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Helicobacter pylori (H.pylori) is a Gram-negative, microaerophilic, helical bacillus

that specifically colonizes the gastric mucosa. The interaction of virulence factors,

host genetic factors, and environmental factors contributes to the pathogenesis of

H. pylori-associated conditions, such as atrophic gastritis and intestinal metaplasia.

Infection withH. pylori has recently been recognized as the strongest risk factor for gastric

cancer. As a pleiotropic cytokine, transforming growth factor (TGF)-β regulates various

biological processes, including cell cycle, proliferation, apoptosis, and metastasis.

Recent studies have shed new light on the involvement of TGF-β signaling in the

pathogenesis of H. pylori infection. This review focuses on the potential etiological roles

of TGF-β in H. pylori-mediated gastric pathogenesis.
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INTRODUCTION

Australian scientists BarryMarshall and RobinWarren first identifiedHelicobacter pylori (H. pylori)
in 1982 (Marshall, 2008). H. pylori is a Gram-negative, microaerophilic, helical bacterium that
specifically colonizes the gastric mucosa. More than 50% of people are infected with H. pylori
worldwide (Eusebi et al., 2014; Graham, 2015), and H. pylori infection is strongly associated with
chronic gastritis. Additionally, colonization of the stomach with H. pylori results in severe gastric
diseases, such as intestinal metaplasia, dysplasia, and ultimately gastric carcinoma (Watari et al.,
2014). Despite a decreasing incidence of gastric cancer, this disease remains the third leading cause
of cancer-related death worldwide (Herrero et al., 2014). Interestingly, infection with H. pylori
significantly increases the risk of gastric cancer. The International Agency for Research on Cancer
(IARC) classifies H. pylori infection as a class I carcinogen, and H. pylori eradication has been
shown to reduce the incidence of gastric cancer (Pan et al., 2015). H. pylori infection causes the
activation of immune cells, includingmacrophages, T cells, and B cells, leading to the release of pro-
inflammatory cytokines and thus promoting chronic inflammation and the progression to gastric
cancer. TGF-β1 not only regulates the initiation and resolution of inflammatory responses but also
suppresses immune responses and regulates cancer progression via modulating the expression of
multiple genes. The present review discusses the role of TGF-β in H. pylori-induced inflammation
and the development of gastric carcinoma.
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PATHOGENIC MECHANISMS OF
H. PYLORI

H. pylori Virulence Factors that Influence
the Gastric Epithelium
Several pathogenic mechanisms, including H. pylori virulence
factors and host factors, have been associated with H. pylori-
associated gastric diseases. VacA and CagA are major H. pylori-
secreted proteins that lack known homologs in other bacterial
species (Jones et al., 2010). VacA exists in allH. pylori strains and
encodes vacuolating cell toxins that dysregulate gene expression
and other cellular processes (Wada et al., 2010; Palframan
et al., 2012). Additionally, VacA causes the apoptosis of gastric
epithelial cells through targeting mitochondria and inhibits
the proliferation of T cells (Sundrud et al., 2004; Jain et al.,
2011). Genetic analysis has suggested that approximately 60%
of H. pylori strains possess a 40-kb DNA segment known as
the cag pathogenicity island (PAI), which encodes components
of a needle-like type IV secretion system (TFSS) (Hatakeyama,
2014). Cytotoxin-associated gene A (CagA) is transported into
the cytoplasm of gastric epithelial cells via the TFSS during
H. pylori attachment. The presence of CagA-positive H. pylori
strains increases the risk of peptic ulcers and gastric cancers
(Beltrán-Anaya et al., 2014; Song et al., 2014). CagA induces NF-
κB activation and the upregulation of proinflammatory immune
responses in the host (Lamb and Chen, 2013; Suzuki et al., 2015).
Moreover, CagA plays a critical role in gastric carcinogenesis.
The CagA protein of H. pylori has also been implicated in the
Ras-ERK (Yang et al., 2011) and Wnt-beta-catenin signaling
pathways that lead to oncogenic mutations (P53, k-ras, etc.;
Neal et al., 2013). Other virulence factors of H. pylori, such
as CagE (Lima et al., 2011), IceA (Boyanova et al., 2010), and
BabA (Styer et al., 2010), have also been correlated with gastric
diseases. These virulence factors contribute to adherence of and
host immune regulation by H. pylori within the gastric niche,
ultimately resulting in H. pylori-mediated gastric inflammation
and gastric cancer.

