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Enterohemorrhagic Escherichia coli (EHEC) O157:H7 is the predominant causative agent

of hemorrhagic colitis in humans and is the cause of haemolytic uraemic syndrome and

other illnesses. Cattle have been implicated as the main reservoir of this organism. Here,

we evaluated the immunogenicity and protective efficacy of a DNA vaccine encoding

conserved sequences of truncated EHEC factor for adherence-1 (efa-1′) in a mouse

model. Intranasal administration of plasmid DNA carrying the efa-1′ gene (pVAXefa-1′)

into C57BL/6 mice elicited both humoral and cellular immune responses. In animals

immunized with pVAXefa-1′, EHEC-secreted protein-specific IgM and IgG antibodies

were detected in sera at day 45. Anti-EHEC-secreted protein sIgA was also detected

in nasal and bronchoalveolar lavages. In addition, antigen-specific T-cell-proliferation,

IL-10, and IFN-γ were observed upon re-stimulation with either heat-killed bacteria or

EHEC-secreted proteins. Vaccinated animals were also protected against challenge with

E. coli O157:H7 strain EDL933. These results suggest that DNA vaccine encoding efa-1′

have therapeutic potential in interventions against EHEC infections. This approach could

lead to a new strategy in the production of vaccines that prevent infections in cattle.

Keywords: DNA vaccine, truncated efa-1 gene, enterohemorragic E. coli, O157:H7 serotype, protective to mice

INTRODUCTION

Most strains of Escherichia coli form part of the normal microbiota of the gastrointestinal tract
of mammals and birds. However, several highly adapted E. coli strains possess special virulence
properties, allowing them to adapt to alternative niches and to cause a broad spectrum of diseases
including diarrhea. These strains, named diarrheagenic E. coli (DEC), have been classified based
on their known virulence properties (Kaper et al., 2004). Enterohemorrhagic E. coli (EHEC)
are important intestinal zoonotic pathogens, causing sporadic, and epidemic E. coli infection
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outbreaks worldwide (Bosilevac and Koohmaraie, 2011). EHEC
is a type of Shiga toxin-producing E. coli (STEC) that colonizes
the human intestine and causes diarrheal illness that can progress
to hemorrhagic colitis and, in several cases, life-threatening
haemolytic uremic syndrome (HUS) (Kaper et al., 2004; Farfan
and Torres, 2012). Ruminants, especially cattle, are the primary
source of STEC O157:H7, the most commonly detected strain,
and harbor non-O157 STEC strain (Pennington, 2010; Bosilevac
and Koohmaraie, 2011), and beef is considered to be an
important source of STEC O157 and non-O157 human infection
(Caprioli et al., 2005).

EHEC and enteropathogenic E. coli (EPEC) are intestinal
pathogens that have the ability to form attaching and effacing
(A/E) lesions in host intestinal epithelium (Schmidt, 2010).
A/E lesions are characterized by bacterial attachment with the
formation of an actin pedestal-like structure and by destruction
of epithelial microvilli (Goosney et al., 2000). This pathology
is genetically determined by the locus of enterocyte effacement
(LEE) (Crawford et al., 2002; Kaper et al., 2004), which is
highly conserved in EHEC and EPEC. The LEE contains a
significant number of genes associated with virulence, mainly
encoding a type III secretion system (T3SS), and the eae gene
encoding the outer membrane adhesin intimin that, along with
the translocated intimin receptor (Tir), allows intimate bacterial
binding to intestinal epithelium (Crawford et al., 2002). However,
some genes coding for effector proteins and associated factors
implicated in EPEC and EHEC pathogenesis are located outside
the LEE island, forming part of a large pathogenicity island
responsible for increased virulence (Klapproth andMeyer, 2009).
In various EHEC and EPEC strains, these include lifA/efa-1
(lymphocyte inhibitory factor A/EHEC factor for adherence-1),
that encodes a toxin of approximately 360 kDa, one of the largest
proteins produced by E. coli. It contains glycosyltransferase
and protease domain, both present also in Clostridial cytotixins
(Klapproth, 2010). LifA/Efa1 protein has been detected at the
surface of the EPEC JPN15 strain (Badea et al., 2003) and
affects intestinal colonization and adhesion by modulating local
mucosal immunity in the gut (Malstrom and James, 1998;
Klapproth et al., 2000).

