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Members of the Burkholderia species can cause a range of severe, often fatal, respiratory

diseases. A variety of in vitro models of infection have been developed in an attempt to

elucidate the mechanism by which Burkholderia spp. gain entry to and interact with the

body. The majority of studies have tended to focus on the interaction of bacteria with

phagocytic cells with a paucity of information available with regard to the lung epithelium.

However, the lung epithelium is becoming more widely recognized as an important player

in innate immunity and the early response to infections. Here we review the complex

relationship between Burkholderia species and epithelial cells with an emphasis on

the most pathogenic species, Burkholderia pseudomallei and Burkholderia mallei. The

current gaps in knowledge in our understanding are highlighted along with the epithelial

host-pathogen interactions that offer potential opportunities for therapeutic intervention.

Keywords: Burkholderia, epithelium, epithelial, lung, host-pathogen interaction

INTRODUCTION

The lung epithelium is increasingly being acknowledged as having an important and complex
role in protecting the body from infection. Aside from the obvious physical barrier properties the
epithelium offers to the underlying endothelium and circulatory system, this region of the lung is
also thought to have immunomodulatory roles which help during both the early phases of infection
and aid in the resolution of the host response (Tam et al., 2011). Having a clear understanding of
how microorganisms interact with the different regions within the lung will be essential in order
to design new or novel medical treatments for combating infection. In order to achieve this aim a
plethora of in vitro cell models have been developed in order to study infectious diseases.

MODELING THE RESPIRATORY TRACT

Epithelial cells change in their morphology and function throughout the respiratory tract. As a
consequence, a range of different in vitro systems have been developed for oral, nasal, laryngeal,
mucoepidermoid, bronchiolar, and alveolar cells in order to establish the architecture and key roles
of each region within the tract. However, these models also provide a vital means of establishing
how infectious organisms can interact with this first line of defense in the body. As bacteria travel
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the length of the respiratory tract they will come into contact
with these epithelial cells but also other cell types including;
lymphocytes and macrophages in the sub-epithelia region,
mucosa-associated lymphoid tissue (MALT), bronchi-associated
lymphoid tissue (BALT), basal cells, goblet cells, Clara cells,
and alveolar macrophages. As the infection continues to
progress, further immune cells (e.g., lymphocytes, eosinophils,
and neutrophils)migrate into the lung. The lung environment is a
complex construct of structural, secretory, and immune cells with
all of these cells having the potential to interact with bacteria. This
review focuses solely on the interactions of the lung epithelium
with the Genera Burkholderia.

Epithelial cells are ubiquitous in the body and line many
mucosal and tissue surfaces, including the respiratory tract. The
epithelial layer is a vital barrier for protection against infection
and cells are closely associated by tight junctions and other
adherins (Parker and Prince, 2011). In the case of the respiratory
tract, the epithelial layer is the primary defense against inhaled
pathogens and is important to study the process of lung infections
(Burns et al., 1996). Various in vitro models of infection have
been developed to date to study the interactions between the
host cells and Burkholderia spp. (Table 1; Eagle et al., 1956;
Moorhead, 1965; Stoner et al., 1975; Lieber et al., 1976; Fogh
et al., 1977; Carney et al., 1985; Chen, 1988; Reddel et al.,
1988; Zeitlin et al., 1991; Cozens et al., 1994). Burkholderia
pseudomallei in particular has a broad tropism for epithelial cells.
The organism can adhere to a range of human epithelial cell
lines in vitro including those derived from alveolar, bronchial,
laryngeal, oral, conjunctiva, and cervical locations (Brown et al.,
2002; Essex-Lopresti et al., 2005). As well as acting as an
important physical barrier from infection, epithelial cells can
also produce a range of products that can either directly or
indirectly affect bacterial colonization and survival within in the
lung, through the activation of arms of the innate response.
These include antimicrobial products that act directly upon
the invading organism and/or through the release of various
cytokines in order to instigate an immune response leading to the
recruitment of circulating monocytes required for the clearance
of infection (Parker and Prince, 2011; Vareille et al., 2011). These
direct and indirect responses will now be considered in more
detail in the context of infections with Burkholderia spp. Whilst
general interactions such as adherence, invasion and intracellular
replication of the Burkholderia spp. have been consistently seen
in a variety of cell types; it is also important to acknowledge
cell specificity. Table 2 summarizes the research to date in this
context.

THE PATHOGENIC BURKHOLDERIA

SPECIES

Burkholderia is a genus of Gram-negative Proteobacteria
containing approximately 30 species. These species are associated
with a range of diseases of varying severity in animals, plants
and humans; often utilizing the lungs as the primary route of
entry into the body. Of particular interest are B. pseudomallei
and B. mallei, due to the severity of the diseases that they

TABLE 1 | Lung epithelial cell models used for studying Burkholderia

infection.

Cell type Species Lung location Derivation

A549 Human Alveolar A type 2-like pneumocyte derived

from adenocarcinoma (Lieber

et al., 1976)

LA-4 Mouse Alveolar A type 2-like pneumocyte derived

from adenocarcinoma (Stoner

et al., 1975)

16HBE Human Bronchiolar SV40 transformed bronchial

epithelium (Cozens et al., 1994)

Calu-3 Human Bronchiolar Derived from a bronchial epithelial

adenocarcinoma (Fogh et al.,

1977)

BEAS-2B Human Bronchiolar SV40/adenovirus 12 transformed

bronchial epithelium (Reddel

et al., 1988)

CFBE Human Bronchiolar SV40/adenovirus 12 transformed

cystic fibrosis bronchial epithelial

cell line (Zeitlin et al., 1991)

NCI-H292 Human Mucoepidermoid Derived from a cervical node

metastasis of a pulmonary

mucoepidermoid carcinoma.

