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Mycobacterium tuberculosis associated granuloma formation can be viewed as a

structural immune response that can contain and halt the spread of the pathogen. In

several mammalian hosts, including non-human primates, Mtb granulomas are often

hypoxic, although this has not been observed in wild type murine infection models.

While a presumed consequence, the structural contribution of the granuloma to oxygen

limitation and the concomitant impact onMtbmetabolic viability and persistence remains

to be fully explored. We develop a multiscale computational model to test to what extent

in vivo Mtb granulomas become hypoxic, and investigate the effects of hypoxia on

host immune response efficacy and mycobacterial persistence. Our study integrates a

physiological model of oxygen dynamics in the extracellular space of alveolar tissue, an

agent-based model of cellular immune response, and a systems biology-based model of

Mtbmetabolic dynamics. Our theoretical studies suggest that the dynamics of granuloma

organization mediates oxygen availability and illustrates the immunological contribution

of this structural host response to infection outcome. Furthermore, our integrated

model demonstrates the link between structural immune response and mechanistic

drivers influencingMtbs adaptation to its changing microenvironment and the qualitative

infection outcome scenarios of clearance, containment, dissemination, and a newly

observed theoretical outcome of transient containment. We observed hypoxic regions

in the containment granuloma similar in size to granulomas found in mammalian in vivo

models of Mtb infection. In the case of the containment outcome, our model uniquely

demonstrates that immune response mediated hypoxic conditions help foster the shift

down of bacteria through two stages of adaptation similar to thein vitro non-replicating

persistence (NRP) observed in the Wayne model of Mtb dormancy. The adaptation in

part contributes to the ability of Mtb to remain dormant for years after initial infection.

Keywords: Mycobacterium tuberculosis, agent based model, systems biology, granuloma, multiscale modeling,

host-pathogen interactions, dormancy, lung diseases
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INTRODUCTION

Tuberculosis (TB) disease, caused by the bacilli Mycobacterium
tuberculosis (Mtb), remains a major global health concern, with
an estimated 8.6 million infected globally and 1.2 million Mtb
related deaths in 2012 (World Health Organization, 2013). After
inhalation of Mtb in the form of microdroplet nuclei, the
bacteria are phagocytized by lung alveolar macrophages. An
initial innate immune response ensues followed by presentation
of Mtb antigens by professional antigen presenting cells (e.g.,
macrophage and dendritic cells) to lymphocytes, leading to cell-
mediated immune response. Immune response to Mtb infection
is characterized by sequential recruitment of leukocytes such as
T, B, and NK cells as well as uninfected macrophages to the site of
infection (Co, 2004). In the event that immune cells are unable to
eliminate the infection (clearance scenario), these cells attempt
to contain the spread of infection by aggregating in multiple
layers around the infected host cell leading to the formation of
granulomatous structures (containment scenario). In the event,
that the host fails to clear or contain the pathogen, Mtb can
spread, infecting other cells, tissues, and organs (dissemination
scenario).

A granuloma can be viewed as an equilibrium state where
the host contains the infection while the pathogen persists by
transitioning into a dormant or latent state, resulting in latent TB
infection (LTBI). TheWHO estimates one-third of all individuals
have LTBI, with the risk of reactivation to active disease ranging
from 5 to 20% depending on the health of the individual
(World Health Organization, 2013). Within human pulmonary
macrophages and granuloma structures, Mtb is believed to be
in a microenvironment that has diminished oxygen availability
and increased nitric oxide (NO) concentrations (Gomez and
McKinney, 2004; Shiloh et al., 2008). The physical structure of
the granuloma with a central focus of Mtb infection surrounded
bymultiple layers of epithelioid cells and amantle of lymphocytes
is likely a key contributing factor to the depletion of oxygen in the
in vivo microenvironment ofMtb (Via et al., 2008). How oxygen
depletion within the granuloma microenvironment influences
Mtb proliferation and persistence is important to understanding
and ultimately treating LTBI.

The role of host response mediated oxygen depletion on
Mtb survival has been the focus of several empirical studies,
most notably the Wayne model of non-replicating persistence
(NRP) which provided an in vitro platform for analyzing Mtb‚s

Abbreviations: Mtb, Mycobacterium tuberculosis; NRP, non-replicating

persistence; TB, tuberculosis; WHO, World Health Organization; LTBI, latent

tuberculosis infection; NO, nitric oxide; TNF-α, tumor necrosis factor alpha;

CCL2/CCL5, chemokine (C-C motif) ligand 2/5; CXCL9/10/11, chemokine (C-

X-C motif) ligand 9/10/11; ODE, ordinary differential equation; ATP, adenosine

triphosphate; ABM, agent-based model; TCA, tricarboxylic acid; NAD/NADH,

nicotinamide adenine dinucleotide/hydride; LHS, Latin hypercube sampling;

PCC, partial correlation coefficients; PRCC, partial regression correlation

coefficients; K-S test, Kolmogorov-Smirnov test; CFL, condition Courant-

Friedrichs-Lewy condition; CFU, colony-forming unit; ETC, electron transport

chain; IFN-γ , Interferon-γ ; HIV, human immunodeficiency virus; COPD, chronic

obstructive pulmonary disease; LAPACK, linear algebra package; pK, probability a

macrophage killsMtb; prob-recruit-T, probability a T cell is recruited at a vascular

source; tao-TNF, macrophage TNF detection threshold; 3D, three-dimensional.

metabolic response to oxygen depletion (Wayne and Hayes,
1996; Voskuil et al., 2004; Shiloh et al., 2008; Deb et al., 2009).
To effectively treat Mtb and LTBI, increased understanding
of the multiscale mechanistic impact of host biochemical and
physiological immune response on Mtb metabolic viability is
necessary to identify possible molecular targets that impact
infection outcome. In this work, we focus on understanding
the contribution of the granuloma in dynamic modulation of
the microenvironment of Mtb, and Mtb‚s response as evidenced
by the pathogen‚s consequential elimination, containment, or
dissemination.

While there are well-established computational models of
infection, most notably Segovia-Juarez et al. (2004) and Ray
et al. (2009), the majority of existing models do not explicitly
consider or investigate the role of oxygen on infection outcome
and disease. Integrating in vitro and in vivo empirical data,
several agent based models (ABM) of tuberculosis infection
have been developed and used to capture the spatio-temporal
dynamics of granuloma formation in humans and the impact
of TNF-α (tumor necrosis factor) on Mtb within a single
granuloma (Segovia-Juarez et al., 2004; Warrender et al., 2006;
Ray et al., 2009; Fallahi-Schani et al., 2011; Marino et al., 2011).
In these models of TB infection, cellular entities (macrophages
at various stages of infection, inflammatory T cells, cytotoxic
T-lymphocytes, T regulatory cells) are represented as discrete
elements or agents. Chemokines, cytokines such as TNF-α, and
extracellular Mtb are modeled using continuous valued fields.
Recent extensions to the TB ABM models include the expansion
of the macrophage rule based model into a systems biology based
model that includes the signal transduction mediated response of
the host to cytokines in the extracellular compartment (Cilfone
et al., 2013). An advancement needed in the ABM modeling
approach is incorporation of variables describing physiological
changes in the lung parenchyma and explicit consideration of
Mtb biochemical dynamics to capture the metabolic response of
the pathogen to the host modulated microenvironment.

Recently Datta et al. (2015) developed an empirical-
based model of an idealized granuloma that captures oxygen
transport and consumption using Michaelis–Menten based
kinetic approximations. Their model was used to predict the
size and shape of granulomas, and outcomes were comparable
to in vivo rabbit models of disease. However, to our knowledge
there is not yet an in silico study that fully links host
physiological response and oxygen availability, with the dynamics
of molecular and cellular mechanisms in order to establish
that the environment of the caseous granulomas is hypoxic
in humans. Using computation and simulated results, we
demonstrate how hypoxia can occur in the human response
to granuloma formation by considering oxygen levels, diffusion
dynamics, and cellular interactions prevailing in the human lung.
The dynamic genetic and metabolic adaptation of Mtb captured
in our model helps explain how the pathogen‚s biochemical
response enables transition to long-term dormancy after initial
infection, something that has not yet been demonstrated in
existing models.

In the sections that follow we describe the model development
process, including modeling of oxygen dynamics in the human
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lung, and the integration of the ABM and systems biology based
model of Mtb. We present results of using our integrated model
to simulate and study oxygen dynamics during tuberculosis
infection and granuloma formation. In the final sections we
conclude with a discussion of the mechanistic contribution of
host physiological response to the development of hypoxia and
the outcome of infection in human tuberculosis.

MATERIALS AND METHODS

Integrated Multiscale Model
Multiscale modeling has become increasingly necessary in
computational biology in order to capture dynamics occurring
at the diverse biological length and time scales germane to
living systems. To study the impact of changes in the host
physiological environment on Mtb persistence we developed
ABM-PHYS, an integratedmultiscale model of host physiological
and immunological response to Mtb infection. Schema of
the ABM-PHYS Model. Figure 1 outlines the structure and
computational flow of the integrated ABM-PHYS model of TB

granuloma formation. The model is comprised of three main
components:

• ABM simulator developed using a Python-based software
platform with C++ kernels to increase the speed of solving
transient finite-difference diffusion equations;

• Octave routines to numerically solve the steady-state floating-
point oxygen field;

• BioXyce, a systems biology modeling platform that solves
a series of ODEs that determine substrate levels, overall
microbial fitness and adenosine triphosphate (ATP) levels
for the bacterial population in each ABM-PHYS grid
cell (extracellular) or internally within a macrophage
(intracellular). BioXyce enables parallel execution of Mtb
systems biology models.

During an iteration of the model the ABM moves and updates
cellular-scale particles (immune cells, bacterial populations),
and recalculates cytokine and chemokine fields according to
deterministic or probabilistic rules and analytical equations
of state. The states of agents (host cells) in the model are
updated, with each macrophage characterized based on its

FIGURE 1 | Implementation schema for the integrated multiscale model of Mtb infection.
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relative bacterial load and activation state as resting, infected,
chronically infected or activated. The cell state can change due
to interactions with environmental cytokines and chemokines,
biological cells in neighboring grid cells, or due to the presence
of bacteria in the macrophage’s grid cell. These transitions are
encoded as probabilistic or deterministic rules. The current state
of a macrophage determines its immune response as well as its
lifespan, which is tracked by an internal timer associated with
each macrophage (and T cell).

We use an Octave-based routine (Eaton et al., 2014) to model
and generate the steady state solution to the diffusion and
uptake equation, and to calculate the dispersal for the updated
oxygen concentrations on the cellular grid. Based on the oxygen
levels in the extracellular environment or within the macrophage
intracellular environment, the BioXyce-based systems biology
model of bacterial response determines ATP levels and metabolic
fitness variables (NAD/NADH ratio) for Mtb, which are used
to calculate bacterial growth rates (via a Monod equation). This
cycle is repeated to model the time evolution of the system. In
the remainder of this section we describe the components of
the model and how they interconnect to form the integrated
ABM-PHYS multiscale model.

Agent-Based Model (ABM)
In order to incorporate spatiotemporal varying physiological
and bacterial response into current in silico TB modeling
methodologies we developed an integrable ABM platform. Using
rules from published in silicomodels we implemented a standard
TB ABM (ABM-ST) to verify the functionality of our Python-
based simulation platform (Segovia-Juarez et al., 2004; Ray et al.,
2009). While non-trivial and not the focus of this work, re-
implementation of the standard TBABMprovided a comparative
control for our in silico studies. We expanded on the standard
TB ABM and designed a multiscale integrated model, ABM-
PHYS, composed of an agent-based model to account for
cellular-level host-pathogen interactions, a floating-point field
model to represent spatiotemporal physiological changes in
oxygen levels in the alveolar space, and multiple continuous
valued fields to represent cytokine/chemokine gradients (TNF-α,
CCL2, CCL5, CXCL9/10/11) in the extracellular space (Figure 1).
We coupled our ABM to an ordinary differential equation
(ODE) based dynamic systems biology model of Mtb metabolic
pathways important in cellular respiration and energy (i.e., ATP)
production, which we implemented using the BioXyce biological
simulation platform (May and Schiek, 2009; May et al., 2013).
(For notational distinction we will refer to the re-implemented
standard agent based model of TB as ABM-ST and our extended
model with the integrated physiological oxygen andMtb systems
biologymodels as ABM-PHYS. Both the re-implemented and our
extended model are multiscale in nature.)

