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Shigella is a Gram-negative bacterial pathogen, which causes bacillary dysentery in

humans. A crucial step of Shigella infection is its invasion of epithelial cells. Using a

type III secretion system, Shigella injects several bacterial effectors ultimately leading to

bacterial internalization within a vacuole. Then, Shigella escapes rapidly from the vacuole,

it replicates within the cytosol and spreads from cell-to-cell. The molecular mechanism of

vacuolar rupture used by Shigella has been studied in some detail during the recent years

and new paradigms are emerging about the underlying molecular events. For decades,

bacterial effector proteins were portrayed as main actors inducing vacuolar rupture.

This includes the effector/translocators IpaB and IpaC. More recently, this has been

challenged and an implication of the host cell in the process of vacuolar rupture has been

put forward. This includes the bacterial subversion of host trafficking regulators, such as

the Rab GTPase Rab11. The involvement of the host in determining bacterial vacuolar

integrity has also been found for other bacterial pathogens, particularly for Salmonella.

Here, we will discuss our current view of host factor and pathogen effector implications

during Shigella vacuolar rupture and the steps leading to it.
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INTRODUCTION

Upon type 3 secretion system (T3SS)-triggered internalization into epithelial cells, Shigella rapidly
ruptures its vacuolar membrane to reach the host cytosol for proliferation and cell-to-cell spread.
Despite the importance of vacuolar rupture for intracellular bacterial proliferation and propagation,
the underlying molecular mechanism has only recently been studied in more detail, and we still
lack a precise understanding of the overall processes leading to and determining it (Ray et al., 2009,
2010; Carayol and Tran Van Nhieu, 2013a). Here, we will give an overview on the formation of
the Shigella-containing vacuole, we will discuss the involvment of bacterial and host factors in the
destablization of the vacuolar membrane, and we will compare it with vacuolar rupture by other
bacterial pathogens.

THE STEPS LEADING TO THE FORMATION OF THE
SHIGELLA-CONTAINING VACUOLE

Shigella internalization relies on elaborate plasma membrane and actin rearrangements, which
are spatiotemporally controlled by the interplay between bacterial and cellular factors. Several
Shigella T3SS effectors, namely IpaB/IpaC, IpgB1/2, and IpaD directly or indirectly modulate
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GTPase activation of the Rho family, including Rac1, Cdc42, and
RhoA as well as host kinases to promote actin polymerization
at the bacterial entry site. This leads to plasma membrane
reorganization required for efficient formation of the Shigella-
containing vacuole (Mounier et al., 1999; Carayol and Tran
Van Nhieu, 2013a). Concomitantly, Shigella also alters the
cellular levels of phosphoinositides (PIs) within targeted cells
through the T3SS effector IpgD, thereby subverting several
host pathways. IpgD is a phosphatidylinositol-phosphatase that
specifically depletes PI(4,5)P2 resulting in the formation of PI(5)P
(Niebuhr et al., 2002). IpgD is not required for bacterial entry,
however it impacts on the way how the bacterium is internalized:
Unlike the Shigella wildtype (WT) invasion site characterized
by massive filopodia-like extensions and membrane ruffles, ipgD
only induce a small albeit dense actin cup at the vicinity of
the bacteria. Strikingly, ectopic expression of IpgD in epithelial
cells results in a decrease in membrane-cytoskeleton tethering
force and eventually causes membrane blebbing (Allaoui et al.,
1993; Niebuhr et al., 2000, 2002; Mellouk et al., 2014). Therefore,
it is likely that the depletion of PI(4,5)P2 by IpgD weakens
plasma membrane-cortical actin interactions thereby facilitating
membrane extensions (Saarikangas et al., 2010). In addition,
IpgD-dependent production of PI(5)P during the internalization
process of Shigella in epithelial cells recruits and activates the
epidermal growth factor receptor (EGFR), independently of
its bona fide ligand. In turn, EGFR activation stimulates the
PI3K/Akt pathway activation. Importantly, PI(5)P production
mediates a sustained Akt activation by promoting accumulation
of active EGFR in early endosomes (EEs), protecting it from
lysosomal degradation (Pendaries et al., 2006; Ramel et al., 2011).
During these processes, PI(5)P allows the recruitment of the
adaptor protein TOM1, which delays EGFR degradation and
bulk endocytosis (Boal et al., 2015). Together, these findings
suggest a primordial role of IpgD in the remodeling of the
plasma membrane and the underlying actin cortex, as well as
a regulator of lipid signaling during the communication of the
Shigella-containing vacuole with its surrounding.