These cells contain numerous

small mucin-containing granules

(Carney et al., 1985)

HEp-2 Human Laryngeal Originally thought to be from a

laryngeal carcinoma it is now

known to be established via HeLa

cell contamination* (Chen, 1988)

RPMI-2650 Human Nasal Derived from a malignant tumor

of the nasal septum (Moorhead,

1965)

KB Human Oral Originally thought to be from a

carcinoma of the mouth it is now

known to be established via HeLa

cell contamination* (Eagle et al.,

1956)

Primary Any Any Derived and cultured directly from

tissue. Primary cells initially retain

phenotypic characteristics of the

donor tissue but do differentiate

post isolation leading to variation

in cell phenotype

Numerous models of infection have been used to study the interaction of Burkholderia

spp. with the epithelium. The location and derivation of these cell lines are shown.

*Numerous cell types have now been confirmed to be contaminated with HeLa cells

(cervical cancer). After original isolation the HeLa cells out compete the originally derived

cell lines and dominate the cultures.

cause; melioidosis and glanders, respectively (Gilad et al., 2007).
Both melioidosis and glanders can present in a range of forms
and often with non-specific symptoms making early diagnosis
extremely challenging (Limmathurotsakul and Peacock, 2011;
Van Zandt et al., 2013). This represents a significant issue to
clinicians given that, if left untreated, both diseases are associated
with septic shock and high mortality rates; especially when
contracted via the respiratory route. In addition, latent (chronic)
infection also represents a significant issue in a clinical context
by appearing to be able to reside asymptomatically within the
body for years following an initial exposure. The longest recorded
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TABLE 2 | Burkholderia infection studies performed in lung epithelial cell types.

Biological process Bacteria Cell type References

Adherence B. pseudomallei A549 Brown et al., 2002; Kespichayawattana et al., 2004; Essex-Lopresti et al., 2005

BEAS-2B Essex-Lopresti et al., 2005

RPMI-2650

NCI-H292 Brown et al., 2002

HEp-2

KB

Invasion B. pseudomallei A549 Jones et al., 1997; Tomich et al., 2002; Kespichayawattana et al., 2004; Chuaygud

et al., 2008; Phewkliang et al., 2010

B. cepacia A549 Burns et al., 1996; Duff et al., 2006

16HBE Duff et al., 2006

Calu-3

1y Human Schwab et al., 2002

B. cenocepacia 16HBE Mullen et al., 2007

CFBE

1y Human Taylor et al., 2010

B. multivorans 16HBE Mullen et al., 2007

CFBE

1y Human Schwab et al., 2002

Intracellular survival B. cepacia A549 Tipper et al., 1998

Intracellular replication B. pseudomallei A549 Chuaygud et al., 2008; Phewkliang et al., 2010

B. cepacia A549 Duff et al., 2006

16HBE

Calu-3

B. cenocepacia Immortalized CF epithelium Sajjan et al., 2006

Bacterial movement B. cenocepacia Immortalized CF epithelium Sajjan et al., 2006

Host response B. pseudomallei A549 Utaisincharoen et al., 2005; Wongprompitak et al., 2009

LA-4 Bast et al., 2014

1y Murine

B. mallei in vivo Goodyear et al., 2010

B. thailandensis A549 Wongprompitak et al., 2009

B. cepacia A549 Palfreyman et al., 1997; Fink et al., 2003; Reddi et al., 2003; Mariappan et al., 2013

B. cenocepacia A549 Kaza et al., 2011

16HBE Kim et al., 2005; Kaza et al., 2011; Wright et al., 2011; Gillette et al., 2013

Calu-3 Kaza et al., 2011; Gillette et al., 2013

BEAS-2B Gillette et al., 2013

CFBE Wright et al., 2011

B. multivorans A549 Kaza et al., 2011

16HBE

Calu-3

CFBE
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human incubation period is 62 years before clinical symptoms
appeared with the bacteria remaining “dormant” during this
timeframe (Ngauy et al., 2005). Disease relapse in treated patients
can also recur years afterwards if the infection is not completely
cleared with anti-microbial therapy (Limmathurotsakul and
Peacock, 2011). The combined characteristics of acute and
chronic infectionmake B. pseudomallei and B.mallei of particular
concern from both a biodefence and public health perspective.
Currently, medical therapeutic options are limited. No licensed
vaccines are currently available for either melioidosis or glanders
and due to natural resistance mechanisms held by the bacteria,
treatment is restricted to a limited range of antibiotics. Even
when treated with antibiotics mortality rates can be as high
as 40% for cases of glanders (Van Zandt et al., 2013). With
no licensed vaccines available antibiotic treatment remains the
only option and is regularly required for many months to
clear infection (Van Zandt et al., 2013). Medical guidelines
currently states ceftazidime, meropenem, or imipenem with
cilastatin should be used for intravenous treatment, followed
by oral treatment with doxycycline and co-trimoxazole (H.C.f.
Infections, 2008). Despite these prolonged antibiotic regimens,
low levels of antibiotic resistance in clinical B. pseudomallei
and B. mallei isolates have been observed (Heine et al., 2001;
Wuthiekanun et al., 2011). However, resistance has been reported
in vitro for B. mallei (Van Zandt et al., 2013), and in the clinical
setting for less virulent Burkholderia spp. (Moore et al., 2001). For
the successful identification of alternative treatments it is critical
that the dynamic interplay between the bacteria and the host
is understood. The interactions between bacteria and immune
cells has previously been reviewed (Wiersinga and van der Poll,
2009; Silva and Dow, 2013) but the specific role of the lung
epithelium during an infection with a Burkholderia sp. is an
emerging field.