We developed our core ABM in the manner of Segovia-Juarez
et al. (2004) and Ray et al. (2009) using the supplementary
Materials and rules from the Ray et al. model (included
in Ray et al., 2009 Supplement 1). As shown in Table 2,
general parameters and parameter relationships for ABM-ST
were implemented as reported in Ray et al. (2009) (Tables
I–III, respective). We extended the ABM-ST framework to

accommodate oxygen supply and consumption and included
oxygen specific rules for cellular entities (see Appendices 1.2,
2, and 3 for new model rules implemented). We developed
a host–pathogen interface module that translates grid-specific
microenvironmental changes and Mtb metabolic state into
pathogen specific gene regulation, thus enabling integration of
the systems biology models of bacterial metabolism and growth
[measured in colony forming units (CFUs)] with the ABM. The
overall integrated, framework can thus be used as a multiscale
model to capture the process of initial infection, host immune
modulated physiological response, granuloma formation, and
disease progression in a pulmonary tissue sample. The details of
both the oxygen and intracellular extensions are described in the
sub-sections that follow.

Modeling the extracellular microenvironment
The ABM treats two-dimensional (2D) space as a regular 2D grid.
An individual grid point thus represents a small area or volume
(in the case of 3D) of space, which can contain one or more
cells of different types, e.g., macrophages, T-cells, bacteria. The
two-dimensional computational model represents a 2 × 2 mm
section of lung parenchyma, with 20 × 20 µm sized single grid
cells (large enough to support the cell size of the largest agent,
the macrophage) for a total of 10,000 grid cells. A grid cell may
contain either 1 macrophage, a macrophage and a T cell, or two
T cells, and up to 200 bacteria.

All of the parameters governing cell motion, the cell cycle
(reproduction, infection, dying), and cell/cell interactions are
encoded as heuristic rules with empirically-based parameters
(see Tables 1–3). Diffusion equations capture the increase
(production by either macrophages, T cells and bacteria),
degradation (half-life), and diffusion of continuous-valued
concentration species. Host cells secrete chemokines and
cytokines depending on their state (e.g., CCL2, CCL5,
CXCL9/10/11, and TNF-α), and bacteria secrete chemotactic
factors or chemo-attractants that attract macrophages and T
cells to their location. As cells in the model produce or consume
chemokines and cytokines, the local concentration of species
in their neighborhood affects movement of surrounding cells
and attracts other cells to the site of infection or granuloma.
There are sources and sinks for each species in the model, with
the species represented as floating-point fields on the grid and
their spatiotemporal diffusion equation defined as in Equation 1
below.

ut = D[uxx + uyy]− g(x, y, t) (1)

In Equation (1) u(x, y, t) is the concentration of the species at
the grid point (x, y) at time t, D is the diffusion coefficient, and
g(x, y, t) represents the source or sink function.

The diffusion equation is solved as a two-dimensional, second
order, parabolic diffusion (heat) equation using an explicit finite
difference method, which updates all the grid cells at each
time step. For efficiency, this operation is performed with a
custom C-routine called by the core ABM component, which
is implemented in Python. Using the Courant stability criterion
for solving diffusion equations on a grid of a given resolution,
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TABLE 1 | Oxygen parameters used in the integrated multiscale ABM.

Parameter description Default Lower limit Upper limit Units Distribution Source

Pulmonary blood volume (pulmonary.blood.source) 322 172 634 ml/m2/3.5 s Uniform Dock et al., 1961

Residual volume of air in lung (residual.volume) 1.697 1.0 2.75 Liters Uniform Nagelhout and Plaus,

2014

Khurana, 2009

Bartlett, 2010

Diffusion coefficient (in lung

tissue—oxygen.difusion.coefficient)

3.08E−05 1.10E−04 4.00E−06 cm2/s Uniform MacDougall and

McCabe, 1967

Altman and Dittmer,

1974

Hou et al., 2010

Maximum specific growth rate of extracellular Mtb

(µmax for Monod equation)

0.006 0.00095 0.06 Hourly Uniform Wayne and Hayes,

1996

Maximum specific death rate of Mtb (Kd for Monod

equation)

0.0008 0.0001 0.0009 Hourly Uniform Wayne and Hayes,

1996

Maximum specific growth rate of intracellular Mtb 0.012 0.0019 0.12 Hourly Uniform Ray et al., 2009

Half velocity constant (Ks in Monod equation) 0.4227 Not varied ng/ml Wayne and Hayes,

1996

Consumption by resting macrophage (mr -

resting.mac)

1.15 0.87 1.43 Micromoles/107 cells/hr Uniform Conkling et al., 1982

Consumption by activated macrophage (ma)* 2.30 1.74 2.86 Micromoles/107 cells/hr Uniform Loose, 1984

Consumption by infected macrophage (mi)* 3.45 2.62 4.28 Micromoles/107 cells/hr Uniform Loose, 1984

Consumption by chronically infected macrophage

(mc)*

4.60 3.49 5.71 Micromoles/107 cells/hr Uniform Loose, 1984

Consumption by T cells 0.14375 0.10875 0.17875 Micromoles/107 cells/hr Uniform

Consumption by Mycobacterium tuberculosis

(O2.bact.consumption)**

20.80 10.00 35.00 mm3/hr/106 bacteria Uniform Grieg and

Hoogerheide, 1941

Alveolar surface area 130 118 142 m2 Not varied Weibel, 1999

The oxygen parameters used to add the oxygen field to the ABM. *Estimated from data concerning murine malaria. **Estimated from data collected for E. coli.

we chose the size of the time step for evolving the ABM-PHYS
model based on the timescale required to track the most rapidly
diffusing extracellular species in our model, which was oxygen.
Rules that operate on a slower timescale (e.g., diffusion of large
cells) are only invoked once every tens or hundreds of time steps.
We set our time step to 4 s (average length of 1 breath) and
updated the grid every 10 minutes of clock time, except for the
oxygen field, which is solved every 18 h.

Modeling Oxygen Dynamics in the Lung
We derived steady state oxygen levels for oxygen entering the
system from two sources, the residual volume in the lung and the
pulmonary blood volume, based on the ideal gas law:

PV = nRT (2)

where P and V represent pressure and volume, n, R, and T
represent moles of oxygen, ideal gas constant, and temperature,
respective. Using the ideal gas law we calculate the amount
of oxygen available at the boundary (source) cells and each
sink cell on the grid. Source cells are either grid cells located
on the periphery (residual oxygen in the lung) or randomly
distributed within the interior of the grid (pulmonary blood
volume). Sink cells are grid cells where macrophage, extracellular
bacteria, or T cells reside. A sample calculation is presented in

Appendix 2 in Supplementary Material (See Sershen et al., 2014
Section Materials and Methods for an extended discussion of the
implementation of the oxygen field).

We compute the drop in partial pressure of oxygen for the 2
× 2 mm parenchymal section in order to calculate oxygen levels
and determine the occurrence of hypoxia during the course of our
simulation model. We assume that the overall partial pressure
change in the lung alveoli is negligible. This means that overall
the pressure remains at the rate of a healthy male (≈ 99.7–105
mmHg) but the drop in partial pressure over the individual grid
cells and granuloma aggregates are computed. We also assume
that the drop in the partial pressure of oxygen in the alveoli
(PAO2) is directly proportional to the mole fraction of oxygen in
alveolar tissue (yO2), as per Dalton’s law of partial pressure:

PAO2 = Ptotal ∗ yO2 (3)

We use the computed mole fraction of oxygen in alveolar tissue
(yO2) to determine the amount of O2 flowing in from source grid
cells in our model.

We implement oxygen diffusion within the grid as a floating-
point field in our ABM-PHYS model in the manner described
in Sershen et al. (2014). The spatial and time dependence
of the concentration is represented by the diffusion equation
(Equation 1) with Dirichlet boundary conditions. In our model,
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TABLE 2 | Model parameters used for the standard and integrated ABM.

Parameter description Default Lower limit Upper limit Units Distribution Source

Intracellular Mtb growth rate 0.002 0.0002 0.002 Per 10 min Uniform *

Extracellular Mtb doubling time 116 20 200 Hours Log-Uniform Ray et al. (2009)

Initial number of macrophages 105 Not varied *

Probability of Mr killing bacteria (pK) 0.015 0.01 0.1 Per 10 min Uniform *

Probability of Mi activation by T cell (prob.actm) 0.05 0.0001 0.1 Per 10 min Log-Uniform *

Probability of macrophage recruitment (prob. recruit.mac) 0.05 0.01 0.1 Per 10 min Uniform *

Probability of T cell recruitment 0.075 0.01 0.1 Per 10 min Uniform *

Probability of T-γ cell 0.555 0.594 0.54 Per 10 min Uniform *

Probability of cytotoxic T cell 0.2775 0.297 0.27 Per 10 min Uniform *

Probability of a T cell moving onto an occupied compartment

(Tmove)

0.01 0.00001 0.1 Per 10 min Log-Uniform *

Proportion of Treg cells out of all T cells recruited

(T.prob.recruit.reg)

0.1 0.01 0.2 Per 10 min Uniform *

Chemokine diffusion rate (chemokine.diffusion.constant) 1.05E−07 1.67E−08 1.17E−07 cm2/sec Uniform *

Chemokine half-life (chemokine.halflife) 7.38E−01 6.0E−01 2.3E−00 Hours Uniform *

Combined TNF/chemokine threshold for T cell recruitment at

a vascular source (r.T)

1.00E+03 1.00E+03 1.00E+05 Molecules Log-Uniform *

Combined TNF/chemokine threshold for Mr recruitment at a

vascular source

1.00E+03 1.00E+03 1.00E+05 Molecules Log-Uniform *

CCL5 production rate 4.50E+05 6.00E+04 6.00E+05 Hours Uniform *

Macrophage CCL5 saturation threshold (CCL5uthresh) 1.41E+04 1.00E+04 1.00E+06 Molecules Log-Uniform *

Macrophage CCL5 threshold 2.00E+04 1.00E+04 1.00E+06 Molecules Log-Uniform *

TNF diffusion rate 1.09E−07 1.67E−08 1.17E−07 cm2/sec Uniform *

TNF half-life 3.6E−01 3.6E+01 11.55E+00 Hours Uniform *

TNF production rate 4.65E+06 6.00E+04 3.00E+07 Molecules Per hour Log-Uniform Marion et al.

