPS34, is essential for autophagy. Beclin-1/hVPS34 complex is
activated by AMPK and repressed by Bcl-2. ULK1, another important
autophagy-related protein, is activated by AMPK and inhibited by mTOR.
Ca2+ influx has been shown to activate AMPK, hVPS34, and represses
Bcl-2 expression. IFNγ induces autophagy. Based on known effects of
ManLAM on Ca2+ influx, Bcl-2, Akt and IFNγ signaling, we postulate
that ManLAM might inhibit autophagy by targeting Beclin-1/hVPS34
complex, Akt/mTOR or IFNγ pathways. The relationship between effects
of ManLAM on these different signaling pathways and autophagy awaits
investigation. Arrows and characters are represented in gray to indicate
that the molecular mechanisms of LAM action on autophagy are
hypothetical.

by mitochondrial outer membrane permeabilization (Briken and
Miller, 2008). Although M.tb genes involved in these inhibitions
are just beginning to be unveiled, ManLAM was one of the first
mycobacterial product identified as an inhibitor of apoptosis
(Rojas et al., 2000; Briken and Miller, 2008).

The mechanisms of apoptosis inhibition by ManLAM seem to
be multiple. As for phagosome maturation, ManLAM inhibition
of Ca2+ signaling appears to be an important step in block-
ing infection-induced apoptosis (Rojas et al., 2000). Numerous
Ca2+-associated events are known to play a role in apoptosis,
among them alteration of mitochondrial permeability transition
and down-regulation of anti-apoptotic protein Bcl2 have been
shown to be repressed by ManLAM (Rojas et al., 2000). Besides
Ca2+ signaling, ManLAM can prevent intrinsic apoptosis path-
way through activation of Ser/Thr kinase Akt and phosphoryla-
tion of the pro-apoptotic protein Bad (Maiti et al., 2001). More
recently, one report indicates that ManLAM can promote extra-
cellular release of soluble TNF-α receptor. Thus, ManLAM might

also interfere with the extrinsic apoptosis pathway by neutralizing
TNF-α (Richmond et al., 2012).

AUTOPHAGY
Autophagy is a highly conserved eukaryotic intracellular process
that carries out lysosomal degradation of damaged, superfluous
or toxic cytoplasmic components (Levine et al., 2011; Rubinsztein
et al., 2012). In addition to its housekeeping role, autophagy
plays major immunological functions, especially, in host anti-
bacterial defenses (Levine et al., 2011; Deretic et al., 2013). These
functions range from effector of pattern recognition receptors
and inflammation regulation to antigen presentation and direct
elimination of microbial agents. Specifically, autophagy is a key
immune effector involved in intracellular clearance of important
bacterial pathogens such as M.tb.

Autophagy is orchestrated by more than 30 dedicated pro-
teins, called autophagy-related proteins (Atg) (Marino et al.,
2014). The autophagic process begins with formation of an
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isolation membrane initiated by Ser/Thr kinase Ulk1 (Atg1),
which phosphorylates Beclin-1 (Atg6) in complex with hVPS34
to promote its activation (Russell et al., 2013). The isolation
membrane is then expanded through action of two ubiquitin-
like conjugation systems, the covalent linkage of Atg12 with
Atg5 and of LC3 (Atg8) with phosphatidylethanolamine, which
lead to engulfment of intracellular components inside a double-
membrane bound organelle called autophagosome. LC3, along
with entrapped cytosolic content, is then degraded after fusion
of autophagosome with lysosomes. In the context of phagocy-
tosis, a non-canonical autophagy pathway, called LC3-associated
phagocytosis (LAP), has been described which involves direct LC3
lipidation on the phagosomal membrane (Mehta et al., 2014).
This alternative pathway, triggered by some Pattern Recognition
Receptors, such as TLR2, appears to be ULK1 independent and
important in modulating innate immune response (Mehta et al.,
2014). However, the detailed molecular mechanisms and the
functional role(s) of LAP still remain to be fully elucidated.

M.tb, like other intracellular intracellular pathogens, has devel-
oped mechanisms to manipulate autophagic pathway (Huang and
Brumell, 2014). Interestingly, Shui et al. showed that phagosomes
containing ManLAM-coated beads display less LC3 than those
containing PILAM-coated beads (Shui et al., 2011). Likewise,
macrophage treatment with ManLAM for 24 h results in diminu-
tion of autophagy as seen by LC3 immunoblotting (personal
observation). Autophagy-related proteins play major roles in
mediating IFNγ-induced host defenses (Levine et al., 2011;
Deretic et al., 2013). Since ManLAM can repress IFNγ responses,
it is tempting to speculate that ManLAM might also interfere with
autophagy in this context (Sibley et al., 1988; Chan et al., 1991).
The action mechanism of ManLAM on autophagy has not been
revealed yet, but based on its effect on hVPS34 in phagosome mat-
uration one can postulate that it might inhibit autophagy by mod-
ulating hVPS34 in complex with Beclin-1 (Figure 2). In addition,
Bcl-2 interacts with Beclin-1 to block autophagy, thus ManLAM
might impair autophagy via upregulation of Bcl-2 expression
(Rojas et al., 2000; Pattingre et al., 2005). ManLAM inhibition
of Ca2+ influx could also affect the Ca2+/AMP-activated protein
kinase (AMPK) signaling pathway involved in mammalian target
of rapamycin (mTOR) kinase- and ULK1-dependent autophagy
(Vergne et al., 2003; Alers et al., 2012). Alternatively, ManLAM
might repress autophagy through activation of type I PI3Kinase
and Akt (Maiti et al., 2001; Ravikumar et al., 2010). Further
investigations are definitely required to better understand how
ManLAM interferes with autophagy, whether it represses canon-
ical autophagy and/or LAP and what is the significance of this
inhibition in terms of phagosome trafficking and phagocyte
survival.

CONCLUSION
ManLAM, as a purified molecule, reproduces several salient
inhibitory properties of M.tb in phagocytic cells. However, the
role played by ManLAM in the context on an infection by M.tb
remains unclear. ManLAM immunosuppressive activities rely on
the presence of the mannose caps. But, an M.tb mutant lack-
ing the mannose caps on LAM was not affected for its virulence
in mice nor for its interaction with phagocytic cells in vitro

(Appelmelk et al., 2008; Afonso-Barroso et al., 2012). In contrast,
an aptamer against ManLAM was found to inhibit M.tb infec-
tion in mice and Rhesus monkeys (Pan et al., 2014). Moreover,
protein LprG, which binds ManLAM and determines its cell
surface localization, was found to be essential for virulence of
M.tb and to control phagolysosomal fusion (Gaur et al., 2014;
Shukla et al., 2014). These data are not necessarily contradictory.
Indeed, the envelope of mycobacteria is exceptionally rich in man-
noconjugates bearing (α1→2)-oligomannosides, including LM,
PIM6, arabinomannan or mannoproteins that are able to bind
C-type lectins (Pitarque et al., 2005; Torrelles and Schlesinger,
2010). Of note, LprG has been shown to bind LM and PIMs, in
addition to ManLAM (Drage et al., 2010), suggesting that the
role of LprG might not be attributable to ManLAM inhibitory
activities only. Altogether, data converge to indicate that DC-
SIGN/MR ligands are most probably redundant at the M.tb cell
surface, possibly because targeting these receptors is manda-
tory for the pathogen to manipulate and survive inside the
infected host.
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