B. pseudomallei and B. mallei are highly pathogenic and
therefore require Biosafety Level III containment for the safe
handling and manipulation of the organism. Burkholderia
thailandensis is less virulent than B. pseudomallei and is
commonly used for modeling disease progression as it can
be handled at lower levels of containment. Despite sharing
some of these virulence mechanisms, B. thailandensis has
a reduced virulence of 105-fold in comparison to clinical
B. pseudomallei strains (Brett et al., 1998). B. thailandensis
has a genome with over 95% 16S rRNA homology with B.
pseudomallei (Brett et al., 1998). The genome also contains
various homologs of B. pseudomallei virulence factors including
components of the type III secretion systems (T3SS; Brett et al.,
1998; Haraga et al., 2008). The two commonly used strains
of B. thailandensis utilized in laboratory research are, E264
and E555. B. thailandensis E555 has greater genetic homology
to B. pseudomallei and also, unlike E264, expresses a similar
capsule (Scott et al., 2013). B. thailandensis E264 does however
possess a lipopolysaccharide (LPS) with a similar carbohydrate
structure to that of B. pseudomallei (Ngugi et al., 2010). The
choice of B. thailandensis strain should therefore be driven by
research aims in light of these genetic and phenotypic differences.
Most other Burkholderia spp. are saprophytic organisms that
are generally associated with soil or plant material however

some can cause infection as opportunistic pathogens affecting
immunosuppressed individuals or causing secondary infection
associated with an underlying disease condition, such as cystic
fibrosis (CF) (Coenye and Vandamme, 2003). These species
include B. cepacia, B. cenocepacia, and B. multivorans, which
form the Burkholderia cepacia complex (Bcc). B. cepacia and
B. pseudomallei are very closely related and have previously
been misidentified by some commercial diagnostic techniques
(Kiratisin et al., 2007; Zong et al., 2012). Although the differences
between the Bcc and the highly virulent B. pseudomallei and
B. mallei are still not fully characterized, there are similarities in
their life cycles. This potentially allows findings relating to the
mechanism of infections used by Bcc to be correlated to those
generated by more virulent bacteria strains and hence provides
an insight to these diseases (Lipuma, 2005). Notably, the ability
to use less virulent infection models has enabled advances in the
understanding of how the Burkholderia species interact with the
epithelium.

Burkholderia Species: An Introduction to
Virulence Factors
Many virulence factors have been identified within pathogenic
Burkholderia spp. and several of these have been shown to
interact with the epithelium (Figure 1A). These interactions
may offer the potential for therapeutic intervention. The best
characterized example is the capsular polysaccharide which has
been intensively studied for its role in disease progression and,
as a consequence, has also been the focus for a number of
therapeutic approaches (Reckseidler-Zenteno et al., 2009; Patel
et al., 2011; Wang et al., 2011; Cuccui et al., 2012). The
capsular polysaccharide aids in immune avoidance, specifically
phagocytosis, and possesses homologous regions with the
capsule from other respiratory pathogens includingHaemophilus
influenza and Neisseria meningitidis (Reckseidler et al., 2001).
However, for alveolar epithelial cells (A549s) an acapsularmutant
exhibited enhanced cellular internalization (Phewkliang et al.,
2010). This suggests that, in this cell type at least, the capsule
does not play a role in adhesion or invasion of B. pseudomallei.
The secretion systems have also been identified as key virulence
factors for B. pseudomallei. The genome contains six type VI
secretion systems (T6SS) with cluster 1 identified as particularly
important for the intracellular lifecycle of the organism (Burtnick
et al., 2011). Additionally, B. pseudomallei contains three T3SS
but only one has been recognized as important for virulence
in humans with the other two found to have a role in plant
models of infection (Haraga et al., 2008; Lee et al., 2010; D’Cruze
et al., 2011). Burkholderia lethal factor 1 is a cytotoxin which
has been reported to interfere with host helicase activity and
aid in the process of infection (Cruz-Migoni et al., 2011).
Despite B. mallei being considered to be a deletion clone of
B. pseudomallei, the virulence factors from this organism are
not as well characterized. B. mallei has a T6SS cluster that
is homologous to B. pseudomallei but does not possess the
virulence associated T3SS from B. pseudomallei (Memisevic
et al., 2013). Further virulence factors (e.g., pili, flagellin) are
discussed in more detail later in this review (“Adhesion and
Invasion”).
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FIGURE 1 | A visualization of the known host-pathogen interactions of Burkholderia spp. with host epithelial cells. (A) Bacterial factors known to interact

with host epithelial cells. Items in bold are specific for Burkholderia pseudomallei and/or mallei. Invasion of bacteria is driven by several bacterial factors; capsule