The lifA/efa-1 gene is present in all tested non-O157:H7 EHEC
serotype and in related enteropathogens, such as Citrobacter
rodentium and rabbit EPEC (REPEC) (Klapproth et al., 2000;
Nicholls et al., 2000). Although this gene is not physically located
in the LEE it has only been observed in eae-positive (Nicholls
et al., 2000; Vidal et al., 2008) and LEE-positive strains isolated
from humans and cattle (Galli et al., 2010). However, the intact
efa-1 gene is absent from the E. coli O157:H7 strains that have
been sequenced (Perna et al., 2001; Janka et al., 2002). E. coli
O157:H7 possesses a truncated lifA/efa-1 pseudogene (efa-1′)
which is located within the pathogenic island O122 and is
predicted to encode proteins identical to amino acids 1–433 and
435–710 of open reading frame (ORF) z4332 and the contiguous
ORF z4333 respectively (Perna et al., 2001). It has been reported
that an E. coli O157:H7 mutant carrying a transposon insertion
upstream of efa-1′ showed reduced adherence to human colon
cells (Stevens et al., 2002), indicating that the truncated Efa-1
protein may have some of the properties of full-length Efa-1,

whose last gene (efa-1′) could contribute to its virulence (Karmali
et al., 2003).

A variety of prevention strategies have been proposed in order
to reduce the prevalence of EHEC in animals (Potter et al.,
2004; Sargeant et al., 2007; Babiuk et al., 2008; Rozema et al.,
2009), and thereby also reduce the incidence of human infections.
The use of adjuvants has greatly improved the antigenicity of
immunogens. An example is the new generation of immune-
stimulation complex (ISCOM) adjuvants such as AbISCO; this
is a potent inducer of humoral and cellular immune response
against antigens administered via themucose (Picard et al., 2012).
Although mice do not develop the symptoms associated with
diarrheal disease observed in human (Roxas et al., 2010), they
mice have proved to be useful for EHEC infection and disease
(García-Angulo et al., 2014). This includes the C57BL/6 mice
(Rhee et al., 2011). In this study, we sought to develop an anti-
EHEC DNA-based vaccine utilizing the efa-1′ gene, contained in
an expression vector, as an innovative strategy to prevent EHEC
infections. Similar strategies have been widely used for anti-viral
therapy as well as for protection against bacteria and parasites
(Dhama et al., 2008). The present study describes the immune
response induced by a DNA plasmid encoding sequences of the
efa-1′ gene in an intranasal C57BL/6 mouse model.

MATERIALS AND METHODS

Animals
Eight-week-old female C57BL/6 mice (purchased from Instituto
de Salud Pública, Santiago, Chile) were acclimated and randomly
assigned to experimental groups. Mice were handled and
disposed of according to the guidelines of the Universidad
de Concepción Institutional Ethics Committee. According to
the experimental procedure, mice were housed in individually
cages with free access to food and water in temperature-
controlled under 12 h light/12 h dark cycle, an environment free
of specific pathogens. The Bioethics and security committee
of the Faculty of Biological Sciences in the Universidad de
Concepción approved this study. All efforts were made to
minimize animal suffering.

Bacterial Strains and Culture Conditions
The E. coli EDL933 (Mohawk and O’Brien, 2011), the
prototypical strain E. coli O157:H7, was used for experimental
infection, for oral inoculation studies, this bacterial strain were
amplified in brain heart infusion broth for 18 h at 37◦C with
shaking. E. coli strain DH5α (Life Technology, Gaithersburg,
MD) was used to propagate plasmids. E. coli DH5α cultures
were routinely grown at 37◦C in Luria-Bertani broth or agar
supplemented, when required, with Kanamycin 100µg/ml.