DIRECT DESTABILIZATION OF
SHIGELLA-CONTAINING VACUOLES BY
BACTERIAL EFFECTORS

The step of vacuolar rupture takes place rapidly after bacterial
internalization within epithelial cells. Studies that allow its
tracking in real time revealed that the Shigella-containing vacuole
gets damaged in <10 min (Paz et al., 2010; Ray et al., 2010).
Early work implicated the T3SS effectors/translocators IpaB and
IpaC in vacuolar rupture due to their ability to insert into
the host cell membrane for the delivery of bacterial effectors.
Collectively, these studies demonstrated that IpaB and IpaC
can disrupt lipid vesicles (liposomes) in vitro and are required
for contact-mediated hemolysis by Shigella as well as bacterial
phagosomal escape in macrophages (High et al., 1992; Ménard
et al., 1993; De Geyter et al., 1997; Blocker et al., 1999; De
Geyter et al., 2000). In addition, IpaB was shown to be required
for Shigella-induced macrophage death via direct binding and

activation of caspase-1 (High et al., 1992; Hilbi et al., 1998).
However, because IpaB and IpaC act both, as translocators and
effectors, discriminating between these two functions represents
a major experimental difficulty, both in macrophages and in
epithelial cells. Furthermore, since bacterial uptake into epithelial
cells also depends on a functional T3SS, it has been challenging
to assess the direct contribution of IpaB and IpaC in the
subsequent step of vacuolar escape in this cell type. Two
recent studies provided new insight on IpaB function(s) using
meticulous purification protocols allowing the preservation of
its active conformation. Senerovic et al. showed that purified
IpaB could oligomerize and form large channels, which would
promote potassium influx at acidic pH. They further showed
that IpaB-induced ions fluxes could activate caspase-1 via
the inflammasome, thereby promoting macrophage pyroptosis.
Intriguingly, the reported caspase-1/inflammasome-mediated
death of macrophages required endocytosis of purified IpaB in
a dynamin-dependent manner, however IpaB remained at the
surface of epithelial cells (showing a defect of internalization)
and thus did not affect their viability (Senerovic et al., 2012).
In addition, Dickenson et al. showed that besides forming large
channels, purified IpaB could also assemble into tetramers,
and form small pore-like structures that presumably serve as
scaffold for translocon insertion into membrane (Dickenson
et al., 2013). Together, these works highlight distinct functions
of IpaB, either serving as a structural translocator component for
bacterial effector delivery into host cells or as a potent effector
to induce endolysosomal leakage and promote macrophages
pyroptosis. Noteworthy, T3SS translocators with high homology
to IpaB and IpaC are present in a number of vacuolar-
bound Gram-negative bacterial pathogens such as Salmonella
and Yersinia. Moreover, contact-mediated hemolysis also occurs
with Yersinia and Salmonella and also requires their respective
translocator YopB and SipB (Håkansson et al., 1996; Hume
et al., 2003; Coburn et al., 2007). Collectively, this suggests
additional or other mechanisms controlling vacuolar membrane
integrity during Shigella infection. For instance, the T3SS
effector IpaH7.8 may promote Shigella vacuolar escape in
macrophages, although its function is not yet established
(Fernandez-Prada et al., 2000). Once Shigella gains access to
the cytosol, vacuolar membrane remnants are polyubiquitinated,
they recruit autophagic markers and adaptors such as LC3 and
p62 as well as inflammasome components, and they are targeted
to autophagic degradation, thereby dampening inflammatory
response and promoting host cell survival (Dupont et al., 2009).
LC3 has also been found surrounding the double-membranous
vacuoles that Shigella forms after cell-to-cell spread, and two
bacterial factors, namely IcsB and VirA have been implicated
in the process of bacterial escape interfering with the LC3
recruitment (Campbell-Valois et al., 2015). Along these lines,
constituents of the autophagy machinery have been shown to
repair damaged vacuoles during Salmonella enterica infection
(Kreibich et al., 2015). This indicates a link between the
autophagy machinery, membrane repair, and their subversion
through bacterial effectors, nevertheless an understanding of the
underlyingmechanism has remained illusive and requires further
studies.
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IDENTIFICATION OF HOST FACTORS
INVOLVED IN SHIGELLA VACUOLAR
RUPTURE

Compared to intravacuolar pathogens, considerably less is
known about the interplay between cytosolic pathogens with
the endocytic/exocytic pathways prior to their vacuolar escape,
very likely because they rapidly escape into the cytosol and
therefore were mostly assumed to not interact selectively with
the host vesicular trafficking (Cossart and Roy, 2010; Fredlund
and Enninga, 2014). Nonetheless a better understanding of the
early events of vacuolar progression preceding cytosolic escape
could provide novel insights into the pre-requisite for vacuolar
rupture and potentially unravel new host factors subverted
by bacterial pathogens to promote intracellular survival and
proliferation. Noteworthy, Listeria has been shown to delay
Rab5-GDP exchange and expression of constitutively active Rab5
induced bacterial degradation whereas dominant-negative Rab5
promoted bacterial survival and proliferation (Prada-Delgado
et al., 2005). Albeit the mechanism of Rab5 modulation by
Listeria is not yet established, it suggests that Listeria has evolved
a strategy to avoid vacuolar maturation along the endolysosomal
pathway prior to its escape into the cytosol.