(Phewkliang et al., 2010), cable pili (Sajjan and Forstner, 1992, 1993), pilA (Essex-Lopresti et al., 2005), adhesins [boaA/B (Balder et al., 2010; Lu et al., 2012) and

other auto-transporter adhesins (Mil-Homens and Fialho, 2012; Lafontaine et al., 2014)], LPS (Dziarski and Gupta, 2000), Lipid A (Dziarski and Gupta, 2000), flagella

(Tomich et al., 2002; Chuaygud et al., 2008; Allwood et al., 2011), irl locus (Jones et al., 1997), a 22kDa adhesion (Sajjan and Forstner, 1993), lipase (Mullen et al.,

2007), and the metalloprotease ZmpA (Gingues et al., 2005). Receptor binding events on epithelial cells occur via mucin (Sajjan and Forstner, 1992), the

asialogangliosides GM1/2 (Gori et al., 1999), toll-like receptors (West et al., 2009, 2013), and cytokeratin 13 (Sajjan et al., 2002). Bacterial escape from vacuoles is

driven by the T3SS (Pilatz et al., 2006; Gong et al., 2011) and once the bacteria are cytosolic BimA affects host actin polymerization (Stevens et al., 2005; Sitthidet

et al., 2011). Direct entry into epithelial cells has also been linked to the T3SS and the effector protein BopE which also affects host actin (Rudolph et al., 1999; Stevens

et al., 2003; Muangsombut et al., 2008; Muangman et al., 2011). (B) The host response to Burkholderia infection from epithelial cells. Inflammation is driven by Nfk-B

induction (Dziarski and Gupta, 2000) of IL-8 (Palfreyman et al., 1997; Fink et al., 2003; Utaisincharoen et al., 2005; Sim et al., 2009; Lu et al., 2012), IL-6 (Sim et al.,

2009; Lu et al., 2012) and IL-1β (Sim et al., 2009; Lu et al., 2012; Gillette et al., 2013), TNF-α, MCP-1 and CCL20 (Sim et al., 2009; Lu et al., 2012). Tight junctions are

disrupted (Kim et al., 2005; Duff et al., 2006; Ferreira et al., 2015) and extracellular matrix components degraded by matrix metalloproteases (Wright et al., 2011).

BURKHOLDERIA INFECTION OF
EPITHELIAL CELLS

Burkholderia spp. can cause disease by infecting a wide range
of human cells (Stevens and Galyov, 2004; Eu et al., 2014).

There is substantial literature available on the infection of
innate immune cells including macrophages, neutrophils and
dendritic cells (Chieng et al., 2012; Horton et al., 2012; Bast
et al., 2014). However, during an inhalational infection the
pulmonary epithelial cells are one of the first cells to come
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into contact with bacteria and, along with alveolar macrophages,
offer one of the first lines of defense from the organism (Dobos
et al., 2000; Sim et al., 2009). The expanding interest in the
epithelium as an important player in innate immunity implies
that scientific research should consider the role of these cells
in combating infection (Eisele and Anderson, 2011). As well
as providing a physical barrier the epithelium also plays a
role in innate immunity. This includes the direct effects of
epithelial-derived antimicrobials such as complement, defensins,
lipocalin, lysozyme, nitric oxide, and surfactant (Mason, 2006).
The epithelium is also capable of recruiting a variety of immune
cells including neutrophils, T- and B-cells and monocytes as
well as activating immune cells via secretion of cytokines
(Eisele and Anderson, 2011). Burkholderia spp. can enter the
body through all areas of the respiratory system including
the olfactory epithelium leading to colonization and infection
of the brain (Owen et al., 2009). This specialized infection
of the central nervous system by Burkholderia is reviewed
elsewhere and is not the focus of this review (Dando et al.,
2014). There are a variety of lung epithelial cells now available
for the study of infection (Table 1). All of these models have
limitations but there is a growing body of work using more
complex epithelial models which are more indicative of human
infection (Barrila et al., 2010; Duell et al., 2011; David et al.,
2014).

Adhesion and Invasion
Adhesion and invasion of host epithelial cells are vital steps
during infection appearing to contribute to the overall virulence
of Burkholderia spp. For example, the in vitro infection of alveolar
A549 cells by B. thailandensiswas found to be 10-fold lower when
compared to B. pseudomallei. This observation was demonstrated
to be due to differences between the two species ability to adhere
and invade the cells and not as a consequence of intracellular
survival (Kespichayawattana et al., 2004; Wongprompitak et al.,
2009). Recently, the production of survival protein SurE by B.
pseudomallei has been hypothesized to be required for invasion
of cultured A549 cells suggesting a mechanism for this event
(Techawiwattanaboon et al., 2015). Overall, B. pseudomallei can
infect a range of epithelial cells (Brown et al., 2002), B. mallei
adheres to but appears not to invade alveolar epithelial cells
(Whitlock et al., 2009), whilst B. cepacia adherence and invasion
is strain dependent (Keig et al., 2001, 2002; Cieri et al., 2002). This
pattern also transcends into an in vivo setting as clinical isolates of
B. cepacia show an eight-fold increase in adhesion and invasion
of alveolar A549 cells when compared to environmental strains
(Tipper et al., 1998). This highlights the importance of this stage
of the infection process in determining the overall pathogenicity
of the organism. Therefore, by designing treatments that can
inhibit the ability of Burkholderia spp. to bind to epithelial cells
may represent a potential point for therapeutic intervention
in the infection cycle. This hypothesis is supported through
previously published research that has demonstrated that dextran
could inhibit the binding of B. cepacia to both A549s and
human airway explants (Chiu et al., 2001; Sajjan et al., 2004).
In these studies higher weight dextrans were found to have the
greatest inhibitory effect on infection by the organism and this

highlights the utility of this approach for preventing infection
from B. cepacia.