Construction of the DNA Vaccine
DNA vaccine constructs expressing efa-1′ from the O-island
122 of E. coli O157:H7 were prepared as described below. The
coding region for this antigen was PCR amplified from E. coli
EDL933 chromosomal DNA. Primer sequences are listed in Table
S1. PCR products were ligated into the pVAX-cloning vector
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(Invitrogen). The resulting plasmids were designated pVAXefa-
1′. pVAX is a plasmid vector designed for use in the development
of DNA vaccine and it is characterized by high-level transient
expression of the protein of interest in most mammalian cells
(Invitrogen, USA). Large amount of endotoxin-free plasmid
DNA were prepared and purified using the Endo-free plasmid
Giga Kit (Qiagen, Valencia, CA), following the manufacturer’s
instructions. The analysis of Efa-1′ protein expression was carried
out by western blot from Cos7 cell transfected with the plasmid
pVAXefa-1′. Immunodetection of proteins was carried out by
the use of a mouse Flag specific monoclonal antibody (Sigma-
Aldrich, Inc.) as the primary antibody (data not shown).

Purification of EHEC-Secreted Proteins
Secreted proteins by the Type III Secretion System (TTSS)
were prepared from supernatants obtained from E. coli EDL933
cultures, as previously described (Niebuhr and Ebel, 2003).
Briefly, E. coli strain O157:H7 EDL933 was cultivated in Luria-
Bertani medium (LB) at 37◦C overnight. This culture was then
diluted in M-9minimal medium supplemented with 44mM
NaHCO, 8mM MgSO4, glucose and 0.1% Casamino Acids
(Difco Laboratories); these culture conditions optimize the
production of Type III Secretion System proteins. The culture
was incubated at 37◦C in an atmosphere with 5% CO2 until the
optical density reached 0.7–0.8 at 600 nm. Bacteria were pelleted
by centrifugation at 3500 g for 15min; the supernatant was
concentrated by precipitating with trichloroacetic acid (TCA),
then 10% (v/v) 100% TCA was added and left overnight at
4◦C. We then centrifuged at 4000 g for 20min, discarded the
supernatant, and the pellet was re-suspended in 200µL Tris-HCl
1.5M. Proteins were stored at −20◦C for later use as antigens in
ELISA and lymphocyte proliferation assays.

Immunization
Ten mice per group were anesthetized using a solution
of 10mg/ml ketamine and 250µg/ml acepromazine and
immunized intranasally with a solution containing 50µg of
the recombinant plasmid pVAXefa-1′, 12µg of the adjuvant
AbISCO-100 R© (ISCONOVA AB, Uppsala, Sweden), plus PBS to
complete a total volume of 50µl for the appropriate preparation
of the recombinant vector. As negative controls, groups of mice
were immunized with empty pVAX vector vaccine, as internal
control of plasmid or PBS plus adjuvant respectively. Three
doses of vaccine were administered in 14-day intervals (Li et al.,
2000). Assays were performed in duplicate; the results are a
representative date set.

Evaluation of Antibody Response
Mouse serum samples were obtained every 2 weeks prior to each
immunization and 2 weeks after the last administration of the
DNA vaccine. The presence of serum immunoglobulin (Ig) G,
IgM and IgA isotypes with specificity for Efa-1′ was determined
by an enzyme-linked immunosorbent assay (ELISA) (Li et al.,
2000). For this purpose, 2.5µg/ml of EHEC-secreted protein
diluted in carbonate buffer (pH 9.6) was used to coat the wells
of a polystyrene plate at 4◦C overnight. The plates were washed
three times in PBS, 0.05% Tween 20 (PBST) and the non-specific

sites were blocked with 3% gelatin in PBST. After 1 h incubation
at 37◦C and repeated washing, the plate was incubated with serial
dilutions of sera from immunized mice (from 1:500 to 1:20,000)
in PBST. They were then added to the ELISA plates and incubated
at 37◦C for 2 h. Then the plate were repeated washed and anti-
mouse isotypeHRP-conjugates (1:1000 in PBST, ICNBiomedical,
Inc., Ohio, USA) was added, incubated a 37◦C for 30min and
washed. After 30min of incubation, 100µl of substrate OPD was
added (Sigma, USA) to each well. The reaction was stopped with
100µl of 2M H2SO4 and the OD450 was read on a microplate
reader (Victor X3. PerkinElmer, USA). The result was expressed
as endpoint titer of the last dilution, which gave an optical
density at 450 nm of two times above the value of the negative
control± SEM.