(2007)

Probability of TNF-induced apoptosis (p.apopt) 0.100 0.001 0.200 Per 10 min Uniform* *

Macrophage TNF detection threshold 7.00E+05 1.00E+05 1.50E+06 Molecules Uniform* *

Threshold Effect of TNF on Mr recruitment (tao.TNF.actm) 150 10 1000 Molecules Log-Uniform *

Carrying capacity for Mtb of a grid cell 220 Not varied *

Macrophage lifetime 100 Not varied Days *

T cell lifetime 3 Not varied Days *

Maximum number of bacteria killed by resting macrophage 2 Not varied *

Percent of internal bacteria being destroyed by killing 0.50 Not varied *

No. of bacteria killed by activated macrophage 10 Not varied *

Length of time T-reg incapacitates T-γ 110 Not varied Minutes *

Probability of cytotoxic T cell killing Mtb in mc death 0.75 Not varied *

Probability cytotoxic T cells kills mc with bacterial release 0.20 Not varied *

*Parameters are the same as those used in Ray et al. (2009) unless otherwise stated.

grid cells that contain macrophages, T cells or bacteria that
consume oxygen are sinks. Boundary grid cells, which receive
an influx of oxygen from adjacent tissue, are sources. Because
oxygen diffuses quickly (D ≈ 3.08e − 5 in lung tissue Hou
et al., 2010), accurately tracking transient variations in oxygen
concentration would require a time step equal to 0.032 s to satisfy
the Courant–Friedrichs–Lewy (CFL) condition for an explicit
finite-difference method (Sershen et al., 2014). However, for
our model we are mainly interested in the quasi-static oxygen
concentration profile, which assumes the concentration quickly
comes to equilibrium with any change in the sources and sinks.
Therefore, we consider steady-state levels of oxygen in and

through the lung parenchyma derived from the net amount left
in tissue deposits due to respiration and the amount of oxygen
available from pulmonary blood volume (see Table 1). Given that
the overall change in spatial distribution of O2 sources and sinks
is relatively slow compared to the rate of oxygen diffusion, as
the ABM evolves we solve and update the oxygen concentration
profile once every 18 h, which is a much longer timescale than
the timescale for diffusion. Numerically, this is accomplished
by dropping the time-dependent left-hand-side of the diffusion
equation (Equation 1) and solving the resulting matrix equation
D∗Au = g, where A is a sparse matrix representing the
connectivity of the grid cells (five point stencil in 2D), u is the
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TABLE 3 | Summary of the Python modules developed for the multiscale simulator.

Python rules Rule Objective

Simulator simulator.py Establish grid and neighborhood stencils; perform integrity checks

Particles particle.py Create new particles; initialize particles on grid

Macrophages: resting.py Phacytose bacteria or become infected; remove dead particles from grid (natural death or TNF-induced apoptosis)

activated.py Emit chemokine and cytokine; phagocytose bacteria; remove dead cells from grid (natural death or TNF-induced apoptosis)

infected.py Emit chemokine and cytokine; intracellular bacteria replication; remove dead particles for grid; may be activated by T cells

chronic.py Emit chemokine and cytokine; intracellular bacteria replication; bursts if max bacterial load reached; remove dead cells

biasmove.py Create particle with probability p in vascular source site if chemokine value is above threshold

recruit.py Remove dead T cells from grid

T cells: Treg.py regulates T-γ cell’s ability to activate macrophages

Tgamma.py Probability of apoptosis on infected or chronically infected macrophage

Tcytotoxic.py Chance of perforin/granulysin-mediated killing of infected and chronically infected macrophages

biasmove.py If within threshold for at least one chemokine, make biased move in the direction of the highest concentration of chemo agent

recruit.py Create particle with probability p in vascular source site if chemokine value is above threshold

death.py Remove dead T cells from grid

Fields: growth.py Grow extracellular bacteria according to the Monod equation

solve.py Calculate the steady-state solution (Av = f) for the oxygen field via Octave routines

gene expression.py Calculate gene expression for the component genes and run BioXyce

source.py Add chemokine and cytokine (TNF/CCL2/CCL5/CXCL9) to chemotactic fields

update.py Run finite-difference diffusion routine

apoptotic phagocytosis Dictate macrophage behavior under hypoxia

Stats stats.py Time series report on key infection variables

Image dump.py Create images for animations

concentration vector (one unknown for each of the 1002 grid
cells), and g is the source/sink vector for each grid cell. The
matrix equation can be solved efficiently using iterative conjugate
gradient methods (Calvert, 2014), available in GNU Octave.

Oxygen tension or the partial pressure of oxygen in the blood
in well-irrigated human parenchymal tissue is generally between
and 14% (30–106mmHg; Iovanic, 2009) of atmospheric pressure,
In hypoxic tissue the oxygen tension is generally below 2% (15
mmHg; Lewis et al., 1999). We characterized hypoxia in our
simulated ABM-PHYS granuloma as oxygen tension less than
two percent. We could thus determine whether a granuloma
contained hypoxic areas and/or anoxic areas (0 % oxygen). The
oxygen parameters in Table 1 represent the steady state oxygen
levels for a range of air intake values (12–20 breaths per minute;
Silverthorn, 2013). These were varied within the biological ranges
shown in Table 1 in the sensitivity analysis.

Expanding the cellular response models to account for oxygen

dynamics
Consumption of oxygen is based on the number and type of
macrophages, T cells and bacteria present within a grid cell.
Oxygen consumption values for bacteria are based on data from
E. coli (Grieg and Hoogerheide, 1941). Activated and infected
macrophages consume more oxygen than resting macrophages,
with infected macrophages consuming up to 12 times more

oxygen (Loose, 1984). To approximate state-dependent oxygen
consumption rates for macrophages in our model, we assume
that activated macrophages consume twice that of resting
macrophages, infected macrophages consume three times more
oxygen than resting macrophages and that chronically infected
macrophages consume four times more oxygen than resting
macrophages. Since T cells are approximately 1/8 the volume
of the macrophage, they consume 1/8 the amount of oxygen of
resting macrophages.

We added rule-based mechanisms to reflect macrophage
response to oxygen dynamics in the host environment and
within containment granulomas. Hypoxia affects the activity and
function of host cells in areas such as morphology, expression
of cell surface markers, cell survival, phagocytosis, metabolic
activity, and production of nitric oxide, as well as cytokine
secretion. In healthy tissues, oxygen tension is usually between
2.5 and 9 % (20–70 mmHg; Lewis et al., 1999), therefore in the
model we define hypoxia as oxygen tension <2 % (15 mmHg),
which is double the level of dissolved oxygen in the Wayne
model’s NRP stage 1 (1 % oxygen; Wayne and Hayes, 1996).
Hypoxia/anoxia has been shown in vitro to reduce cell viability
by about 20 percent in rat and murine macrophages (Lewis
et al., 1999). Human macrophages under low oxygen conditions
switch from oxidative phosphorylation to anaerobic glycolysis,
Simon et al. (1977); Roiniotis et al. (2009) with the outcome
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being that cells adapt to low O2 conditions and very little cell
death occurs due to hypoxia Lewis et al. (1999). Accordingly,
we allowed for a small probability (p <0.001) of macrophage
apoptosis under enduring hypoxic or anoxic conditions; see
Appendix 1 in Supplementary Material for details.

Another function that is affected by low oxygen conditions
is phagocytosis. In short duration (6 h or less) hypoxia tends to
degrade the ability of macrophages to phagocytose viral particles
(Leeper-Woodford and Mills, 1992). But upon adaptation of
the alveolar macrophage and onset of anaerobic glycolysis,
phagocytosis increases two-fold in mice under enduring hypoxic
conditions (up to 96 h; Lewis et al., 1999), but decreased in
rabbits. Since there was not a clear consensus regarding how
hypoxia affects phagocytosis, this feature was not implemented
in the model.

Hypoxia also stimulates cytokine secretion by macrophages,
in particular TNF-α production (Lewis et al., 1999). To capture
this effect TNF-α secretion was doubled for macrophages under
hypoxia. Though Lewis et. al did not specify the exact amount of
TNF-alpha induction, they did note that other cytokines, such
as prostaglandin E2 (PGE2) doubled secretion under hypoxic
conditions.

Alveolar macrophages also experience changes in metabolic
activity and production of nitric oxide in the presence of low
oxygen tension as a result of hypoxia-mediated modulation
of gene regulation and the binding of the transcription factor
hypoxia-inducible-factor-1 (HIF-1). These dynamics were not
included but can be addressed by additional systems biological
models for macrophages response to hypoxia in future versions
of the model.

Metabolic Model of Mtb Adaptation and Growth
Using an in vitro model of Mtb during active growth and
persistence, Wayne and Hayes (1996) demonstrated that when
the rate of oxygen depletion is sufficiently slow,Mtbmetabolically
adjusts to the lack of oxygen by shifting through two stages
of non-replicating persistence (NRP1 and NRP2). Conversely
under growth conditions that result in high rates of oxygen
depletion, Mtb failed to persist presumably due to the inability
of the mycobacterium to metabolically adapt to the rapid
microenvironmental change. We use a systems biology based
metabolic model of Mtb metabolism to link the physiological
effect of host immune response, namely modulation of
physiological oxygen gradients, to pathogen adaptation and
persistence (May et al., 2013). We model biochemical pathways
involved in Mtb oxygen-dependent energy production and the
recycling of key metabolic co-factors under varying oxygen
conditions for both intracellular (bacteria within macrophages)
and extracellular bacteria (bacteria outside of macrophages
but within the lung parenchyma). Since oxygen is critical to
ETC function and ATP production, we expect physiologically
low oxygen levels to reduce bacterial ATP production, which
then would foster a decline in the metabolic fitness of Mtb
populations and a consequential reduction in bacterial load.
However, the Wayne NRP model suggests that the dynamics
of oxygen depletion as opposed to simple bioavailability is an
important determinant to pathogen elimination vs. persistence,

therefore the dynamics of the physiological host response will
also contribute toMtb elimination.

Using our existing model of Mtb metabolic response to
low oxygen and small molecule inhibition (May et al., 2013),
we expanded the model to include a more mechanistic
representation of the electron transport chain. Our metabolic
model of mycobacteria includes the TCA cycle, glyoxylate
bypass, glyoxylate-to-glycine shunt, electron transport chain,
and oxidative phosphorylation and was derived from published
theoretical models and empirical descriptions of the biochemical
networks (Table 4; Wayne and Hayes, 1996; Singh and Ghosh,
2006; Beste et al., 2007; Fisher et al., 2009; May et al.,
2013). The model implicitly takes into account the role of
menaquinone/menaquinol in the production of the proton
motive force, however we do not explicitly track menaquinone
levels in the model. We account for cellular growth through
a simplified ATP dependent biomass production reaction (47
ATP = 1 BIOMASS). The Mtb reaction rate equations were
generated using kinetic parameters from the BRENDA Enzyme
database, empirical data on Mtb growth under low oxygen
conditions, and aMichaelis–Menten reaction kinetics framework
with initial enzyme concentrations nominally set to values up to
two orders of magnitude less than initial substrate levels (Wayne
and Hayes, 1996; Smith et al., 2003; Nelson and Cox, 2005; Scheer
et al., 2011).

To relate the enzyme concentration used in theMtbmetabolic
model to empirically observed growth and oxygen related fold
changes, we multiply reaction velocity by the relative fold change
value of genes associated with the production of the enzyme.
Gene to enzyme correlations are based on the Beste et al.
metabolic network model of Mtb (Beste et al., 2007). Using
a fractional occupancy approach, the effective reaction rate is
represented as a function of gene expression: vEffective = Y ∗

v, with Y=active/(sum all forms), where active indicates the
activating form of the gene or gene complex needed to produce
the enzyme and the denominator consists of all genetic forms
associated with the enzyme (Sauro, 2012). We use empirical
data from in vitro studies of Mtb NRP to develop a theoretical
approximation for gene expression (Wayne and Hayes, 1996;
Voskuil et al., 2004).

Dynamic control of gene expression
To predict gene expression levels in our metabolic model of
Mtb we used experimental data from the Wayne and Hayes in
vitro NRP study (Wayne and Hayes, 1996) and supplementary
data from Voskuil, et al.’s study of gene expression during
Mtb hypoxia induced NRP (Voskuil et al., 2004). We fit both
aerobic and hypoxic (slow-stirred) gene expression data from
Voskuil et al. (2004) to a statistical model of gene regulation
using percent oxygen consumption and ATP production values
from Wayne and Hayes (1996). For these two independent
measures, we found the polynomial curves of best fit in order
to extract data at consistent time points for the two oxygen-
dependent scenarios. We correlate four independent variables:
change in time, change in percent oxygen consumed, depletion
rates for oxygen, and ATP production to the gene expression
levels for each of the 59 genes that are components of enzymes
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TABLE 4 | Reactions included in the Mtb systems biology model to capture the TCA cycle, glyoxylate to glycine shunt, electron transport chain, and

oxidative phosphorylation.