Host Genes Involved in the Pathogenicity
of H. pylori Infection
In addition to bacterial virulence factors, H. pylori infection
reprograms host gene expression and modulates various
intracellular signaling pathways. Toll-like receptors (TLRs) are
central components in innate and adaptive immune recognition.
The interaction of H. pylori with TLR-signaling pathways also
contributes to inflammation. The upregulation of TLRs induces
the transcription of molecules in the NF-κB signaling pathway
in a MyD88-dependent manner, thereby increasing the levels
of inflammatory genes and activating macrophages, which also
express the pro-inflammatory cytokines interleukin (IL)-8, IL-1β,
and tumor necrosis factor (TNF)-α (Kumar Pachathundikandi
et al., 2011; Käbisch et al., 2014). Cyclooxygenase-2 (COX-2)
is an enzyme responsible for the pro-inflammatory response
(Aoki and Narumiya, 2012). H. pylori infection significantly
increases the levels of COX2 and prostaglandin E (PGE)-2,
thereby contributing to atrophic gastritis and adenocarcinoma

(Sierra et al., 2013). Moreover, environmental factors such
as smoking and high salt intake are closely linked with
H. pylori infection (Ghosh and Bodhankar, 2012; Gaddy et al.,
2013). Taken together, H. pylori bacterial factors, host cell
signal transduction, host genetic factors, and environmental
factors interact to enhance the mucosal inflammatory
response that initiates the multistep process leading to gastric
cancer.

TRANSFORMING GROWTH FACTOR-β
SIGNALING

TGF-β Superfamily
The multifunctional cytokine TGF-β was discovered in the
early 1980s (Garber, 2009). TGF-β regulates cell differentiation,
proliferation, wound healing, and angiogenesis via multiple
mechanisms. This cytokine also plays an important role
in the regulation of tissue homeostasis and the immune
system. The TGF-β superfamily includes activins, inhibins, bone
morphogenetic proteins (BMPs), growth differentiation factors
(GDFS), TGF-β isoforms, and glial cell-derived factors (Shi
et al., 2011). TGF-β exists in at least three isoforms: TGF-
β1, TGF-β2, and TGF-β3. TGF-β1 is expressed in epithelial,
endothelial, and hematopoietic cells; TGF-β2 is expressed in
epithelial and neuronal cells; and TGF-β3 is primarily expressed
in mesenchymal cells (Papageorgis, 2015). TGF-β1 is stored in
a biologically inactive form, containing a signal peptide (SP),
latency-associated peptide (LAP), and mature peptide. After
intracellular protease digestion, the 25-kDa active TGF-β protein
is produced (Horiguchi et al., 2012).

SMAD and Non-SMAD Signaling Pathways
in TGF-β Signaling
TGF-β binds to the type I receptor through TGF-β III and
II receptors, resulting in the phosphorylation and activation
of TGF-β RI through TGF-β RII in the glycine-serine (GS)-
rich domain. The activated TGF-β1 receptor induces Smad2
and Smad3 activation and formation of a SMAD2/3 complex,
which in turn interacts with Smad4 and enters the nucleus
(Derynck and Zhang, 2003). This SMAD complex recruits co-
activators and repressors to regulate the expression of target
genes, including the EMT transcription factors snail family
zinc finger (SNAIL), twist family bHLH transcription factor 1
(TWIST), zinc finger E-box binding homeobox 1 (ZEB1; Katsuno
et al., 2013), matrix metalloproteinases (MMPs; Papageorgis,
2015), plasminogen activator inhibitor 1 (PAI-1; Lang et al.,
2014), IL-6, and connective tissue growth factor (CTGF; Reddel
et al., 2013).