In addition, the amount of total specific IgA present in
nasal and bronchoalveolar lavages (NAL and BAL respectively)
with specificity to EHEC secreted proteins were determined by
ELISA (Oñate et al., 2003). Antibody titers were estimated as
the reciprocals of the last sample dilution giving an absorbance
(A450) value above the cut-off. To compensate for potential
variations in the efficiency of recovery of secretory antibodies
between animals, the results were normalized according to the
total IgA content of the sample. The cut-off value for the assay
was calculated as the mean specific OD450 plus standard error of
the means (SEM) for 10 NAL or 10 BAL from non-immunized
mice assayed at a dilution of 1:10 respectively. Thus, results were
expressed as ELISA units (EU), namely the endpoint titer of
antigen-specific IgA divided by the total concentration in µg of
the IgA present in the sample.

Splenocyte Cultures and Lymphocyte
Proliferation
Two weeks after their last immunization, five mice per group
were euthanized. Their spleens were removed and homogenized
under aseptic conditions. Single-cell suspensions were prepared
according to procedure described (Li et al., 2000). The
splenocytes were cultured in RPMI 1640 medium (Sigma), 10%
heat-inactivated fetal calf serum (GIBCO BRL), and penicillin-
streptomycin (50 UI of penicillin; 50µg/ml streptomycin)
at 37◦C with 5% CO2 in a 96-well flat-bottom plate at a
concentration of 4 × 105 viable cells/well in the presence of
no additive (unstimulated control) or one of the following
stimulants: (1) 0.2µg/well of heat-killed E. coli strain EDL933 or
(2) 1µg/well of EHEC-secreted proteins. The heat-killed E.coli
EDL933 wet weight is measured by the cell pellet weight after
the centrifugation of a culture obtained as follow; 100ml of LB
inoculated with 1% of ON bacterial culture, was incubated at
37◦C with shaking until it reaches an OD600 of 0.8 (exponential
phase). Then the culture was spun at 20,000 × g by 20min,
suspend to obtain 50mg/ml (wet cell weight), then the bacteria
were killed by heating at 65◦C during 1 h, spun at 20,000 × g,
and the wet cell pellet was weight and adjusted to the required
final concentration.

The cells were cultured for 72 h and pulsed for 8 h with 0.4µCi
of thymidine (50 µCi/mmol; Amersham, UK) per well. The
radioactivity incorporated into the DNA of proliferating cells was
determined by scintillation counting. Lymphocyte proliferation
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data were expressed as mean counts per minute of triplicate
cultures from a cell pool for each group (five mice per group).
In addition, a stimulation index (SI) was calculated for each
experimental group by dividing the counts per minute of cells
with antigen by the counts per minute of cells without antigen.

Cytokine mRNA Profile
Splenocytes (4 × 105 cells per well) were stimulated with heat-
killed E. coli strain EDL933 (0.2µg/well) and EHEC-secreted
proteins (1µg/well) for 9 h (Fu et al., 2013). RNA was isolated
from cells using TRIzol R© (Invitrogen), as recommended by the
manufacturer’s instructions, and reverse transcribed to cDNA.
Cytokine-specific real-time PCR for interleukin (IL)-4, IL-10
and INF-γ was carried out following standard procedures. The
cytokine primer sequences are listed in Table S1. The gapdh
gene was used as a control for constitutive gene expression. The
amplification reaction was carried out for a total of 40 cycles as
follows: 95◦C for 30 s, 55◦C for 30 s, and 72◦C for 30 s, with a pre-
cycle of 95◦C for 10min and final extension at 72◦C for 5min.
PCR products (5–10µl) were analyzed by gel electrophoresis.
Expression data were normalized against the housekeeping
gapdh gene expression profile. Each value was analyzed for
statistical difference according to the Bonferroni/Dunn method
(Retamal-Díaz et al., 2014).