Enzyme name Reaction Genes

Citrate synthase (CS) 1 OA + 1 ACCOA = 1 CIT + 1 COA Rv0896 OR Rv0889c OR Rv1131

Aconitase (ACN) 1 CIT = 1 ICIT Rv1475c

Isocitrate dehydrogenase 1 (ICD1) 1 ICIT = 1 AKG Rv3339c OR Rv0066c

Isocitrate dehydrogenase 2 (ICD2) 1 ICIT = 1 AKG Rv3339c OR Rv0066c

Alpha-ketoglutarate decarboxylase (KGD) 1 AKG = 1 SUCCSAL Rv1248c OR Rv0555

Succinic semialdehyde dehydrogenase (SSADH) 1 SUCCSAL = 1 SUCC Rv0234c OR Rv1731

Succinate dehydrogenase (SDH) 1 SUCC + 1 FAD = 1 FUM + 1 FADH2 Rv3318 AND Rv3319 AND Rv3316 AND Rv3317

Fumarase (FUM) 1 FUM = 1 MAL Rv1098c

Malate dehydrogenase (MDH) 1 MAL + 1 NAD = 1 OA + 1 NADH Rv1240

Isocitrate lyase 1 (ICL1) 1ICIT = 1GLX+1SUCC Rv0467 OR (Rv1915 AND Rv1916)

Isocitrate lyase 2 (ICL2) 1ICIT = 1GLX+1SUCC Rv0467 OR (Rv1915 AND Rv1916)

Malate synthase (MS) 1 GLX + 1 ACCOA = 1 MAL + 1 COA Rv1837c

Alanine dehydrogenase/glycine dehydrogenase (GDH/ALD) 1 GLX + 1 NADH = 1 GLY + 1 NAD Rv2780 OR GDH

NADH dehydrogenase (NUO) NADH + 0.5 O2 = NAD + 2H Rv3145 AND Rv3146 AND Rv3147 AND Rv3148

AND Rv3149 AND

Rv3150 AND Rv3151 AND Rv3152 AND Rv3153

AND Rv3154

AND Rv3155 AND Rv3156 AND Rv3157 AND

Rv3158

NADH reductase (Non-proton translocating, NDH) 1 NADH + 0.5 O2 = 1 NAD Rv1854c OR Rv0392c

Succinate dehydrogenase (SDH) FADH2 + 0.5 O2 = FAD + 2H (Rv3318 AND Rv3319 AND Rv3316 AND Rv3317)

OR

(Rv1552 AND Rv1553 AND Rv1554 AND Rv1555)

ATP Synthase (ATPase) 1 ADP + 1 PI + 4 H = 1 ATP Rv1308 AND Rv1304 AND Rv1311 AND Rv1310

AND Rv1305

AND Rv1306 AND Rv1309 AND Rv1307

active in the ETC cycle (see Table 4, third column for list of
genes). By using change in time and change in percent oxygen
instead of explicit time and percent oxygen, we were able to
correlate the rate of gene expression to the relative dynamics
of the microenvironment rather than a fixed chronological time
frame. We used a combination of linear and non-linear fits
to construct individual multiple regression models for each of
the 59 genes of interest. The model was trained using gene
expression data from the 80 day interval in the Voskuil et al.
study (Voskuil et al., 2004), which reports data up to 60 days
for the aerated model and 80 days for the slow-stirred/NRP
model. We combined the aerated and NRP data sets to generate a
single 80-day data set representingMtb response to two different
environmental conditions. The combined observation dataset
was used to generate a separate regression equation for each gene
model. While there was not a unique empirical dataset available
for cross-validation of the model, we validated the gene model
using the non-combined data for the fully aerated or the hypoxic
slow-stirred condition (see Supplementary Figure 1 for profiles
of two of the genes modeled). The predicted gene expression
trajectories were in agreement with the actual data from the
training interval; R-square values were in the range of 0.80–0.99
and regression F statistics were generally < 0.01 for the 59 genes
included in ourmodel. The resulting regression-basedmodels are

used to predict gene expression levels for genes corresponding to
enzymes in theMtbmetabolic model.

Bacterial growth model
To model ATP-dependent bacterial growth and death, we used
the Monod equation:

µ =
µmax ∗ ATP

Ks + ATP
−Kd ∗ (1− normalized(

NAD

NADH
)) ∗ATP (4)

where µ is the specific growth rate under the current
microenvironmental conditions, µmax is the maximum specific
growth rate, Ks is the concentration of ATP corresponding to
the half growth rate constant, Kd is the death rate, NAD is the
oxidized form of nicotinamide adenine dinucleotide and NADH
is the reduced form of the coenzyme. Once the growth rate
is determined via the Monod equation, extracellular bacterial
growth is modeled according to the ODE:

BE(t+ 1) = BE(t)+ αBE ∗ BE(t) ∗ (1− (BE(t)/(KBE ∗ 1.1))) (5)

where αBE is set to the value of µ determined using the Monod
Equation. αBI is a multiple (1.5–2X) of αBE (Segovia-Juarez
et al., 2004). Growth rates of intracellular bacteria are generally
higher than that of extracellular bacteria (Zhang et al., 1998;
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Segovia-Juarez et al., 2004). Accordingly we set the maximum
base intracellular growth rates to 1.5–2 times higher than their
extracellular counterparts. Intracellular bacteria grow according
to the ODE model (Segovia-Juarez et al., 2004):

BI(t + 1) = BI(t)+ αBI ∗ BI(t) (6)

The growth rate equation is fit to the data from Wayne and
Hayes (1996) to relate growth rate to the level of bacterial ATP
in the system and normalized to a value between 0 and 1.
The death rate is modulated by the metabolic fitness of the
bacteria as measured by the NAD

NADH substrate ratio based on values
given by the intracellular systems biology model. The number of
extracellular bacteria in one grid cell is bounded by the carrying
capacity of the occupied grid cell. When a grid cell reaches
capacity, the excess bacteria are distributed to neighboring cells.

The gene expression and the metabolic models of Mtb
adaptation and growth were integrated into the multiscale model
using the algorithm outlined in Appendix 3 in Supplementary
Material. Using our ABM-PHYS model, we study how the
host cellular immune response can dynamically modulate
physiological oxygen levels and investigate the contribution
of oxygen dynamics to the three possible infection outcomes
(clearance, containment, and dissemination).

Uncertainty Quantification, Model
Integration, and Model Validation
Using a modular approach, we optimized and validated the
Mtb systems biology model implemented using BioXyce and
then performed uncertainty quantification on the integrated
multiscale model. The metabolic model was calibrated using
growth and ATP data presented in the Wayne and Hayes study
for the aerated condition (Wayne and Hayes, 1996). In addition
to constraining the model to positive ATP values, NAD:NADH
and FAD:FADH ratios were constrained to correspond to ratios
observed for wildtype Mtb (Singh et al., 2009). We used the
DAKOTA (Adams et al., 2010) software to formulate a simple
genetic algorithm that identified globally optimal Mtb metabolic
model parameters that fit the experimental ATP data trajectories
to accuracy within 1e-04.

We coupled the python-based host ABM platform to the
BioXyce platform (May and Schiek, 2009; May, 2011) by passing
spatiotemporally varying oxygen levels and gene expression
values calculated by the ABM to the BioXyce Mtb model.
Using key metabolite concentrations (NAD, NADH, ATP)
returned by the BioXyce simulation the host ABM calculates
the extracellular and intracellular bacterial growth rates at each
simulation time point in the multiscale model (see Appendix
3 in Supplementary Material for additional integration rules).
We implemented a parallel LHS-based sensitivity analysis of our
integrated model using the DAKOTA toolkit (Marino et al., 2008;
Adams et al., 2010). We treat our model as a black box (a sink
for varied parameter inputs and source of outputs for variables
of interest), and developed a Perl wrapper to parallelize the
model analysis, thus minimizing the simulation time required for
running multiple model replicates concurrently. We performed
sensitivity analysis to investigate the two sources of randomness

in our multiscale model: aleatory (stochastic) and episystemic
uncertainty. To minimize the impact of aleatory uncertainty,
we ran three simulations each with the same LHS parameters
but with different random number seeds and averaged the
results. To identify episystemic uncertainty, we performed LHS
over the biological range for each parameter, generating N =

300 individual sample runs which were averaged to produce a
total of 100 multi-sample average runs. Among other analytical
measures, DAKOTA returns matrices of partial correlation
coefficients (PCC) and partial ranked correlation coefficients
(PRCC), which we used to identify statistically significant model
drivers. PCC measures the degree of linear correlation between
the output and input variables. The PRCC measures the degree
of correlation between the input and output variables provided
that the relationship between both is monotonic (may also be
non-linear).

We categorized the phenotypic outcome of each sample run as
a clearance, containment (granuloma formed), or dissemination
outcome using the algorithm described in Appendix 1 in
Supplementary Material. Treating the sample outcomes as a
representative population, we validated our integrated model by
comparing the percentages associated with the relative number of
samples in each qualitative outcome to in vivo data from primate
studies conducted by Gideon et al. (2015) and epidemiological
data from theWHOon the rates of latent TB disease (represented
as containment; World Health Organization, 2013). We used
Chi-square tests for normal data and the non-parametric K–
S test to compare distributions derived from in vitro and in
vivo experiments with our in silico distributions using bacterial
loads as an indicator of disease outcomes. Using data from the
sensitivity analysis, we evaluated how closely the distribution
of lesions resulting from simulated Mtb infection emulated the
latent infection outcome. In the section that follows we present
results of individual simulations and results that represent an
average of multiple simulations as outlined in Table 7.

RESULTS

Simulated Host–Pathogen Interactions and
the Role of Oxygen in Structural Immune
Response
We simulate the outcome of an infected macrophage in a host
with normal pulmonary capacity. Figure 2 shows a simulation
that resulted in a containment granuloma with most of the
bacteria in a state of NRP at 500 days post-infection. As stated
previously, containment reflects a state of equilibrium in which
the rate of host immune cell recruitment, activation, death and
renewal are balanced by Mtb growth, death, and metabolic
adaptation to the physiological microenvironment, resulting in
the maintenance of the Mtb infection in a latent or persistent
state. In our in silicoABM-PHYS studies, in addition to clearance,
containment, and dissemination outcomes we often encountered
a fourth category of scenarios whereMtb is transiently contained
in granulomas at 200 days post-infection but the granuloma
either clears the infection or the bacteria disseminates by 500 days
post-infection. We named this category ”transient containment,”
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FIGURE 2 | Containment granuloma with TNFα, contains bacteria characterizable as in a state comparable to non-replicating persistence at 500 days.