There have been numerous studies into potential adherence
factors and receptors that Burkholderia spp. may require for
the initial binding event to occur with host epithelial cells.
Two adhesin genes, boaA and boaB, have been identified via
comparative sequence analysis due to their strong similarity to
the well-characterized YadA adhesin from Yersinia enterocolitis;
the first trimeric autotransporter adhesin (TAA) discovered
(Casutt-Meyer et al., 2010). B. mallei express boaA whereas
B. pseudomallei have been found to express boaB as well as
boaA. It has been hypothesized that B. pseudomallei adheres
more successfully to alveolar type II cells than B. mallei as a
consequence of expressing both adherence factors (Lu et al.,
2012). The importance of these adhesins has further been
demonstrated using knockout mutants where a B. mallei boaA
knockout (ATCC23344) showed a 50% reduction in adherence to
the laryngeal derived HEp2, alveolar A549, and normal human
bronchial epithelium cell lines (Balder et al., 2010). In addition
by expressing boaB in recombinant Escherichia coli an increased
binding to these epithelial cells was observed (Balder et al., 2010).
Other TAAs have been identified in B. pseudomallei, B. mallei,
and B. cenocepacia (Mil-Homens and Fialho, 2012; Lafontaine
et al., 2014). For B. mallei and B. cenocepacia, mutation of the
genes (BMA1027 in B. mallei and BCAM0219, 0223, and 0224
in B. cenocepacia) reduced the ability of the bacteria to bind to
laryngeal, bronchial or alveolar human epithelial cells. However,
mutation of the TAA in B. pseudomallei had no effect (Lafontaine
et al., 2014). It may well be that for B. pseudomallei the adhesin
role is fulfilled by boaA and boaB whereas for B. mallei, which
only uses boaA, these other TAAs play a more important role in
adhesion.

A type IV pilus gene, pilA, in B. pseudomallei, encodes a
protein also involved in adhesion of the bacteria to epithelial
cells. The importance of pilA has been demonstrated using the
knockout pilA strain JAB16, with reduced virulence observed in
both nematode worms and mice (Essex-Lopresti et al., 2005).
Furthermore, the pilA mutant displayed reduced adherence
to the epithelial cell lines, A549, BEAS2-B, and RPMI-2650,
representing the alveoli, bronchi and nasal sections of the
respiratory tract. This indicates that B. pseudomallei are able
to bind to epithelial cells via this receptor-like mechanism
ubiquitously in the respiratory tract (Essex-Lopresti et al.,
2005). The specific host epithelial factors that allow bacterial
adherence are predominantly unknown in B. pseudomallei and
B. mallei. Asialogangliosides GM1 and GM2 are one of the few
identified host receptors on pharyngeal epithelial cells facilitating
B. pseudomallei attachment (Gori et al., 1999). Some Bcc species
have also been shown to express proteins that act as adhesins.
B. cepacia and B. cenocepacia express cable pili (Cbl) along with
an associated 22 kDa adhesin and their host receptors have been
identified. Cbl pili allow the bacteria to attach to host mucins
whilst the 22 kDa adhesin allows binding to cytokeratin 13 on
the surface of buccal host epithelial cells (Sajjan and Forstner,
1992, 1993). This means the bacteria can still attach even in
the absence of mucus. This binding of B. cepacia CblA to
cytokeratin 13 has been successfully blocked using anti-adhesin
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antibodies which relieved all pathological effects (Sajjan et al.,
2002). The mechanism of these binding events has been studied
for B. cepacia and B. cenocepacia but not for B. pseudomallei and
B. mallei (Sajjan et al., 2002; Urban et al., 2005; Ganesan and
Sajjan, 2011). It is likely that B. pseudomallei and B. mallei may
also possess multiple adhesion-type structures in order to ensure
that the organisms can mount a successful infection upon host
cells under different environmental or physiological conditions.
In addition, the functional pathways controlling the expression of
proteins involved in adhesion are beginning to be elucidated. For
example the knockout of the genes encoding the global regulators
BceD and BceF was demonstrated to reduce the adhesion of
B. contaminans to the CF epithelial cell line CFBE41o- (derived
from a CF patient) by four-fold when compared to the wild-type
strain (Ferreira et al., 2015). Future work to elucidate the exact
mechanism with respect to how the various adhesins interact
both with each other and in conjunction with host cell receptors
would significantly advance our understanding of the processes
involved that underpin the manifestation of disease and will, in
turn, potentially facilitate therapeutic intervention at this stage of
infection.