Challenge of Immunized Mice
The protection experiments were performed as described
previously (Giulietti et al., 2001). Twenty-four hours before the
challenge, mouse were treated with 1mg/ml streptomycin, which
was administered in water which they drank ad libitum. Fivemice
from each group were challenged through oral gavage 6 weeks
after the last vaccine dose with 100µl of a suspension containing
5 × 105 CFU/ml of E. coli strain EDL933. Two weeks later,
the infected mice were euthanized and their distal and proximal
colon were removed under aseptic conditions, homogenized and
diluted into plates containing Sorbitol MacConkey agar (Oxoid,
Basingstoke, UK), supplemented with 20µg/ml nalidixic acid
(Sigma, St. Louis, USA) and 2.5µg/ml potassium tellurite (TN-
SMAC) in order to determine the number of E. coli strain
EDL933 CFU per ml. Some non-sorbitol-fermenting colonies
were tested by PCR for O157 serogroup (primers are described in
Table S1). Bacterial counts of challenged strain were determined
in intestinal tissue homogenates and expressed as CFU ml-1
of homogenate. Log10 units of protection were obtained by
subtracting themean log10 CFU for the experimental group from
the mean log10 CFU of the corresponding control group.

Statistical Analysis
Data for lymphocyte proliferation, evaluation of the level of
antibody, and detection of cytokine were analyzed using ANOVA
test with Bonferroni post-hoc test (P-value of 0.05 or less
was considered statistically significant). The data derived from
the protection experiment were analyzed using the Two-way
ANOVA test and Sidak’s multiple comparisons test with a
confidence interval of 95% (α = 0.05).

RESULTS

Immune Response of Mice Vaccinated with
DNA Vaccines
We examined the immune response induced in mice intranasally
immunized with pVAXefa-1′ (co-administered with adjuvant
AbISCO). Systemic anti-Efa-1′ IgM, IgG and IgA were detected.
As shown in Figure 1A, 15 days after priming the sera from
mice immunized with pVAXefa-1′ contained a significant titer
of anti-Efa-1′ IgM (P < 0.05 in comparison to the negative
control groups PBS or pVAX). On days 30 and 45 after priming,
the titers of anti-Efa-1′ IgM were again significantly higher
as compared to the negative control groups PBS or pVAX
(P < 0.01). Later, Efa-1′ IgG was determined in sera of
vaccinated animals. The result showed that 15 and 30 days
after immunization with pVAXefa-1′ the titer of anti-Efa-1′

IgG was higher, but not significantly, in comparison with the
values obtained in mice from the negative control groups
(Figure 1B; P > 0.05). At day 45, the level of IgG showed a
higher increase compared with other days. This was statistically
significant compared to the negative control groups (P <

0.01). The titer of anti-Efa-1′ IgA present in sera from mice
immunized with the vector pVAXefa-1′ exhibited slight variation
throughout the experiment, with no significant difference when
compared with values from mice in the negative control groups
(Figure 1C).

In order to evaluate the induction of mucosal responses
in vaccinated animals, EHEC-secreted specific sIgA titres
were determined directly from nasal lavage (NAL) and
bronchoalveolar lavages (BAL) (Figure 2). Results indicated
that vaccination with pVAXefa-1′ induced significantly higher
levels of antigen-specific mucosal IgA production in both NAL
(Figure 2A) and BAL (Figure 2B) as compared to control mice
receiving PBS or pVAX (P < 0.01).