(A) Partial pressure of oxygen across the granuloma (B) oxygen depletion rate (C) bacterial growth rates for extracellular (D) and intracellular (E) bacteria; scaled

NAD/NADH ratio for both extracellular (F) and intracellular (G) bacteria; change in ATP concentration for extracellular (H) and intracellular (I) bacteria.

and mathematically defined transient containment according to
the behavior of the derivatives of external bacteria and resting
macrophage recruitment. (See Appendix 1 in Supplementary
Material for detailed algorithm used to separate the qualitative
outcomes, including transient containment.) We simulated up
to 500 days post-infection to capture the true containment
scenario. However, simulating up to 500 days required substantial
computational time, therefore in our sensitivity analysis studies
and results we show the averages from 200-day simulations
given that the majority of outcomes are determined by the
200 day simulation time step. Figure 2A represents a 2 × 2
mm section of the lung parenchyma where the host cell and
Mtb interactions lead to granuloma formation. Following the
representation convention of previously published TB ABMs
(Segovia-Juarez et al., 2004; Marion et al., 2007; Ray et al., 2009),
which facilitates comparative analysis, in the legend mr, mi, ma,
mc refer to resting, infected, activated and chronically infected
macrophages, respectively; T-γ , Tc, and Treg refer to T-γ cells,
cytotoxic T cells and regulatory T cells, respectively. Note in
Figure 2A the extensive caseous regions within the core of the
granuloma, caused by repeated bursting of macrophages during
the infection cycle. A grid cell is designated as caseous if six
or more macrophages burst within the grid cell over the course

of the simulation; see for example Ray et al. (2009). Figure 2B
shows the partial pressure of oxygen in units of mmHg across
the cellular grid, with oxygen diffusing into the center from the
boundary grid cells. Figure 2C shows the rate of oxygen depletion
across the granuloma, which is calculated as the difference in
oxygen levels over time. As shown in Figure 2C the highest
oxygen depletion rate is within the inner region of the granuloma,
presumably due to host cells infiltrating the site of infection. The
center has very low depletion levels, as does the outer regions of
the grid. However, while the center is hypoxic and possibly anoxic
(Figure 2B and caseous regions in Figure 2A), the outer regions
are well oxygenated.

The host cellular response and corresponding physiological
changes in environmental oxygenation modulates the genetic
response of Mtb as exhibited in Supplementary Figure 2,
which shows an example of predicted fold change based on
oxygen availability and days post-infection for two of the
59 genes modeled. The fold change for dissemination and
containment in the simulations mirror the Voskuil et al. profiles
for aerobic and hypoxic/NRP conditions (inset upper right). The
predicted change in gene expression corresponds to changes
in enzyme levels and consequentially in reaction dynamics for
the Mtb metabolic network. Supplementary Figure 3 shows
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the gene expression-driven variation in metabolite levels for
extracellular bacteria over 200 days post-infection for clearance,
containment, transient containment and dissemination
(Supplementary Figures 3A glycine; 3B malate; 3C isocitrate;
3D glyoxylate).

Figures 2D,E show the growth rates of extracellular and
intracellular bacteria respectively at 500 days post-infection,
which is modulated by the systems biology model of Mtb
metabolism. Extracellular growth rates are almost entirely zero
and intracellular growth rates are predominately zero. Non-
zero intracellular growth rates occur where residual oxygen
carried in macrophages recruited from well-oxygenated areas
enables growth of internal bacteria. Zero growth rate areas
for extracellular bacteria correspond mainly to caseous regions
(Figures 2A,D). These observations suggest that a large number
of the bacteria in the granuloma in Figure 2A may be
characterized as in a state of NRP based on rate of growth. Given
that the systems biology model of Mtb metabolic response is the
same for extracellularly and intracellularly located bacteria, the
host-mediated changes in the physiological environment is the
variable that drives the observed difference in metabolic output
of the bacteria. Therefore, the location-specific environment of
the bacteria contributes to the emergent metabolic characteristics
of intracellular vs. extracellular bacteria (Figures 2D–I).

Figures 2F,G portray the relative extracellular and
intracellular NAD/NADH ratios respectively, which are
used as a fitness measure to modulate the death term in
the Monod equation. Several NAD/NADH ratios for both
extracellular and intracellular bacterial populations are close
to zero with some populations, particularly intracellular
Mtb populations, close to one (the maximum relative
fitness value). While difficult to visualize in Figures 2F,G

there are some populations of intracellular bacteria with
higher NAD/NADH levels, which is supported by the
slightly higher average NAD/NADH ratio observed for
intracellular bacteria (compare Supplementary Figures 4E and
Supplementary Figures 4F) after 100 days of simulation for the
containment scenario. Negative values in these plots represent
the background matrix and have no physiological interpretation.
Figures 2H,I illustrate the change in ATP levels for both
intracellular and extracellular bacteria. The ATP plots showmore
intracellular bacteria populations with high delta_ATP (change in
ATP over time) than the extracellular bacteria. The intracellular
regions with greater ATP dynamics correspond to intracellular
regions with relatively higher growth rates (Figure 2E, alpha_BI).
This observation suggests that intracellular bacteria may have
relatively higher metabolic activity than extracellular bacteria
for the containment scenario, as supported by the average
NAD/NADH values in Supplementary Figures 4E,F. However,
in the containment scenario the average ATP concentrations
(Supplementary Figures 4G,H) for extracellular bacteria are
slightly more than two times that of intracellular bacteria, but
this does not correlate to a higher extracellular growth rate
when compared to intracellular growth rates (Figures 2D,E,
Supplementary Figures 4C,D). Given that ATP is a major
determinant in bacterial growth and that growth rate also
indirectly accounts for bacteria removed by the host, we

postulate that the additional reduction in extracellular bacterial
growth rate is due to host-mediated uptake and killing of
extracellular Mtb. As designated for the NAD/NADH plots,
background matrix assumes a negative value so that the zero
levels may be distinguished from background.

Comparative Analysis of Model Outcomes
Comparison of In silico Models of Infection
Figures 3, 4 compare containment and dissemination outcomes,
respective, for ABM-ST (left figures) and ABM-PHYS (right
figures). These figures are generated using the same parameter
sets fixed for each qualitative outcome model [Figures 3A–F;
see Appendix 4 (Supplementary Table 1) in Supplementary
Material, for parameters used for the two containment scenarios]
and the dissemination scenario (Figures 4A,B). Using model
parameters that correspond to containment outcomes, we
compare simulations that result in a well formed, compact
containment granuloma (Figure 3F) vs. a less tightly packed
transient containment granuloma in the ABM-PHYS model
(Figure 3D). The probability of macrophage recruitment from a
vascular source was set at a power of ten lower in Figures 3A–D

than Figures 3E,F (0.006 vs. 0.075) and the number of TNF-α
molecules secreted hourly was slightly lower for Figures 3A–D
than Figures 3E,F (3.15e+06 vs. 4.35E+06). All other parameters
remained the same for the two containment scenarios [Appendix
4 (Supplementary Table 1) in Supplementary Material]. There
were no parametric differences between ABM-PHYS and
the ABM-ST model, only differences due to the modeling
methodology. Specific changes in the structure of the ABM-
PHYS model include: addition of the oxygen field and
immune response mediated modulation of physiological oxygen,
associated oxygen-driven host response, and the use of fixed
growth rates for bacteria in the ABM-ST model vs. the use of
bacterial growth rates modulated byMtbmetabolic adaptation in
the ABM-PHYS simulation model. In comparing the two models
we first qualitatively evaluate the effect of oxygen dynamics on
the organization, structure, and function of the granuloma. We
also quantitatively compare their performance using the metric
of extracellular bacterial load as in Segovia-Juarez et al. (2004)
and Ray et al. (2009).

Both the ABM-ST and ABM-PHYS initially control and
contain Mtb as evidenced by the day 67 results (Figures 3A,B).
However, ABM-ST eventually results in dissemination whereas
the ABM-PHYS model results in a containment outcome
with low amounts of extracellular and intracellular bacteria
at 200 days (compare Figures 3C,D). The difference in
outcomes is likely due to the non-dynamic growth rate of
bacteria in the ABM-ST model, which is at the maximum
level and not modulated by fluctuating oxygen conditions
resulting from the physiological immune response considered
in the ABM-PHYS model. The static bacterial growth rate
leads to ABM-ST model skewing toward dissemination with
a reduced number of containment outcomes, compared to
the ABM-PHYS model which results in more containment
outcomes (outcome percentages shown in Figure 6C). Presented
in Figure 3E (ABM-ST) and Figure 3F (ABM-PHYS) are
containment scenarios with the same parameters for the
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FIGURE 3 | Comparison of transient containment outcomes at 67 days post infection (A,B) and 200 days post infection; the standard re-implemented

model (ABM-ST) results in dissemination (C) and the physiologically-based model (ABM-PHYS) results in a loosely packed containment (D). True

containment outcomes shown at 200 days post-infection (both ABM models result in containment E,F). Simulation models use the same parameters for ABM-ST (left)

and ABM-PHYS (right). See Appendix 4 in Supplementary Material for relevant parameters.

FIGURE 4 | Comparison of dissemination outcomes in the absence of TNF-α for ABM-ST (A) and ABM-PHYS (B). See Appendix 4 in Supplementary

Material for relevant parameters.
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two models [see Appendix 4 (Supplementary Table 1) in
Supplementary Material, for associated parameters]. The ABM-
ST model results in a loosely packed granuloma with extensive
caseous regions. The granuloma produced by the ABM-
PHYS model is tightly packed, and features hypoxic or nearly
hypoxic regions (data not shown). Again in part due to the
constant maximum growth rate of intracellular bacteria there
is an increased likelihood of macrophage bursting, leading to
more caseous regions. The ABM-PHYS model also features
caseous regions, but these are smaller and more compact,
which is likely due to the modulated growth rate driven
by changes in physiological oxygen levels and the bacterial
model.

Using the dissemination parameters listed for the
dissemination model in Appendix 4 (Supplementary Table 1) in
Supplementary Material, we compared dissemination outcomes
for ABM-ST vs. ABM-PHYS model. Given the tendency of the
ABM-PHYS model to skew toward containment (Figure 6C),
we significantly reduced TNFα in the system to generate a
more comparable dissemination scenario for both models.
Based on qualitative observations for the dissemination model
(Figures 4A,B) the ABM-ST model results in more pronounced
bacterial growth and dispersion during dissemination. However,
accounting for physiological factors in the ABM-PHYS model
contributes to a less dispersed dissemination outcome with
more caseous regions and a comparatively reduced extracellular
bacterial load.

To provide a quantitative comparison between the two
ABM models we compare the extracellular bacterial load of
the re-implemented standard ABM and the physiological-based
model for each of the three scenarios: transient containment
(Figures 3A–D), containment (Figures 3E,F), and dissemination
(Figures 4A,B) using six simulations in all scenarios except the
transient containment scenario for the ABM-ST model, which
uses five (Figures 5A–C, respective). Figure 5 shows trajectories
from each of the simulation runs and the average outcomes
of the runs per scenario. The average maximum values for the
extracellular Mtb levels for the ABM-PHYS models (shown on
the left vertical axis) range from approximately 2 × 102 CFUs
for containment to 1 × 103 CFUs for transient containment and
dissemination. Comparative extracellular bacterial loads for the
ABM-ST model range approximately two orders of magnitude
higher than their counterpart in the ABM-PHYS (shown on
the right vertical axis). The extracellular Mtb levels continually
increase for the ABM-ST model, with evidence of plateauing
for the transient containment and dissemination outcomes
(Figures 5A,C). Conversely the ABM-PHYS model exhibits a
characteristic peak in extracellular Mtb levels shortly preceding
40 days post infection, followed by decreasing bacterial levels
for both the transient containment and containment outcomes
or increasing levels for the dissemination outcome. The ABM-
PHYS model reaches steady state levels for each of the scenarios,
with only the containment scenario nearing an effectively zero
extracellular bacterial load. We compared the results of both
models to the published plots of extracellular Mtb from the
Segovia-Juarez et al. (2004) (Figure 9 in Segovia-Juarez et al.,
2004) and Ray et al., 2009 models (Figure 3A in Ray et al.,

FIGURE 5 | Comparison of extracellular bacterial load of ABM-ST vs.

ABM-PHYS model for each of the three scenarios in Figure 3: transient

containment (A, Figures 3A–D); containment (B, Figures 3E,F) and

dissemination (C, Figures 3G,H). Results represent an average of six

simulations in all scenarios except the transient containment scenario for

ABM-ST, which has five simulations. Bacterial loads for containment in the

integrated model mimic trajectories reported from in vivo studies (Lin et al.,

2014).