In addition to SMAD-dependent signaling, the binding of
TGF-β to its receptors activates c-Jun N-terminal kinase (JNK),
p38 mitogen-activated protein kinase (p38 MAPK; Joko et al.,
2013), and external signal-regulated kinase (ERK) signaling
pathways (Joko et al., 2013). These SMAD and non-SMAD
signaling pathways coordinate to regulate cell proliferation and
differentiation.
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Regulation of TGF-β Signal Transduction
TGF-β primarily evokes cellular responses through SMAD-
dependent signaling regulated at the transcriptional level
through co-activators and co-repressors (Figure 1). The
increased expression of CREB-binding protein (CBP)/E1A-
binding protein p300 (CBP/p300) enhances Smad4-dependent
transcriptional activation, while zinc finger protein 451 (ZNF451)
inhibits the recruitment of p300 through SMAD3/4 complexes
in response to TGF-β (Janknecht et al., 1998; Feng et al., 2014).
Ski and the closely related SnoN inhibit TGF-β transcriptional
responses. SMAD family member 7 (Smad7) negatively regulates
the TGF-β/SMAD signaling phosphorylation of R-SMADs (Luo
et al., 2014). In addition, Smad7 recruits the HECT-type E3
ubiquitin ligases Smurf1, Smurf2, and NEDD4 (Farooqi et al.,
2011), leading to degradation of the targeted protein TGF-β RI.

Ubiquitin-specific protease 4 (USP4) augments TGF-β signaling
through the prevention of TGF-β RI degradation (Zhang et al.,
2012). FAM/USP9x, a deubiquitinating enzyme, controls Smad4
mono-ubiquitination and regulates TGF-β signal transduction
(Xie et al., 2014).

Downstream Targets of the TGF-β
Signaling Pathway
Mounting evidence has demonstrated that TGF-β regulates
many important cell functions and processes (Figure 1). TGF-
β causes cell-cycle arrest in G1 via SMAD-dependent signaling
(Yellen et al., 2013) and induces apoptosis through the activation
of p38/MAPK signaling (Ferrari et al., 2012). Moreover,
TGF-β plays an important role in the regulation of the
immune system. CD4+CD25+ regulatory T cells (Tregs) are

FIGURE 1 | Simplified TGF-β signaling pathways. After ligand binding, TGF-β receptors recruit, and phosphorylate intracellular SMAD proteins. Phosphorylated

Smad2/3 form a heteromeric complex with SMAD4, which is subsequently transported into the nucleus to regulate the transcription of target genes. Several

non-Smad pathways may also be activated. In addition, multiple activators and repressors transcriptionally regulate TGF-β signaling, including CBP/p300, Ski, SnoN,

and ZNF451. Smad7 serves as a key antagonist of TGF-β RI by recruiting ubiquitin E3 ligases including NEDD4 and Smurf1/2. However, USP4 could inhibit TGF-β RI

degradation. TGF-β signaling regulates different biological processes, such as the cell cycle, the immune response, angiogenesis, and tumor metastasis.
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potent suppressors, maintaining homeostasis and promoting
immune tolerance (Facciabene et al., 2012). Previous studies
have indicated that TGF-β promotes Foxp3 gene expression
and Treg production (Saini et al., 2014). Furthermore, TGF-
β inhibits the activation of lymphocytes and monocyte-
derived phagocytes (den Hartog et al., 2013). Activation of
the TGF-β/SMAD signaling pathway induces the epithelial-
mesenchymal transition (EMT), which initiates and triggers
tumor invasion and metastasis (Gao et al., 2014). TGF-
β also induces tumor angiogenesis through VEGF-mediated
apoptosis (Ferrari et al., 2009). In addition, cancer stem cells
are involved in the formation and development of various
types of cancers, and recent studies have indicated that TGF-β
superfamily members play important roles in the maintenance
and differentiation of embryonic (ES) and cancer stem cells (Liu
et al., 2015).