In most cases the generation of an efficient and long
lasting immune response requires the induction of a T-
helper cell sub-set. Thus, we opted for examining the cellular
mediated immunity (CMI) response to heat-killed E. coli
and EHEC-secreted protein in the vaccinated mice. For this
purpose, we measured the proliferative response of splenocyte
following in vitro restimulation with the corresponding antigen
(Figure 3). Splenocytes from mice immunized with pVAXefa-
1′ exhibited a significant proliferative response to heat-killed
E. coli EDL933 (P < 0.01 in comparison to the PBS or
pVAX groups), with a stimulation index of 5.23. Equivalently,
when the splenocytes from mice immunized with pVAXefa-
1′ were stimulated in vitro with EHEC-secreted proteins, they
showed a statistically significant increase compared to control
groups (P < 0.05), with a stimulation index of 4.34. T
cells from mice of all groups had similarly high levels of
proliferative response to the mitogen Concanavalin A (data not
shown).

To analyse the stimulated immune response in more detail,
we also evaluated the cytokine production by spleen-derived
lymphocytes after restimulation with the antigen. We used
reverse transcription-polymerase chain reaction (RT-PCR) to
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FIGURE 1 | Efa-1′-specific serum antibodies. Five mice in each group

were immunized by i.n. route with pVAXefa-1′, control pVAX and PBS. Serum

samples were obtained on days 0, 15, 30, and 45 post-immunization, and

Efa-1′-specific IgM (A), IgG (B), and IgA (C) levels in the samples were

quantified. Endpoint titers are expressed as retrograde values of the last

dilution that gave an OD450 of two times above the value of the negative

control ± SEM. These results are representative of data from two independent

experiments. Statistical significances are represented by asterisks (*P < 0.05,

and **P < 0.01, as compared to the control PBS group).

quantify IL-10, IFN-γ and IL-4 mRNA levels in spleen-
cell culture from pVAXefa-1′-inmunized animals. By RT-PCR
we observed an 8-fold increase in IL-10 mRNA expression
(Figure 4A) and a 15-fold increase in IFN-γ mRNA expression
(Figure 4B), at 9 h post-stimulation with heat-killed E. coli,
in splenocytes from pVAXefa-1′-vaccinated mice. This result
was statistically significant compared to expression levels in
unstimulated cells (P < 0.05). Upon stimulation with EHEC-
secreted proteins, splenocytes from pVAXefa-1′-vaccinated mice
expressed IL-10 and IFN-γ, but only IFN-γ levels were significant
compared to unstimulated cells (P < 0.05) (Figure 4B). No
significant IL-4 mRNA was detected in any of the splenocyte-
stimulated groups (Figure 4C).

TABLE 1 | Protection of mice against challenge with E. coli O157:H7 after

immunization with DNA vaccine.

Vaccine Log10 CFU of E. coli Log10 units

O157:H7 strain EDL933 of protection

in intestine (mean ± SD)

Saline control 4.29 ± 1.01 0.00

pVAX 3.81 ± 0.43 0.48

pVAXefa-1′ 0.78 ± 0.52** 3.51

Five mice for each group were challenged orally with 104 CFU of E. coli O157:H7 strain

EDL933 2 week prior to euthanasia. Bacterial counts of challenged strain were determined

in intestinal tissue homogenates, five mice per group, and expressed as CFU ml−1 of

homogenates. **P< 0.001 compared to the negative controls. Statistical differences were

determined using the Two-way ANOVA test and Sidak’s post-hoc test with a confidence

interval of 95% (α = 0.05).

Efficacy of pVAXefa-1′ Immunization in
Generating Protective Immunity against
E. coli EDL933
Immune protection experiments were carried out by challenging
vaccinated and control mice by oral gavage with virulent
E. coli strain EDL933. The level of infection was evaluated
by bacterial counts in intestinal tissue homogenates and
expressed as CFU/ml-1 of homogenate. The results showed
that immunization with pVAXefa-1′ induced a high degree of
protection, 3.51 log10 less bacterial in this group, compared with
the PBS negative control groups, (P < 0.001) (Table 1).