2009 ). The general behavior of increasing extracellular bacteria
is comparable to the trajectory of dissemination reported by
Segovia-Juarez et al. (2004) and containment reported by Ray
et al. (2009). However, the level of extracellular bacteria in

Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 14 February 2016 | Volume 6 | Article 6

http://www.frontiersin.org/cellular_and_infection_microbiology
http://www.frontiersin.org
http://www.frontiersin.org/cellular_and_infection_microbiology/archive


Sershen et al. Oxygen Modulates Effectiveness of Granuloma Response

FIGURE 6 | Comparison of in vivo and in silico phenotypic outcomes. Comparison of Gideon et al. (2015) experimental data (blue) and the ABM-PHYS model

with oxygen dynamics (red): relative distribution of each qualitative outcome—clearance, containment and dissemination (A) distribution of lesions based on bacterial

load (B) comparison of ABM-ST (blue) and the ABM-PHYS model (red) based on the distribution of qualitative outcomes (C) distribution across qualitative outcomes

for 1,2, and 3 loci models of the ABM-PHYS model (D). In silico outcomes based on multisample averages of 300 total simulations.

our implementation of the standard ABM (ABM-ST) using
the parameters given in Supplementary Table 1 is an order of
magnitude higher than the levels depicted in the Segovia-Juarez
et al. (2004) study for the dissemination scenario (approximately
4 × 104 vs. 4.8 × 105 at 200 days post infection) and for the
bacterial levels reported by Ray et al. (2009) for containment
(approximately 1× 103 vs. 3.6× 104 at 200 days post infection in
ourmodel). In comparison to the results reported in both of these
studies, the characteristic trajectories and day 200 extracellular
bacteria levels are notably different for the physiologically based
ABM (ABM-PHYS), which is approximately 1.4 × 102 for
transient containment, 1.5× 101 for true containment, and 7.6×
102 for dissemination. However, the ABM-PHYS’ containment
trajectories have the same characteristic shape as the bacterial
CFU counts presented by Lin et al., for themacaqueMtb infection
model ( see Lin et al., 2014, Figure 4). The physiologically-based
ABM’s containment clearly exhibits an initial build up of CFU
in the granuloma until significant activation of the adaptive
immune response and inflammatory mediators occurs, and then
extracellular bacterial levels taper off over the remaining infection
cycle.

Comparison of In silico and In vivo Models of

Infection
In the development of our model and similar to standard practice
for empirical studies, we use human data when available, followed
by non-human primate data, and other animal models of disease
for model construction and comparative validation. Using our
simulation data set consisting of 300 individual sample runs,
we compare in vivo and in silico distributions of bacterial load
across the three qualitative outcomes: clearance, containment
and dissemination (Figure 6). Figure 6A shows the distribution
of outcomes and their characteristic bacterial loads from the
ABM-PHYS model (red) compared to Mtb infected macaques
from the Gideon et al. study Gideon et al. (2015) (blue). Figure
1 in Gideon et al. shows the distribution of CFUs per lesion
at a median of 222 days for both active and latent diseased
macaques. Based on the per lesion CFUs reported in the study
we classified the necropsied granulomas and divided them
based upon bacterial load into qualitative outcomes. Using the
data for individual lesions from the Gideon et al. study, we
compared the in vivo CFU distribution to the distribution of
CFUs for individual ABM-PHYS simulation outcomes at 200
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days post-infection. We found that the distribution of CFUs per
granuloma for the ABM-PHYS model of infection is statistically
the same as the distribution of granulomas associated with latent
macaques in the Gideon et al. study (p ≈ 0.81, see Figure 6B).
When we compare the outcomes from our variable parameter
study, where parameters are varied across the range of values
for the healthy human, our in silico outcome distribution as in
the latent disease case for the macaques. Figure 6A shows the
distributions grouped by qualitative outcome. The distributions
are not statistically significantly different (p≈ 0.64).

Figure 6C shows the distribution of outcomes for ABM-
ST (blue) and for the ABM-PHYS model (red) across the
three qualitative outcomes. Though ABM-ST clears about 66.67
percent ofMtb infections, it strongly skews toward dissemination
outcomes. In the ABM-PHYS model, bacterial growth rates are
controlled and responsive to hypoxic conditions, so that bacterial
dissemination can be modulated by host immune response and
oxygen availability. An example of the impact of this phenomena
is illustrated in Figures 3A,B, a transient containment scenario
where ABM-ST progresses to dissemination but ABM-PHYS
results in containment, at 64 days post infection. A chi-square
test (p ≈ 1.5587E-115) confirms that the two in silico models
produce statistically significantly different distributions, with the
ABM-PHYS being closer to the actual distribution of LTBI (as
determined from the Gideon et al. data). Incorporating oxygen
dynamics into the system with a systems-biology model for
bacterial response pushes dissemination outcomes in ABM-ST
toward containment, so that the model more accurately depicts
empirically observed biological mechanisms and outcomes.

Given that Mtb infection and disease can result in the
formation of multiple granulomas Lin et al. (2014), we explored
the distribution of qualitative outcomes given multiple loci of
infection by varying the initial number of extracellular bacteria
from 1 to 16. We modeled the infection for an infected 20 × 20
µm cellular grid. There are observable differences in response
depending on the number of initial bacteria, as presented in
Figure 6D. There is a significant difference between the two loci
and the three loci distributions (p = 0.00776), in the form of
much higher containment and lower clearance outcomes. The
three loci distribution was also statistically significantly different
(p = 0.0205) from the ABM-PHYS single locus model, while the
two loci distribution did not differ significantly (p= 0.1369) from
the single locus model. The number of dissemination outcomes
is comparable for the two loci and three loci models.

Host-Mediated Oxygen Depletion and Mtb

Adaptive Response
We investigated the ability of the ABM-PHYS model to
mechanistically link the host’s physiological response and
modulation of oxygen to Mtb metabolic fitness (Supplementary

Figures 3, 4). Supplementary Figure 4 presents averages (over
300 simulations with parametric variations) for extracellular
and intracellular bacterial load. We compare the four main
outcomes: clearance, containment, transient containment,
and dissemination. With respect to bacterial growth rates,
recruitment of macrophages and oxygen depletion rates,

transient containment scenarios are characteristically closer
to dissemination as opposed to a true containment scenario.
This can be seen in Supplementary Figures 4, 5. Figure 5,
Supplementary Figure 4B show that early transient containment
behaves on average more like containment with respect to the
change in extracellular bacteria over time and with respect to
the recruitment of macrophages. In Supplementary Figure 4

transient containment bacterial loads (a and b) are initially
comparable to the containment level but approach dissemination
levels after 180–200 days. The containment scenario results
in significantly lower total bacteria with near zero growth
rates for extracellular bacteria when compared to the transient
containment and dissemination scenarios. Growth rates are
shown in (Supplementary Figures 4C,D), NAD/NADH ratio
(fitness measure—Supplementary Figures 4E,F) and ATP levels
(Supplementary Figures 4G,H) across the four qualitative
outcomes. Supplementary Figure 4I shows the average oxygen
depletion rates across the grid; it can be seen that the depletion
rates in our human lung model is on average comparable to the
range of oxygen depletion rates observed in the Wayne NRP
model with depletion rate < 0.5, which allows adaptation ofMtb
to low oxygen conditions encountered during the first (NRP1)
and second (NRP2) stages of NRP.

Supplementary Figure 5 shows the average growth rates for
extracellular (a) and intracellular (b) bacteria for the center
grid cell in the four qualitative scenarios, with growth rate
consistently highest for dissemination followed by the transient
containment scenario. In Supplementary Figure 5C we show
the physiological environment correlating to the growth rates in
Supplementary Figures 5A,B. It can be seen that containment
is on average hypoxic (<2% oxygen), while the other scenarios
have notably higher levels of oxygen with clearance and
dissemination having the highest levels of oxygen. These results
show that, with respect to the bioavailability of oxygen, the
physiological microenvironment of containment granulomas
within the human lung are largely hypoxic when compared to
disseminated or cleared infections (Supplementary Figure 5C).

In vitro studies of Mtb persistence suggest that depletion
dynamics vs. bioavailability of oxygen is a key determinant of
Mtb persistence (Wayne and Hayes, 1996). Using simulation data
from our three scenarios, oxygen depletion is calculated as the
change in percent of oxygen utilization over change in time and
evaluated across the entire grid, Supplementary Figure 4I, and
at the center of the granuloma, Supplementary Figures 5C,D.
Across the grid average oxygen depletion rates are higher for
the containment model, with the transient containment showing
higher depletion rates than the dissemination scenario only
between approximately 50 and 100 days post infection. The
failure to maintain sustained oxygen depletion contributes to
the deterioration of the transient containment granuloma into a
dissemination outcome at time points greater than 200 days post
infection. Oxygen depletion rates at the center of the granuloma
range from 0 to 0.5 for most cells in the ABM-PHYS model,
Supplementary Figure 5D. The range of depletion rates seen in
the model falls within the range of depletion rates observed in the
slow-stirred condition in the in vitroWayne NRP model (Wayne
andHayes, 1996). The containment granuloma features enduring
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hypoxic regions, Supplementary Figure 5C, and eventually these
regions reach and surpass reduced oxygen levels associated
with NRP stage 1. Dissemination and transient containment
have a greater propensity to show transient hypoxic periods,
Supplementary Figure 5D. Clearance scenarios show minimal
oxygen depletion, which we attribute the clearance of Mtb to
a non-oxygen associated, robust immune response-mediated
killing of bacteria, Supplementary Figure 5D.

Failure to maintain a sustained hypoxic environment
may enable Mtb to proliferate in the extracellular
and intracellular environment during dissemination,
Supplementary Figures 5A,B. However, sustained oxygen
depletion rates during containment result in reduced
extracellular and intracellular bacterial growth rates, but
the oxygen depletion rate still gives the bacteria time to
metabolically adjust to changes in oxygen levels in its local
environment. Similar to the Wayne NRP slow-stirred model,
bacteria are not killed off as in the vigorously shaken/rapid
oxygen depletion scenario, but rather they persist within
the granuloma. Persistent bacteria can maintain their
relative metabolic fitness. Intracellular NAD/NADH ratios
of bacteria during containment start off initially lower than the
dissemination outcome for simulation time < 100 days and
reach levels comparable to disseminating bacteria post 100 days,
Supplementary Figures 4E,F. Furthermore, the intracellular
ATP levels of bacteria during containment are higher when
compared to the dissemination bacteria, with the Mtb in
containment outcomes having notably higher levels of ATP than
Mtb in dissemination outcomes, Supplementary Figures 4G,H.
While intracellular containment bacteria are potentially more
metabolically fit than the intracellular disseminating bacteria,
the extracellular containment bacteria exhibit a reduced
fitness profile. The NAD/NADH and ATP levels are lower
in containment bacteria than in disseminating bacteria post
60 and 80 days simulation time, respective. The transient
containment bacteria have a markedly different metabolic
response. In general extracellular and intracellular transient
containment bacteria have the lowest ATP levels, however
the NAD/NADH levels for both extra- and intracellular

containment bacteria are distinctively higher than both
containment and dissemination bacteria post 100 days. During
clearance there are very few remaining bacteria on the grid,
Supplementary Figures 4E,F inset, potentially resulting in an
inflated average NAD/NADH ratio. However, the remaining
bacteria during the clearance scenario have very low comparable
levels of ATP, Supplementary Figures 4G,H, reducing their
likelihood of persistence or proliferation.