DYSREGULATION OF TGF-β IN
H. PYLORI-INDUCED HOST GASTRIC
INFLAMMATION

Elevated Expression of TGF-β1 and
Related Genes
Host cells recognize pathogen-associated molecular patterns
(PAMPs) through pattern-recognition receptors (PRRs), such
as TLRs, retinoic acid-inducible gene-I proteins (RIG-Is), and
nucleotide oligomerization domain-like receptors (NLRs). PRR-
induced signal transduction, including NF-κB signaling, further
upregulates the expression of inflammatory factors, ultimately
resulting in immune response activation (Jensen and Thomsen,
2012). Previous studies have suggested that TGF-β enhances the
attachment to and colonization of host cells byH. pylori (Jo et al.,
2010), and TGF has been implicated in H. pylori-induced gastric
mucosal inflammation (Wu et al., 2007), including gastritis and
autoimmune disease. As a potentially continuous inflammatory
mediator, TGF-β can be induced through a number of cell types,
such as macrophages, lymphocytes, and foam cells. The increased
expression of TGF-β1 is related to the severity of H. pylori-
associated non-metaplastic atrophic gastritis (Sun et al., 2009).
Previous studies of human gastric mucosal biopsies have revealed
that TGF-β1 mRNA expression is significantly increased in
H. pylori-infected specimens compared with uninfected samples,
and this effect is positively correlated with VacA genotype and
the grade of chronic inflammation. TGF-β1 is a crucial negative
regulator of the immune response through the generation of T-
regs. Thus, H. pylori-related virulence factor VacA might inhibit
T-cell proliferation and immune responses, thereby increasing
the adherence of H. pylori to the gastric mucosa through the
upregulation of TGF-β expression (Rahimian et al., 2014). Serum
levels of IL-17A, IL-23, and TGF-β are elevated in patients with
H. pylori infection, including those with gastritis and peptic
ulcers, compared with H. pylori-negative populations (Shamsdin
et al., 2015), suggesting that H. pylori-related inflammation
varies depending on the levels of these cytokines. In one study,
immunohistochemical staining of proliferating cell nuclear
antigen (PCNA) was performed in chronic gastritis patients.

Increased immunohistochemical staining of TGF-β, TGF-β RI,
and Smad7 was observed inH. pylori-positive patients compared
with H. pylori-negative patients, indicating that the feedback
loop incorporating TGF-β1 and Smad7 might play an important
role in the progression of H. pylori infection (Li and Li,
2006).

Decreased Expression of TGF-β-Related
Genes
Substantially suppressed levels of TGF-β1 have been observed
in individuals exposed to H. pylori (Figure 2). TGF-β1 levels
were markedly decreased in patients with H. pylori-associated
peptic ulcer diseases. Similarly, in vitro studies have shown
that the expression of gastric mucosa TGF-β1 is attenuated
24 h post-infection as a host defense mechanism to avoid the
attachment of H. pylori to gastric epithelial cells. Paradoxically,
decreased TGF-β1 expression results in the progression to
atrophic gastritis, an autoimmune disease. Because TGF-β1
can suppress the macrophage respiratory burst through the
inhibition of H2O2 release, the downregulation of TGF-β1
contributes to uncontrolled macrophage respiratory burst and
severe clinical outcomes associated with oxidative stress (Jo et al.,
2010).

In addition, Jo et al. reported markedly lower levels of TGF-
β RI and TGF-β RII in patients with H. pylori-induced atrophic
gastritis compared with an H. pylori-negative group (Jo et al.,
2010). The significantly increased expression of PCNA following
infection suggests that H. pylori induces excessive proliferation
and apoptosis of gastric epithelial cells, which greatly impairs
DNA repair during gastric carcinogenesis. Additionally, TGF-
β1-deficient mice exhibit extensive proliferation (García-Sánchez
et al., 2010). Therefore, H. pylori infection may weaken
the inhibitory effect of TGF-β1 on proliferation, leading to
substantial hyperplasia of the gastric mucosa through the
decreased expression of TGF-β RI and TGF-β RII (Liu et al.,
2004).