DISCUSSION

EHEC were first recognized as a cause of human disease in
1982 (Asahara et al., 2004) and are associated with diarrhea,
hemorrhagic colitis, and life-threatening haemolytic uremic
syndrome (Riley et al., 1983). The incidence of EHEC varies
by age group, with the highest incidence occurring in children
under 15 years of age (0.7 cases per 100,000 in USA). Potential
complications associated with EHEC include HUS, the principal
cause of acute kidney failure in children. Most cases of HUS are
caused by E. coliO157:H7 (Tarr et al., 2005). In the case of EHEC
infection, antibiotic therapy is not usually recommended because
antibiotics may induce toxin release from the pathogen as a result
of an increased systemic exposure to the adverse effects of the
potent nephrotoxin (Wong et al., 2000; Zhang et al., 2000) and
there is a need for new strategies to control EHEC colonization,
including from animal reservoirs. Particular focus should be
placed on protecting cattle, the largest reservoir worldwide, as
well as swine, another significant reservoir in many countries
(Fremaux et al., 2006; Kagambèga et al., 2012).

The proteins encoded within the LEE have been used as
subunit vaccines to generate an increase in serum antibody
production and lymphocyte proliferation in murine (Momtaz
et al., 2013) and cattle models (Cataldi et al., 2008). Not all
strains of EHEC and EPEC harbor the same virulence factors.
For example, STEC strains lacking intimin (eae), isolated from
patients with hemorrhagic colitis or HUS, may carry iha, efa-
1, lpfA, and/or saa genes (Vidal et al., 2008). Therefore, it
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FIGURE 2 | Efa-1′-specific mucosal sIgA antibodies in nasal lavages (A) and bronchoalveolar lavage (B) fluids. Efa-1′-specific antibody titers were

estimated as the reciprocals of the last sample dilution giving an A450 value above the cut-off. Results were normalized according to the total IgA content of the

sample. Results are expressed as ELISA units (EU), namely, the endpoint titer of SOD-specific IgA divided by the total concentration in µg of IgA present in the

sample. Data are shown as mean ± SEM of two experiments. The statistical significances are represented by **P < 0.01.

FIGURE 3 | Lymphocyte proliferation assay. C57BL/6 mice were immunized with pVAXefa-1′, pVAX, or PBS. Efa-1′-T-cell proliferative responses were measured

2 weeks after the last immunization by [3H] thymidine incorporation. Splenocyte derived from animals in each group were pooled, and 4× 105 cells for wells were

restimulated in vitro with heat-killed E. coli (0.2µg/well) or EHEC-secreted protein (1µg/well). Each bar indicates the average number of counts per minute for triplicate

cultures of cells ± standard deviation (error bar) obtained from five mice per group. Statistical significances are represented by asterisks (*P < 0.05, and ***P < 0.001).

is necessary to find other potential immunogens capable of
inducing or improving a wide-range of protective immunity to
EHEC. Based on our studies Efa-1′ meet the required criteria,
because it is conserved among various EHEC serogrups and
elicit a strong immune response. Intramuscular immunization of
cattle with the truncated recombinant protein (Efa-1′) has been
shown to induce a humoral response to the specific antigen, but
not protective immunity (McNeilly et al., 2010). Nevertheless, it
cannot be excluded that under different conditions, such as route
of administration or dose of challenge, different results could be
obtained.

The use of immunostimulating complexes (ISCOMs) has been
shown to induce robust cellular and humoral immune responses
against antigens administered intranasally (van Diemen et al.,
2007). Prominent IL-12 production by innate immune cells is
a characteristic reaction induced by ISCOMs, promoting the

development of a strong Th1 response. After intranasal or
intestinal mucosal administration, the ISCOM induces a strong
specific mucosal IgA response on local and remote mucosal
surfaces, with stimulation of the secretion of proinflammatory
cytokines such as IL-1 and TNF-α, or anti-inflammatory
cytokines such as IL-10 (Hu et al., 2001).