The T3SS in pathogenic Burkholderia spp. are thought to
be important for host cell invasion by the injecting of a range
of secretory proteins across the membrane that affect cellular
functions. For example, a structural component of the secretion
system is encoded for by bsaQ and the production of this protein
by B. pseudomallei can directly affect the invasion of alveolar
epithelial cells (Muangsombut et al., 2008). In the absence of
bsaQ B. pseudomallei invasion dropped by approximately 30% in
A549 cells and the organism was unable to secrete T3SS effector
proteins (e.g., BopE). The T3SS of B. pseudomallei secretes
BopE which causes host cell actin rearrangement resulting in
membrane ruffling aiding invasion (Stevens et al., 2003). Due
to its similarity to the SopE effector protein in Salmonella it is
believed that BopE functions as a guanine nucleotide exchange
factor for the cell cycle regulators Cdc42 and Rac-1 and initiates
actin disruption as a consequence (Rudolph et al., 1999). B.
pseudomallei bopE knock out mutant strains were found to
have reduced bacterial load in HeLa cells further highlighting
their importance during infection (Stevens et al., 2003). More
recently the effects of B. pseudomallei Bop family of proteins
on epithelial cells have been observed where it was found
that knock out bopC mutant strains had a reduced ability to
invade alveolar A549 cells (Muangman et al., 2011). The role of
Bop-induced actin disruption in epithelial cells requires further
investigation. Some Bcc species have also been shown to induce
actin disruption mirroring the observations found for the highly
virulent species of Burkholderia. Burkholderia cenocepacia causes
actin disruption in primary lung epithelial cells (derived from
the bronchi) that had been isolated from CF patients (Sajjan
et al., 2006). Burkholderia multivorans also causes a similar actin
disruption in a differentiated human lung epithelial cell model
(Schwab et al., 2003). For the Bcc, it has been found that the
rearrangement of actin in epithelial cells is dependent upon
microfilaments and microtubules (Taylor et al., 2010).

Other virulence factors thought to be involved in epithelial
interactions include flagellin (DeShazer et al., 1997). The

mutation of the gene encoding one structural component of the
flagellum, fliC, led to a decrease in alveolar epithelial cell (A549)
invasion (Chuaygud et al., 2008). The complementation of
B. pseudomallei 1fliC using the gene from both B. pseudomallei
and B. thailandensis shows that both sources of fliC restored
invasiveness. As such, flagellin does appear to be important in
epithelial infection but has led others to comment that its overall
role in in vivo virulence (i.e., as B. thailandensis is avirulent) may
be minimal (Allwood et al., 2011). In B. cepacia, the mutation
of gene encoding the motor-switch component of the flagellum,
fliG, did not affect adherence but decreased invasion in the same
cell type (A549 cells). This suggests that non-functioning flagella
can still bind epithelial cells but that motor function is required
for infection (Tomich et al., 2002). Further, the mutation of the
invasion-related locus, irl, led to a significant reduction of B.
pseudomallei invasion in A549 cells (10% invasion compared to
that of the wild-type; Jones et al., 1997). However, the loss of irl
was also found to have no effect on uptake by phagocytic cell
lines or in rodent studies (infant diabetic rat and Syrian hamster
challengemodels of infection). This suggests that, for reasons that
remain unknown, these proteins are specifically required for the
infection of epithelial cells.

Burkholderia spp. are also able to produce exoproducts that
have been shown to affect infectivity in epithelial cells. A bacterial
lipase has been identified in Bcc species capable of affecting
infection in two bronchiolar epithelial cell models (Mullen et al.,
2007). The inhibition of this lipase, with the lipase inhibitor
Orlistat, reduced invasion rates in a dose-dependent manner and
pre-treatment of the lung epithelial cells with Bcc lipase markedly
increased the rate of infection (Mullen et al., 2007). Equivalent
research for B. pseudomallei and B. mallei has as yet not been
reported.

Survival, Movement and Replication
Once inside host epithelial cells Burkholderia species reside in
vacuoles where they undergo replication and prevent maturation
of lysosomes and are thought to manipulate gene expression
in order to slow the maturation/acidification of the endosome
(Burns et al., 1996; Sajjan et al., 2006). B. pseudomallei and
B. mallei in particular can circumvent the response from
the host by escaping from these matured vacuoles using the
T3SS (Stevens et al., 2002; Ulrich and DeShazer, 2004). BopA
has been identified as a possible T3SS secreted protein that
activates this vacuole escape (Gong et al., 2011). Other gene
knockouts for T3SS components (e.g., bsaZ and bsaQ) have
resulted in a reduced intracellular survival, in both epithelial
and macrophage cell lines as a consequence of the bacteria
being targeted by immune pathways whilst captured within
host vacuoles (Pilatz et al., 2006; Gong et al., 2011). This
demonstrates the importance of the T3SS during infection of
both phagocytic and non-phagocytic cells. After vacuole escape,
the bacteria can then reside in the cytoplasm and replicate
en masse leading to severe pathogenesis in the host (Burns
et al., 1996; Ray et al., 2009; French et al., 2011). Bacteria
sequestered into autophagosomes undergo host-mediated cell
destruction known as autophagy, however during severe cases
of disease this is rare. B. pseudomallei has also demonstrated an

Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 7 November 2015 | Volume 5 | Article 80

http://www.frontiersin.org/cellular_and_infection_microbiology
http://www.frontiersin.org
http://www.frontiersin.org/cellular_and_infection_microbiology/archive


David et al. Burkholderia and Epithelial Host-Pathogen Interactions

ability to escape from these autophagosomes and hence to avoid
immune responses using host actin rearrangement (Allwood
et al., 2011). As well as the aforementioned role in bacterial
invasion previously discussed, the manipulation of host cell
actin is also regarded to be important in bacterial movement
to other cells. A large amount of force can be generated by
the rearrangement of the actin filaments into polymers which
in turn can push the intracellular bacteria into neighboring
cells spreading infection (Stevens et al., 2006). BimA has been
recognized as a virulence factor produced by B. pseudomallei
that can instigate this polymerisation event and homologs of
this protein have also been identified in both B. mallei and B.
thailandensis (Stevens et al., 2005; Sitthidet et al., 2011).