Smad7 is a well-documented antagonist of the TGF-β
signaling pathway. In human gastric adenocarcinoma AGS cells,
H. pylori-stimulated mononuclear cells (MNCs) in the lamina
propria express the TGF-β pathway inhibitory factor Smad7
(Yang et al., 2012).

TGF-β1 and Immune Evasion
Virulence factors produced by H. pylori provide multiple
mechanisms for evading the immune response, thereby causing
chronic gastric inflammation. Upon H. pylori infection, the
gastric mucosa is infiltrated with T cells, including CD4+ T
cells (Chrisment et al., 2014). Naive CD4+ T cells differentiate
into Th1, Th2, Th17, and Treg subsets (Zhu and Paul,
2010). For example, TGF-β enhances the production of Treg
cells through upregulation of the transcription factor Foxp3,
which inhibits the activation and proliferation of antigen-
specific regulatory T cells, exerting an anti-inflammatory effect
(Curotto de Lafaille and Lafaille, 2009). Additionally, CD4+
T cells preferentially differentiate into Th17 cells in response
to IL-6 and TGF-β (Beswick et al., 2011; Bailey et al.,
2014).
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FIGURE 2 | Alteration of TGF-β signaling in the pathogenesis of H. pylori infection. Chronic infection with H. pylori significantly increases the expression of

TGF-β1, leading to gastritis and gastric carcinoma. Genes downstream of TGF-β signaling are upregulated in carcinogenesis due to H. pylori. In addition, genetic

polymorphisms of TGF-β1 are associated with an increased risk of gastric cancer. Conversely, acute H. pylori infection, causing peptic ulcer diseases, triggers

reduced expression of TGF-β1, and TGF-β RI and RII.

GECs infected with H. pylori express highly increased
levels of TGF-β1 and TGF-β2, further inducing Foxp3+ Treg
cells, which maintain gastritis and facilitate the increased
colonization of H. pylori through inhibiting the host immune
response (Raitala et al., 2007). This effect gradually disappears
after knocking out the H. pylori virulence factor genes vacA
and cagA (Beswick et al., 2011). However, gastric epithelial
cells and monocytes preferentially secrete TGF-β via VacA-
and CagA-independent mechanisms (Wu et al., 2007). The
expression of TGF-β in patients with peptic ulcers and gastritis
is significantly higher than in uninfected counterparts. The
positive correlation between the concentration and production
of TGF-β from Th17 cells indicates that this cytokine might
play a critical role in H. pylori-dependent peptic ulcers and
gastritis through the regulation of Th17 cells (Shamsdin et al.,
2015).

In vivo, an H. pylori-derived peptide (2–20) stimulates the
release of TGF-β and VEGF and induces eosinophil infiltration
through interactions with N-formyl peptide receptors (FPRs;
Prevete et al., 2013). Immunohistochemical staining of TGF-
β in normal gastric mucosa, consistent with its expression
in normal fundic mucosa, suggests that this cytokine plays a
role in maintaining mucosal homeostasis under physiological
conditions (Hawinkels et al., 2007). Overall, TGF-β is a
multifunctional cytokine that plays important roles in gastric
inflammation through various regulatory mechanisms.

DYSREGULATION OF TGF-β IN
H. PYLORI-INDUCED GASTRIC
CARCINOMA

Alterations of TGF-β Signaling in Gastric
Cancer
Alterations of the TGF-β signaling pathway have been observed

in the development of gastric cancer. TGF-β1 and TGF-β2 are

associated with poor prognosis in gastric cancer. Serum levels
of TGF-β1 and TGF-β2 are significantly higher in early and

advanced gastric carcinomas compared with control samples

(Ma et al., 2013). Furthermore, loss of function mutations in
TGF-β RII have been observed in the human gastric cells

SNU-5 and SNU-668, which are resistant to growth inhibition

by TGF-β. Reintroduction of the TGF-β RII gene reversed

TGF-β-induced tumorigenicity and clonogenicity in these cells.
Overall, TGF-β RII is a potential tumor suppressor gene in

gastric cancer cells (Yang et al., 1999; Takeno et al., 2002). The
hypermethylation of CpG islands in the TGF-β RI promoter
region has been well-documented in sporadic gastric carcinomas.
TGF-β-resistant T cells treated with a demethylating agent and
transiently transfected with TGF-β RI demonstrated restored
TGF-β responsiveness (Kubiczkova et al., 2012).