Influence of Oxygen Depletion on the
Course of Tuberculosis Disease
The results of our ABM-PHYSmodel support the hypothesis that
the hypoxic environment of the human lung contributes to the
shiftdown of Mtb toward persistence during the formation of a
containment granuloma. Figure 7 (left) shows the average size
of the hypoxic region for the containment granuloma. Simulated
granulomas were separated into two groups: solid and caseous in
order to compare outcomes and oxygen-related characteristics of
granulomas in our in silicomodel to in vivo granulomas described
by Via et al. (2008). If a simulated granuloma contained caseous
cells, it was classified as caseous and in the absence of these, as
solid. On day 56 post-infection, which correlates to when tissue
samples from Mtb infected animals were collected in the in vivo
Via et al. study, in the simulated ABM-PHYS model the average
size of the hypoxic regions are on the order of 0.2490 and 0.2135
mm2 for caseous granulomas and solid granulomas, respectively.
The size is in close agreement with the in vivo experimental
study which reported a hypoxic region on the order of 0.36
mm2 in rabbit lungs. Via et al. note that all caseous granulomas
were positive for pimonidazole hydrochloride (PIMO) staining,
a hypoxia indicator, while only 32% of the solid granulomas were
positive for PIMO activation.

The Wayne NRP studies suggest that microenvironments
that gradually become hypoxic enable Mtb to transition
from an NRP1 stage to an NRP2 stage, resulting in the
establishment of non-replicating, persistent Mtb (Wayne and
Hayes, 1996). To determine if and to what extent the
physiological immune response results in a microenvironment

FIGURE 7 | For the containment granuloma: average area of the hypoxic region in mm2 (Left) and the average percent of oxygen in tissue at the

center of the granuloma (Right). Containment granulomas were divided into two groups: caseous and solid. NRP stages (Wayne and Hayes, 1996) are notated

(right). Results based on 20 simulation runs.
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similar to the environment observed in the Wayne in vitro
studies, we analyzed the average percent oxygen in tissue for the
two categories of containment granuloma (Figure 7, right). It is
seen that the oxygen levels in the simulated caseous containment
granulomas are on average comparable and transition similar
to the Wayne model’s NRP stage 1 and NRP stage 2. Solid
granulomas average slightly higher than 1% oxygen. Thus

Mtb transitioning into a persistent state is more likely in the
case of caseous containment granulomas. In comparison we
show in Figure 8 a tableaux of transient hypoxic states for a
dissemination outcome over time. Severe hypoxia is seen on day
181, but resolves by day 200 with concomitant bacterial growth,
demonstrating that sustained hypoxia is needed for bacterial
containment.

FIGURE 8 | Dissemination and the corresponding oxygen field at 54, 181, and 200 days post-infection. Severe hypoxia is seen on day 181, which resolves

by day 200.
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Statistical comparison of the in silico ABM-PHYS, in silico
ABM-ST, and in vivo Mtb infection models indicates that our
ABM-PHYS model provides a more comparable reproduction
of bacterial load over time than the ABM-ST model. Using
published experimental data from the in vivo study (Via et al.,
2008) of 16 NZW rabbits infected withM. bovis, we compare the
number of mycobacterial CFUs observed in in vivo granulomas
to the number of CFUs in our simulated granuloma. The data
extracted from Via et al. show the bacterial CFU per individual
1- to 1.5-mm granuloma at 63 days post infection (5 weeks
of housing and 28 subsequent days of placebo treatment) for
the experimental control group, see the first bar in Figure 9. In
the same figure we comparatively plot the distribution of total
bacteria at day 63 for 23 simulated containment granulomas
produced using the ABM-PHYS model with variable specific
growth rate (µ-max = 0.006649 per hour using the default in
Table 1; see bar 2 in Figure 9) and 10 simulated containment
granulomas generated using the ABM-ST model (Figure 9, bar
3), with the same parameters but using fixed bacterial growth
rate and no oxygen dynamics. It can be seen that the ABM-PHYS
model’s estimated mean CFU per granuloma and the associated
variance more closely matches the in vivo data than the ABM-
ST model. Using the Kolmogorov–Smirnov (K–S) test, which is a
non-parametric test to determine whether two distributions are
statistically significantly different, we found that the ABM-PHYS
model’s total bacterial distribution is not statistically significantly
different from the experimental control distribution in Via et.
al. (p = 0.2702). For the ABM-ST the simulated distribution is
statistically significantly different from the experimental data (p
= 3.8254e-06). The ABM-PHYS vs. ABM-ST results from the K–
S test were also statistically significantly different (p = 0.0017)
from one another. The results of the K–S test suggests that

FIGURE 9 | Total CFU for M. bovis untreated infected rabbits on day 63

(Via et al., 2008—bar 1) compared with total CFU resulting from the in

silico model of Mtb infection produced by the ABM-PHYS and the

ABM-ST model using the same specific growth rate of Mtb for both

models. In silico results are based on 10 simulations for ABM-ST and 22

simulations for ABM-PHYS.

the ABM-PHYS model more accurately captures the mean and
variance of the experimental control data for the containment
scenario in the Via et. al. study. Though the ABM-PHYS
features greater variance in total bacterial load, it produces a
more physiological and immunologically accurate correlation of
the impact of granuloma formation on the macroscopic host
environment and on the microscopic extracellular/intracellular
bacterial load. Allowing growth rates of Mtb to fluctuate in
response to local environmental oxygen conditions appears to
more accurately portray actual infection dynamics.

Uncertainty and Sensitivity
Analysis—UA, SA
We used the freely available software DAKOTA (Adams et al.,
2010) developed by Sandia National Laboratories to perform
both uncertainty and sensitivity analysis for our ABM-PHYS
model (see Table 5). In Supplementary Figure 6 we show the
partial regression correlation coefficients (PRCC) over 200 days
post-infection for the statistically significant multiscale model
driver variables, with the measured outcome variable being the
level of extracellular bacteria. An increased level of extracellular
bacteria suggests a failure in immune response and results
in Mtb dissemination. Therefore, extracellular bacterial load
serves as a valid quantitative metric that correlates to active TB
disease (see Supplementary Figures 4A,B for a comparison of
total bacterial load to extracellular bacterial load). To identify
statistically significant input variables for our ABM-PHYS model
we performed a variable parameter study. In order to reduce
aleatory uncertainty the model was run for three iterations
using a different random number seeds at the beginning of
each iteration and we ran the three-iteration cycle 100 times
resulting inN = 300 simulation runs. Each set of three simulation
outcomes were averaged and the PRCC produced (see Marino
et al., 2008 for further discussion). This gave us a total of 100
sample outcomes (generated from 300 individual simulations),
each an average of three simulations ran for each of the 100 input
parameter sets varied over the ranges described in Table 2 (Ray
et al., 2009). We used Dakota to generate the resulting PRCC.
Supplementary Figure 6A shows the significant variables with
clearance outcomes included (p <0.05) using our original N =

300 simulation runs and Table 6 lists the statistically significant
model parameters with all outcomes considered, together with
p-values to indicate level of significance. We found that the
chemokine diffusion coefficient and CCL5 threshold impacts
infection dynamics very slightly (negatively and positively
correlated, respective) when the clearance scenarios are included.
We observed that pulmonary blood sources and residual lung
volume are positively correlated with extracellular bacteria,
suggesting that an increase in pulmonary blood sources in
the lung may provide increased oxygen to the parenchyma,
thus enabling growth and development of extracellular bacteria.
Increased residual lung volume provides more oxygen to tissues
resulting in a more aerobic environment, which is more
amenable for extracellular bacterial growth. Macrophage and
bacterial O2 consumption parameters are significant drivers
in our model, both negatively correlated with extracellular
bacteria. Higher oxygen consumption by macrophages and high
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TABLE 6 | Significant Partial Rank Correlation Coefficients for the integrated multiscale model of oxygen-modulated host response to Mtb infection.

Variable Max/Min p-value Explanation of significance

Chemokine diffusion constant – Fast diffusion of chemokine can lead to an increased rate of signaling to neighboring cells, positively

affecting macrophage recruitment toward the site of infection and leading to lower levels

of extracellular bacteria (EB).

Pulmonary blood source + More pulmonary blood provides increased oxygen to the lung thus higher EB level can persist.

Residual volume + Higher residual volume provides more oxygen to tissues, thus is a more friendly environment for EB.

Macrophage O2 consumption – Higher oxygen consumption by macrophages leaves less oxygen available for bacteria,

thus is negatively correlated to EB.

O2 bacterial consumption – High consumption by a single bacterium leaves less O2 available for other bacteria.

Oxygen diffusion coefficient + The faster oxygen diffuses through tissues, the more oxygen is readily available to EB.

Tmove – Enables a more tightly controlled granuloma facilitating activation of macrophages, therefore lower EB.

CCL5uthreshold + Higher threshold implies less recruiting of macrophages at vascular source sites, so more EB may persist.

mu max + Higher growth rate of EB has positive impact on EB levels.

Positive correlations with extracellular bacteria level:(+) = p≤0.025;(++) = p≤0.01;(+++) = p≤ 0.001;Negative correlations with EBL:(−) = p≤0.025;(–) = p≤0.01.

TABLE 7 | Explanation of simulation data sets used to generate figures of aggregate results and comparative outcome for ABM-PHYS and ABM-ST.

Parameter type Analysis type Number of simulations Figure numbers

Variable parameter Comparison of average phenotypes across N = 300 Supplementary Figures 3–5

all outcome categories (clearance, containment, dissemination).

Comparison of statistical distribution of outcomes N = 300 Figure 6

for in vivo, ABM-PHYS, and ABM-ST.

Identification of statistically significant model N = 300 Supplementary Figure 6A

parameters across all outcomes.

Identification of statistically significant model N = 41 (of 150) Supplementary Figure 6B

parameters for containment and dissemination outcomes.

Fixed parameter Outcome specific comparison of bacterial load phenotype. N = 5 to 6 Figure 5

* Data sets where some Comparative analysis of the hypoxic region of N = 20(*4) Figure 7

are from variable containment granulomas.

parameter runs Comparison of the bacterial load in in vivo N = 10,22(*1) Figure 9

vs. in silico containment granulomas.

Comparison of Mtb gene expression for containment N = 20 (*10) Supplementary Figure 2

and dissemination outcomes.

Aggregate or average results are generated based on the N = 300 LHS simulation run set or from fixed parameter simulation sets (parameters used for fixed parameter studies are

listed in Appendix 4 in Supplementary Material). Figure 6, Supplementary Figures 3–5, 6A are generated using the N = 300 simulation set for both the standard and integrated ABM

models, where we categorized outcomes as described in Appendix 1 in Supplementary Material. Supplementary Figure 6B is produced using 41 of 150 simulation results (over the

same parameter space as the N = 300 simulation set) in order to investigate which significant parameters result when we exclude the clearance outcomes. Figure 5, which compares

the number of extracellular bacteria in the standard ABM to the integrated ABM, is generated from 5 to 6 fixed parameter simulations for each scenario. In the remaining figures we used

fixed parameter simulation runs to generate a sufficient number of containment samples for comparative analysis and characterization of the containment response: Figure 7 results

are based on 20 simulations representing 6 solid containment granulomas and 14 caseous containment granulomas (of the 20 simulations, 4 were from the N = 300 sample run set

and 16 from fixed parameter simulation runs); Figure 9 results are based on 10 fixed parameter simulations for the standard ABM and 22 simulations for the integrated multiscale ABM

(of the 22 simulations, 1 was from the N = 300 sample run and 21 from fixed parameter simulation runs); Supplementary Figure 2 results are based on 20 simulations (10 were from

the N = 300 sample run set and 10 from fixed parameter simulation runs).

consumption by a single bacterium leaves less O2 available for
other bacteria. The faster oxygen diffuses through tissues, which
is determined by the O2 diffusion parameter, the more oxygen
is readily available to extracellular bacteria, hence the positive
correlation with bacterial load. Since naturally occurring oxygen
is comprised of three stable isotopes, O2 can persists longer
than chemokines/cytokines in the system. A high probability for
T cell movement into a macrophage containing compartment

facilitates the activation of macrophages and enables the
formation of a more tightly controlled granuloma. Therefore, a
high Tmove is negatively correlated with bacterial load and leads
to lower extracellular bacteria. Finally high growth rate (µ-max)
ofMtb has a positive impact on extracellular bacteria levels.