The mechanism of movement utilized by the highly
pathogenic Burkholderia spp. in order to move across the
epithelial layer has yet to be elucidated. However, some
indications of the potential mechanisms that may be used exist
from studying Bcc species. For example B. cenocepacia and B.
stabilis have been previously shown to pass through cells by
transcytosis and paracytosis, respectively, whilst B. multivorans
is capable of undergoing both processes to increase intracellular
spread (Schwab et al., 2002; Saldías and Valvano, 2009). There
is limited supporting data to explain the underlying regulatory
network that confers these specific phenotypes to the species of
Burkholderia identified thus far. Although the role of a small
number of bacterial derived proteins have been identified. The
translocation of B. contaminans across a polarized bronchiolar
epithelial cell layer is significantly decreased in the absence of
the tyrosine kinase, BceF, and phosphotyrosine phosphatase,
BceD, suggesting that these proteins in some way influence
translocation In addition, certain Bcc species are found to
secrete metalloproteases (e.g., ZmpA) in order to break down
the epithelium supporting the spread of infection (Gingues et al.,
2005). It is likely that highly virulent strains use a combination of
these and other regulatory proteins or disseminationmechanisms
and that, collectively, these contribute to the generation of
acute infections. The rapidity of spread around of the body for
B. pseudomallei is highlighted by colonization of other organs
being noted within 24 h of infection during murine respiratory
models of melioidosis (Lever et al., 2009; Laws et al., 2011).

THE EPITHELIAL RESPONSE TO
BURKHOLDERIA INFECTION

A range of immune responses have been demonstrated
to be induced following infection of epithelial cells with
Burkholderia spp. (Figure 1B). Novel treatments that target
these host responses (i.e., immune-modulation) offer potential
opportunities for reducing bacterial pathogenesis and/or the
tissue damage that occurs during an acute infection. The initial
binding event of Burkholderia spp. to host cell surface receptors
triggers the release of pro-inflammatorymediators. These include
the activation of NFκβ, Erk, and Akt pathways and induction of a
vast number of cytokines such as Interleukins 1β, 6 and 8 (IL-
1β, 6 and 8), tumor necrosis factor alpha (TNF-α), monocyte
chemotactic protein 1 (MCP-1), and chemokine(C-C motif)

ligand 20 (CCL20) from alveolar and bronchiolar epithelial cells
(Sim et al., 2009; Lu et al., 2012; Gillette et al., 2013). Interleukin-
8, a pro-inflammatory cytokine, is secreted by a variety of
epithelial cell types in response to infection with a number of
different Burkholderia spp. (Palfreyman et al., 1997; Reddi et al.,
2003; Kaza et al., 2011; Lu et al., 2012). However, differences have
been noted in the cytokines that are produced in response to
infection with either B. pseudomallei or B. mallei. For example
B. pseudomallei appears to induce a more pronounced pro-
inflammatory response (driven by IL-6 and -8) compared to
B. mallei; with the latter also previously found to produce an IL-
10 associated anti-inflammatory response in primary human type
2 pneumocytes (Lu et al., 2012). B. pseudomallei and B. mallei
are capable of causing this IL-8 induction by interacting with cell
surface components independently of an internalization event. In
the A549 alveolar model of the epithelium this activity is driven
by p38 MAP kinase (Utaisincharoen et al., 2005). The toll-like
receptors (TLRs) play an important role in Burkholderia infection
in non-epithelial cells. Briefly, B. pseudomallei activates TLR2 and
4 on the cell surface further highlighting that the bacteria do
not require internalization in order to be immunomodulatory
as it was found that heat killed B. pseudomallei also induced
this affect (West et al., 2008). In particular Lipid A and
LPS are thought to be the key ligands for these TLRs and
instigate an inflammatory cascade associated with the NFκβ

pathway (Dziarski and Gupta, 2000). TLR2 activation is now
thought to cause a deleterious effect on the host in response
to B. pseudomallei infection by inducing mass inflammation
and tissue damage in multiple organs (Wiersinga et al., 2007).
More recently, a study has demonstrated that the flagellin of
B. pseudomallei can also lead to the activation of TLR5 (West
et al., 2013). Similarly, B. thailandensis has also been found
to activate TLR2, 4, and 5 (West et al., 2009). The majority
of research into TLR activation and the associated intracellular
cascades has been performed using non-epithelial cells. However,
limited evidence does exist that also indicates the importance of
these receptors in tracheal, bronchiolar, and alveolar epithelial
infections (Guillot et al., 2004; Kovach and Standiford, 2011;
Wu et al., 2011). For example, flagellin-induced TLR5 activation
has been observed during Pseudomonas aeruginosa infection of
large airway primary epithelial cells (Zhang et al., 2005). Despite
these findings, cell-free culture supernatants from Bcc cultures
have also been able to stimulate the aforementioned IL-8 immune
response (Palfreyman et al., 1997; Fink et al., 2003). This suggests
that Burkholderia spp. can stimulate an immune response via
exoproducts as well as direct binding events.