Moreover, TGF-β1 promotes the invasion and metastasis
of gastric cancer cells through the induction of Fascin 1, an
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actin-binding protein. Treatment with MAPK pathway-specific
inhibitors, in turn, reverses these biological activities (Fu et al.,
2009). Furthermore, in vitro studies have indicated that TGF-
β1 induces apoptosis through TGF-β receptors I and II and a
p53-independent pathway (Yamamoto et al., 1996).

Impaired SMAD proteins associated with the TGF-β
signaling pathway have also been detected in gastric carcinoma.
Phosphorylated-Smad2 is a key intracellular molecule for TGF-β
signal transduction. The immunohistochemical expression of
p-Smad2 was determined in advanced gastric adenocarcinomas
from 135 patients and found to be significantly higher in diffuse
type carcinomas, tumors with peritoneal metastasis, and tumors
with lymph node metastasis, implying that activated Smad2
might be positively correlated with malignant gastric cancer
(Shinto et al., 2010). In one study, the expression of the common
SMAD mediator Smad4 and the inhibitory SMAD protein
Smad7 was examined in gastric adenocarcinomas. Smad4 gene
expression was lacking, and this loss was associated with the
depth of tumor invasion and poor survival. However, Smad7
expression in well-differentiated gastric adenocarcinomas was
significantly higher than that in the normal gastric mucosa
and associated with the duration of disease-free survival
(Zizi-Sermpetzoglou et al., 2014).

Genetic Polymorphisms of TGF-β1 and
Gastric Cancer
Recent studies have shown that C-509T gene polymorphisms
in the promoter region of TGF-β1 are associated with plasma
levels (Hosseini Razavi et al., 2014). Similarly, the TGF-β1 T869C
polymorphism affects the secretion of TGF-β1, suggesting that
the polymorphic variants of TGF-β1 might influence cancer risk
(Peng et al., 2011). In Chinese populations, the C-509T and T29C
polymorphisms are correlated with decreased gastric cancer risk
among stage I+II cases and increased risk for stage III+IV
gastric cancers (Zhang et al., 2008). Moreover, the TGF-β1 T869C
gene polymorphism has been implicated in susceptibility to
H. pylori-related diseases (Garcia-Gonzalez et al., 2006). Clinical
observations have shown that CagA-positive patients with the
TGF-β1 promoter polymorphism C-509T are at increased risk
for H. pylori-associated gastric precancerous lesions (Achyut
et al., 2009). Accordingly, TGF-β1 polymorphisms may be a
susceptibility factor for the occurrence and development of
gastric cancer (Figure 2).

Alteration of the TGF-β Signaling Pathway
in H. pylori-Induced Gastric Carcinoma
Infection with H. pylori is a strong risk factor for gastric cancer,
and most gastric cancer cases are attributable to H. pylori
infection. Transforming growth factor-β has been implicated
in various biological processes, including cell cycle regulation,
apoptosis, tumor angiogenesis, tumor invasion, and cancer
cell metastasis. Many advanced tumors, such as those of the
stomach and breast, show excessive expression of TGF-β. The
methylation of TGF-β RI, TGF-β RII, and Smad4 has been
observed during the early stages of gastric adenocarcinoma (Guo
et al., 2012). In addition, elevated TGF-β1 and IL-10 serum

levels in gastric cancer patients infected with H. pylori have also
been observed (Szkaradkiewicz et al., 2010). Transgenic mice
expressing a dominant-negative mutant of TGF-β RII show a loss
of TGF-β signaling, particularly in the stomach, promoting cell
proliferation and higher incidences of gastrointestinal cancers
(Hahm et al., 2002a). Dequchi et al. reported a TGF-β RII gene
mutation in CagA-positive H. pylori-infected patients (Deguchi
et al., 2001). In addition, the TGF-β1 promoter is methylated in
gastric cancer patients, and the levels of TGF-β1 methylation in
H. pylori-positive gastric mucosal tissues are significantly higher
than those in H. pylori-negative gastric mucosal tissues (Wang
et al., 2013).