Given the large number of clearance outcomes represented
by the N = 300 (100 average outcomes) simulation run,
we generated a non-averaged simulation set to determine
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which parameters are statistically significant if we consider
only the non-clearance outcomes. To determine the PRCCs
for the containment and dissemination outcomes, we ran 150
individual simulations of the model over our input parameter
space using different random number seeds. The 150 runs
resulted in 41 non-clearance, non-averaged outcomes, which
ensured that we retained a reasonable number of degrees of
freedom after removing the clearance outcomes to determine
statistical significance. We used the rules in Appendix 1.1 in
Supplementary Material to categorize the outcome as clearance
vs. non-clearance. (See Tables 1, 2 for the ranges used in
the Latin-hypercube sampling (LHS) analysis for each of the
variables of interest.) We performed our PRCC analysis using the
method described by Marino et al. (2008) and associated PRCC
calculation tools freely available via download (Marino et al.,
2008). Supplementary Figure 6B shows the significant variables
without the clearance outcomes included in the analysis (p =

0.05) using N = 41 of 150 set of individual simulation runs.
The significant inputs include: probability that amacrophage kills
bacteria, which is negatively correlated to extracellular bacterial
(ECB) load; probability of macrophage recruitment, which is
positively correlated with ECB levels possibly due to crowding
effects within the granuloma and the inability of T cells tomigrate
to the center and activate macrophages, as described well in
Segovia-Juarez et al. (2004). Increased T reg cell recruitment
to ECB-containing regions may result in a lower probability of
cytotoxic (killer) T cell recruitment, thus the positive correlation
of the T reg recruitment with ECB. TNF diffusion constant
and TNF half-life are positively correlated with ECB, at later
stages of the infection, which is plausible given TNF’s roles in
inducing apoptosis of infected macrophages (Wajant et al., 2003).
Combined TNF/chemokine threshold for T cell recruitment
(r.T) is negatively correlated with extracellular bacterial load
as a low threshold leads to increased T cell recruitment
and consequentially an increase in the number of activated
macrophages able to eliminate the pathogen. The final significant
parameter, TNF secretion, is negatively correlated with ECB early
on in the infection, which would be expected given TNF’s pro-
inflammatory role (see Ray et al., 2009). However, it is slightly
positively correlated with ECB around 100 days post infection,
which may be attributed to chronically infected macrophages
and T cell populations continual production of TNF during the
dissemination scenario.

DISCUSSION

Using our ABM-PHYS model of TB disease, we explored
the correlation between host immune response, physiological
response with respect to oxygen, and outcome of infection.
While the model architecture determined the general interaction
between model components, we used uncertainty quantification
methods to explore the parameter space and discover emergent
system properties that correspond to bacterial clearance,
containment/latency, or dissemination.

Using outcomes from our simulation model our analysis
has shown significant correlations between the oxygen input
variables and the extracellular bacteria levels (ECB) when all

outcomes are considered (Table 6; Supplementary Figure 6A).
Notably parameters such as chemokine diffusion constant,
pulmonary blood source, residual volume, macrophage O2
consumption, O2 bacterial consumption, oxygen diffusion
coefficient, Tmove, CCL5uthreshold, and µmax (Table 6)
were significantly correlated with the amount of extracellular
bacteria, which was used to classify simulation outcomes. The
majority of these parameters are related to physiology-dependent
oxygen availability or immune-dependent modulation of
oxygen physiology. Therefore, the model demonstrates that
oxygen-related physiological characteristics (pulmonary blood
source, residual volume, oxygen diffusion coefficient, baseline
macrophage O2 consumption) combined with immune-related
physiological characteristics that bring oxygen-consuming cells
to the site of infection (chemokine diffusion constant, Tmove,
CCL5 threshold) integrate to determine how quickly hypoxic
regions occur and how long they are maintained. The rate
of hypoxic onset and duration in turn impacts Mtb oxygen
relevant characteristics (bacterial O2 consumption, bacterial
growth rate/µmax, and persistence). The observed connection
between physiology, immune response, oxygen gradients and
infection outcome, demonstrates a structural host response
mediated, oxygen-dependent immunological contribution to
Mtb infection outcome. However, when we only consider the
containment, transient containment and dissemination scenarios
(Supplementary Figure 6B), seven significant inputs appear,
none directly related to oxygen. The significant parameters for
the non-clearance outcomes suggest a more macrophage/TNF
centric response to infection, with reduced pro-inflammatory
response when compared to clearance outcomes. The absence
of O2 drivers in the non-clearance outcomes provides
further evidence supporting the importance of the oxygen
dependent physiological immune response in eliminating
M. tuberculosis.

The Transient LTBI Response
Another unique aspect of this work is that, to our knowledge,
our model represents the first integration of Mtb metabolic
dynamics into the ABM modeling framework to enable
the exploration of bacterial response to host dynamics and
physiological oxygen dynamics concurrently. The integration
and the number of bacterial cells we model necessitated the
use of an integrated software platform to serially execute the
cellular model, while we ran the intracellular TB model using
BioXyce. The integration of the host–pathogen interaction
and physiological responses enabled the exploration of both
molecular and cellular mechanisms that contribute to granuloma
formation in tuberculosis.

We used the derivatives of the external bacterial load
and recruitment of new macrophages for our mathematical
classification of the four qualitative outcomes, including transient
containment (see Supplementary Figures 3–5, Appendix 1 in
Supplementary Material). Previous models of TB focus on
the three recognized clinical outcomes of infection: disease
clearance, granuloma formation and containment, or pathogen
dissemination. Our discovery of the transient containment
category of outcomes is a new insight from our work that has not
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been addressed in prior theoretical models of TB infection and
granuloma formation, and is an observation that can contribute
to our understanding of Mtb reactivation. Reactivation of
Mtb from a granuloma has been investigated in other models
by various means such as simulating the addition of an
exogenous chemical agent that interferes with immune response.
However, we identified and computationally observed transient
containment events as an emergent property where granulomas
seem to fail without exogenously introduced factors and the
presumably contained bacteria moves toward reemergence
and dissemination. Our observation and characterization of
this class of outcomes can point to immunological differences
that contribute to chronic disease and of great importance,
factors that may lead to the breakdown of granulomas and
potentially disease re-activation in LTBI individuals with
reduced pulmonary capacity such as those with emphysema
or COPD. Also the framework can be used to investigate how
modulating non-host factors such as environmental oxygen
changes the outcome of infection and granuloma formation.
Given that relocation of TB patients to higher altitudes was
previously considered therapeutic, as an example, we lowered the
atmospheric oxygen constant to represent 18% oxygen (higher
altitude, Supplementary Figure 7B) instead of 21% representing
normal oxygen levels at sea level (Supplementary Figure 7A).
The change in environmental oxygen leads to a slightly
more tightly-formed granuloma with less caseous cells
under 18% oxygen than the 21% oxygen levels at 200 days
post-infection.

In summary, the multiscale modeling approach enables
portrayal of granuloma structure, dynamics, and demonstrates
the link between granuloma physiology and immunological
functionality. Incorporating oxygen dynamics into the
framework of granuloma simulation and integrating a systems
biology model of Mtb allows us to capture Mtb biochemical
response to oxygen dynamics in the bacteria‚s immediate
microenvironment, with the pathogen showing an adaptation
response similar to that observed in the Wayne model during the
two stages of in vitro NRP.

While the bacterial response is similar (in terms of
persistence under varying conditions) to the Wayne model,
the physiological immune response that led to the various
microenvironments and simulation model outcomes were not
designed into the model. The changes in the microenvironment
(oxygen dynamics, dynamic onset of hypoxia, etc.) are emergent
properties that were observed after categorizing the simulation
results into the four outcomes (containment, clearance, etc.).
The observation (Figure 7) that the oxygen dynamics for the
containment outcome was similar to theWayne NRP1 and NRP2
microenvironment is again an emergent outcome and not forced
by the model. As such, these results demonstrate the importance
of accounting for the physiological aspects of immune response
in theoretical models ofMtb infection.

Our simulation model also replicates the oxygen-dependent
immunological outcomes of infection observed in vivo, with
the average size of the hypoxic regions calculated for our
simulated containment granuloma correlating to that found
in in vivo models of Mtb infection (Via et al., 2008). As a

result our integrated multiscale model is able to more accurately
capture the physiological, cellular, and molecular host–pathogen
mechanisms that are key to successful host clearance of Mtb,
host failure and Mtb dissemination, or bacterial persistence
and onset of LTBI, a current challenge in the treatment of
tuberculosis.

We have demonstrated through simulation that the structural
immune response coupled with the physiological impact of
oxygen is a mediating influence on the outcome of Mtb
infection. Specifically our results have shown that including
oxygen dynamics in the model enables a closer portrayal of the
progression of the infection, which more accurately parallels
statistical infection outcomes observed in animal models of TB
disease and in WHO human LTBI rates in the population.
The methods used for incorporating oxygen into a multiscale
infection model is extensible to other disease models, therefore
the modeling methodology we developed is not only TB specific
but broadly relevant as our methods can be applied more widely
to understand other host-pathogen systems.
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Supplementary Figure 1 | Regression model for two genes etfA and fum:

actual (blue) vs. predicted (red).

Supplementary Figure 2 | Gene expression for cell at the center of the grid

for the containment and dissemination outcome scenarios over 200 days

post-infection. ATPH gene (Left); ACEAB gene (Right). Inset: Voskuil data for

aerobic (red) and hypoxic (green) conditions. Results represent averages over 10

simulations per outcome (5 from N = 300 simulation run set and 5 from fixed

parameter simulation runs).

Supplementary Figure 3 | Substrates levels from the Mtb metabolic model

200 days post-infection. Glycine-a; Malate-b; Isocitrate-c; Glyoxylate-d. Results
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represent sample averages from 300 simulation run set (number of

simulations per outcome: 13 clearance, 6 containment, 5 transient

containment, and 7 dissemination).

Supplementary Figure 4 | Average response of cells across the simulation

grid during clearance, containment, and dissemination. (A) Average growth

rate of extracellular bacteria (inset - equilibrium containment averages); (B)

average growth rate of intracellular bacteria; (C) average hourly extracellular

growth rate; (D) average hourly intracellular bacterial growth rate; (E) average

scaled NAD/NADH ratio of extracellular bacteria; (F) average scaled NAD/NADH

Ratio of intracellular bacteria; (G) average extracellular ATP; (H) average

intracellular ATP; (I) average rate of oxygen depletion across the granuloma.

Averages over 300 total simulations.

Supplementary Figure 5 | Response of cell at the center of the grid for the

clearance, containment, and dissemination outcome scenarios: (A)

average growth rate of extracellular bacteria; (B) average growth rate of

intracellular Bacteria; (C) average oxygen tension (mmHg); (D) average

depletion rate. Averages over 300 total simulations.

Supplementary Figure 6 | Significant Partial Rank Correlation Coefficients

for the integrated multiscale model show the impact of oxygen dynamics

and physiological host response on Mtb infection outcome. Extracellular

Bacterial levels are used as the outcome measure. Analysis results are based on

multi-sample averages of the 300 simulation outcomes (A) and 41 individual

non-clearance outcomes (B).

Supplementary Figure 7 | Containment granuloma at 21 percent oxygen

(left, A) and 18 percent oxygen (right, B).

Supplementary Table 1 | Parameters of the containment and

dissemination run both with the ABM as standalone model and the multi

scale model.
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