The release of inflammatory mediators induces cellular
recruitment in an effort to clear infection. During B. mallei
infection the chemoattractant MCP-1 and TLR-activated MyD88
have been identified as particularly important for the recruitment
of monocytes and dendritic cells to the site of infection. This
influx causes the release of IL-12 which then recruits natural killer
(NK) cells to produce interferon gamma (IFN- γ) driven immune
cascades. The success of this initial recruitment of monocytes
and dendritic cells is thought to be vital in the clearance of
infection (Goodyear et al., 2010, 2012). During Bcc infection
in CF patients, the influx of neutrophils to the lung epithelium
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can trigger damaging inflammation (Speert et al., 2002). In mice
infected via the pulmonary route with B. pseudomallei, extensive
neutrophil recruitment is found to occur within the alveolar
spaces which is subsequently followed by mononuclear cells
during the later stages of infection (West et al., 2012). An influx
of immune cells can trigger further signaling pathways associated
with immune clearance and inflammation. This self-perpetuating
cycle can ultimately lead to the tissue damage and organ failure
that is typically found in severe cases of melioidosis and glanders.
Burkholderia spp. are also capable of modulating other parts
of the innate immune system, such as antimicrobial peptides.
Burkholderia spp. demonstrate strong resistance to these natural
defense mechanisms. For example, B. pseudomallei is resistant to
human alpha-defensin 1 (HNP-1) which is often a key player in
bacterial clearance (Goodyear et al., 2010), whilst B. cepacia has
demonstrated resistance to human beta-defensins (hBDs) 1, 2,
and 3 (Speert et al., 2002; Goodyear et al., 2012).

The overall structural epithelial integrity of the lung,
specifically through the loss of tight junctions and themodulation
of the extracellularmatrix, can also be affected following infection
by Burkholderia spp. The disruption of tight junctions, following
the dissociation of the main structural component occludin, has
been observed in bronchial epithelial cells following infection
with B. cenocepacia and B. contaminans (Kim et al., 2005; Ferreira
et al., 2015). Tight junction complex disruptions have also been
found to occur during the infection of A549, 16HBE, and Calu-
3 cells with B. cepacia (Duff et al., 2006). In addition, the
infection of CFBE41o- cells with B. contaminans decreases tight
junction protein 1, ZO-1, and claudin-1, as well as occludin and
indicated that tight junction degradation occurs via a decrease in
numerous protein components (Ferreira et al., 2015). Collectively
this research highlights how widespread in nature, and therefore
the potential importance of, tight junction disruption is in aiding
the development of an infectious disease. This will ultimately
contribute to the loss of epithelial integrity in the lungs that
has now been observed for several species of Burkholderia
and is hypothesized that this aids in the dissemination of the
infection. A continued breakdown of the lung epithelia is also
thought to occur following the up-regulation of host matrix
metalloproteinase (MMP) expression in response to infection
with Burkholderia spp. In particular the gelatinases MMP-2
and MMP-9, which breakdown collagen and other extracellular
matrix components, have been shown to be up-regulated in vitro
following infection with B. cenocepacia (Wright et al., 2011).
Clearly the damage that would be caused to the lung epithelium
during infection would allow for extensive bacterial spread into
the circulatory systems and therefore contribute to the severity of
the disease.

Transcriptomics has been used by several groups to look at
the global mRNA changes in response to Burkholderia infection
in a variety of models and tissues, including blood, liver, and
spleen (Pankla et al., 2009; Chin et al., 2010, 2012; Conejero
et al., 2015). A recent microarray study of alveolar A549 cells
infected with B. cepacia identified that the host genes involved

in inflammation, apoptosis, and the cell cycle were all down-
regulated (Mariappan et al., 2013). By dampening the immune
responses and by preventing apoptosis virulent Burkholderia
strains can create a beneficial environment for replication and
survival. Transcriptomics on epithelial cells have yet to be
carried out for B. mallei but have been used by some groups
for B. pseudomallei (Wongprompitak et al., 2009). The host
response in whole tissue homogenates has also been studied
for B. pseudomallei (Ulett et al., 2005; Conejero et al., 2015).
Unsurprisingly, the response identified numerous immune and
inflammatory genes changing in expression (e.g., IL-1, 4, and
15, TNF related genes). Despite the overwhelming immune
responses that were induced it has also been possible to elucidate
the specific involvement of the epithelia during infection from
in vivo lung homogenates (David et al., 2012). This suggests
that mechanistic studies to derive epithelial host-pathogen
interactions would benefit from “in vivo-like” co-culture models
(Barrila et al., 2010; Duell et al., 2011). Coupling transcriptomics
with more complex three dimensional cell models of infection
(creating a more “in-vivo-like” lung environment) has been
utilized successfully to investigate host-pathogen interactions for
other bacteria (David et al., 2014). More advanced approaches of
this type may aid in the discovery of new targets for therapeutic
intervention in the future.

CONCLUDING REMARKS

The diseases melioidosis and glanders caused by B. pseudomallei
and B. mallei, respectively, are an enduring issue of international
concern. At present the treatments available are limited,
protracted and largely ineffective. As a consequence, new
approaches are required in order to identify new drugs or drug
targets that aid in the clearance of infection. It is clear that
the interaction between pathogenic Burkholderia spp. and the
epithelium is a key determinant in virulence. The interactions
between these organisms and the lung epithelium represents
an under researched area, which may offer the potential for
new therapeutic interventions. Innovations in the field of
opportunistic pathogens for the treatment of CF may yield
transferablemodels, drugs or drug targets that could be utilized in
order to identify efficacious treatments against infections caused
by the highly virulent strains of B. pseudomallei and B. mallei.
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