Alterations of the TGF-β signaling pathway have been
observed in the development of gastric cancer. The epithelial-
mesenchymal transition (EMT) induces the invasion and
metastasis of H. pylori-associated gastric cancer and the
emergence of cancer stem cells (CSCs), in which epithelial cells
lose cell polarity and cell-cell adhesion, subsequently breaking
through the basement membrane and metastasizing to distant
sites (Tsai and Yang, 2013; Yu et al., 2014). TGF-β induces
EMT through a SMAD-dependent pathway. In AGS andMKN45
gastric cancer cells, CagE-positive H. pylori infection promotes
the expression of EMT-related markers, enhancing cell invasion
and migration. Transient transfection with the G27 CagE mutant
reverses these protein levels and induces pathophysiological
changes in cell morphology (Chang et al., 2015). In vivo studies
have shown the upregulation of TGF-β1 and EMT-related genes
in dysplasia and early gastric cancer patients infected with
H. pylori. A significant reduction in the mRNA levels of EMT
markers has been observed after H. pylori eradication. CD44,
a well-known marker for CSCs, shows increased expression in
H. pylori-positive gastric carcinomas (Choi et al., 2015). Gastric
epithelial cells co-cultured with a CagA-positive H. pylori strains
or transfected with CagA expression vectors also induce EMT-
related mesenchymal markers and exhibit increased tumorigenic
properties (Bessède et al., 2014; Lee et al., 2014). In summary,
TGF-β/EMT signaling plays a critical role in H. pylori-induced
carcinogenesis.

In addition, alterations in effectors downstream of the TGF-
β signaling pathway have been observed in the carcinogenesis
of H. pylori infection (Figure 2). Gastric carcinoma tissues
positive for the L-form of H. pylori (H. pylori-L) show
significantly increased MMP-9 and VEGF expression, which
are regulated through the TGF-β signaling pathway (Ou et al.,
2014). Additionally, the signaling pathways of BMPs, which
are additional members of the TGF-β superfamily, have been
implicated in the pathogenic stages of gastric cancer, including
intestinal metaplasia, and gastric cancer associated withH. pylori
(Bleuming et al., 2006; Camilo et al., 2012).

H. pylori infection contributes to the progression of superficial
gastritis to atrophic and intestinal metaplasia, ultimately leading
to gastric cancer. Th17 cells, a lineage of CD4+ T cells, promote
tumor growth. H. pylori-infected human gastric cancer tissues
co-cultured with CD4+ T cells induce the production of Th17
cells via TGF-β and IL-6 secretion (Pinchuk et al., 2013).

COX2 plays a key role inH. pylori-induced gastric carcinoma.
In one study, the stable transfection of COX2 into MKN-45
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and MKN-28 cells attenuated NF-κB signaling. Additionally,
H. pylori infection decreased the expression of TGF-β RII and
evaded growth inhibition through TGF-β, thereby facilitating cell
invasion (Hahm et al., 2002b).

CONCLUSIONS AND PERSPECTIVES

In this review, we summarized previous studies of the multiple
effects of TGF-β in the pathogenesis of H. pylori infection.
The dysregulation of TGF-β and related cytokines is highly
widespread in H. pylori-related diseases. However, current
evidence is limited to comparative studies of TGF-β-related
gene expression and functional studies in different H. pylori-
infected human tissues. To our knowledge, the TGF-β signaling
pathway, including SMAD and non-SMAD pathways, plays

a vital role in cancer formation, progression and metastasis.
Therefore, understanding the mechanisms underlying the
multiple roles of the TGF-β signaling pathway in pathologies
associated with H. pylori infection, particularly gastric
carcinogenesis, will provide valuable information for future
studies.
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