DNA vaccination has already proved affective against E. coli
O157:H7 (Morein et al., 2004). We examined the effectiveness
of the DNA vaccine transport efa-1′ administered together
with AbISCO adjuvant, in generating immunity and protection
against experimental infection with the E. coli strain EDL933
in mice. With EHEC-secreted proteins as antigen, the plasmid
pVAXefa-1′ induced the highest titers of IgM and IgG production
compared with negative control groups pVAX and PBS. A
strong antibody response against LEE-encoded proteins has
been reported after experimental infection with EHEC O157:H7

Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 6 January 2016 | Volume 5 | Article 104

http://www.frontiersin.org/cellular_and_infection_microbiology
http://www.frontiersin.org
http://www.frontiersin.org/cellular_and_infection_microbiology/archive


Riquelme-Neira et al. efa-1′ DNA-Vaccine Confer O157:H7 Protection

FIGURE 4 | Relative mRNA expression of IL-10 (A) and IFN-γ (B) and

IL-4 (C) produced by mouse splenocytes. Fold variation of encoded

cytokines is shown 9 h after stimulation with 0.2µg/well of heat-killed E. coli

and 1µg/well of EHEC secreted proteins. *Significant differences with respect

to the group inoculated with PBS (P < 0.05).

(Morein et al., 2004). Nevertheless, it is known that in natural
EHEC infections in cattle, the serum antibody response is not
essential to generate an efficient protective response (Shariati
Mehr et al., 2012). At the mucosal level, intranasal immunization
with our vaccine resulted in the production of higher antigen-
specific IgA titers (sIgA) in BAL than in NAL. Several studies
have demonstrated that such locally produced antibodies, mainly
sIgA, which prevents the binding of bacteria and toxin action
on epithelial cells, most likely provide protective immunity
(Kaper et al., 2004). These results are correlated with the high
rate of lymphocyte stimulation observed in the splenocytes of
animals immunized with the efa-1′ gene, with the production of
INF-γ, IL-10 and significant protection. Contrarily, it has been
reported that various strains of EHEC are capable of inhibiting
the INF-γ pathway through inhibition of Stat-1 phosphorylation
in epithelial cells, contributing to immune evasion by these
microorganisms (Bretschneider et al., 2007). The high expression
of INF-γ in vaccinated mice may offset the inhibitory effects
caused by EHEC infection. Moreover, the expression of the anti-
inflammatory cytokine IL-10 may contribute to the significant
mucosal immune response observed by immunization with
pVAXefa-1′. B cells are the major source of IgA precursor cells.
They undergo a class switch recombination to IgA secreting
cells, which are heavily dependent on cytokines secreted by

activated T cells, such as IL-10, which in lamina propria promotes
conversion of sIgA B cells to mature sIgA secreting plasma
cells (Ho et al., 2012), potentiating a Th2-biased immunological
response. Moreover, high level of IL-10 expression has been
reported in mice vaccinated with Shiga toxins (Stxs) fusion
proteins from EHEC (Fagarasan et al., 2010), demonstrating
that production of IL-10 is a natural response against E. coli
pathogenic infection. Thus, immunization with pVAXefa-1′

induces significant production of IFN-γ associated with immune
protection against microbial pathogens, with the production of
IL-10 cytokine that is crucial in preventing inflammation, and
thus protecting tissues from damage. This is essential for the
maintenance of gut homeostasis and the recovery of the intestinal
epithelial barrier. Additionally, this protects gut mucosal tissues
from colitis (Cai et al., 2011). Therefore, the joint action of
sIgA in mucosa together with the high production of INF-
γ and IL-10 observed in pVAXefa-1′ immunized mice, may
explain the high protective response observed in this group.
Further, the production of IL-10 in conjunction with IFN-γ
could be interpreted as a regulatory immune mechanism that
prevents uncontrolled TH type 1 immune responses that could be
potentially harmful (Li et al., 2014) o beneficial agianst to EHEC
(Ghasemi et al., 2014).

CONCLUSIONS

This study shows that genetic vaccines containing efa-1′ from
E. coli O157:H7 result in the induction of mucosal and systemic
immune responses. This approach is able to confer efficient
protection against challenge with the enterohemorrhagic E. coli
EDL933 in the mouse model studied. Overall, these results
indicate that mucosal inoculation with DNA vaccines is a valid
vaccination approach for the induction of immuno-mediated
protection against EHEC infections.
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