To explore the involvement of host trafficking pathways in
Shigella vacuolar rupture, an imaging-based vacuolar reporter
assay was implemented in conjunction with siRNA screening
(Ray et al., 2010; Keller et al., 2013). High-content/medium-
throughput screens using an siRNA library targeting membrane
traffic identified multiple host factors likely involved in Shigella
uptake and vacuolar membrane rupture (Mellouk et al., 2014). In
agreement with a subversion of the host cytoskeleton machinery
to trigger bacterial entry, several host factors were found that
promote actin polymerization such as the nucleator ARP2/3
complex and the Rho-GTPase Cdc42 (Tran Van Nhieu et al.,
1999; Ehsani et al., 2012; Carayol and Tran Van Nhieu, 2013b).
More surprisingly, a subset of endosomal factors was identified,
particularly involved in sorting and/or recycling pathways
notably including the EE markers Rab5 and EEA1, the sorting
nexins (SNX1 and 2), and the recycling endosome markers
Rab4 and Rab11. Accordingly, these findings indicate a complex
mechanism underlying Shigella vacuolar escape that implicates
the hijacking of several host pathways by the pathogen to
efficiently gain access to the host cytosol, pinpointing a key role
of endocytic and recycling regulators.

HOST MEMBRANE TRAFFICKING
REGULATORS AND VACUOLAR RUPTURE

The intravacuolar lifestyle requires the subversion of distinct
endosomal and/or secretory pathways to diverge from the
degradative lysosomal pathway and to build a unique niche for
bacterial survival and proliferation. Accordingly, intravacuolar
pathogens are well-described to selectively interact with host
vesicles notably by hijacking key regulators such as Rab
GTPases, SNAREs and PIPs to allow nutrient acquisition and
vacuole expansion (Brumell and Scidmore, 2007; Weber et al.,

2009; Cossart and Roy, 2010). Strikingly, altering the interplay
of pathogen-containing vacuoles with the host membrane
trafficking machinery has been shown to have dramatic
consequences on their intracellular fate (Kumar and Valdivia,
2009; Creasey and Isberg, 2014). For instance, expression of
either constitutively active form of Rab5 or dominant-negative
form of Rab7 results in Salmonella-containing vacuole (SCV)
disruption, implying that the Rab5-to-Rab7 conversion that
promotes subsequent fusion with late endosomes (LEs) is
crucial to maintain the SCV integrity (Brumell et al., 2002).
Accumulating evidences suggest that Legionella manipulates
multiple host cellular pathways using a wide range of type 4
secretion system effectors to promote intracellular growth in a
partially redundant manner (Isberg et al., 2009; Hilbi and Haas,
2012). Two studies particularly support this emerging theme.
Hoffmann et al. undertook a proteomic analysis of purified
Legionella-containing vacuoles (LCVs) from macrophages and
identified 9 Rabs (Rab1, 2, 4, 8, 10, 11, 14, 21, and 32)
specifically localized on WT but not icmT mutant LCVs.
Strikingly, subsequent knockdown of Rabs by siRNA showed
that a subset of endocytic Rabs such as Rab5, Rab14, and
Rab21 restrict intracellular replication whereas several secretory
Rabs including Rab8, Rab10, and Rab32 had the opposite
effect by promoting intracellular growth. Surprisingly, although
numerous effectors target Rab1 function, knocking down Rab1
did not impair bacterial growth (Hoffmann et al., 2014).
In this regard, O’Connor et al. implemented an innovative
genetic screening approach that combines bacterial mutants and
siRNA targeting of host factors to uncover the importance of
functional redundancy of Legionella virulence. In particular, they
revealed that the Legionella double mutant LidA/WipB exhibited
intracellular growth defects concomitant with an increase in LCV
disruption, ultimately promoting both bacterial degradation and
macrophages apoptosis (O’Connor et al., 2012).

As mentioned above, the siRNA screen on host factors
involved in Shigella vacuolar escape suggested that endocytic and
recycling pathways could be involved in the early stage of Shigella
invasion (Mellouk et al., 2014). Live-imaging and quantification
of the obtained data revealed the massive accumulation of
Rab11-positive vesicles at the invasion site of Shigella prior
to vacuolar rupture (Figure 1, left side). It also indicated the
transitory presence of Rab5-positive vesicles whereas Rab4-
positive vesicles were not enriched. Because Shigella rapidly
escapes into the cytosol in less than 10 min, such accumulation
of Rab11 at the invasion site was unforeseen (Paz et al., 2010;
Ray et al., 2010). Indeed, although a number of intravacuolar
pathogens including Salmonella, Legionella, and Chlamydia also
recruit Rab11-positive vesicles, it commonly appears to be at an
“intermediate or late” stage of vacuolar maturation presumably
promoting bacterial proliferation by delivering nutrients and
membrane to the growing bacterial vacuoles (Smith, 2005;
Rejman Lipinski et al., 2009; Hoffmann et al., 2014).

Rab11 knockdown significantly delayed the vacuolar rupture
of Shigella without disturbing its entry into epithelial cells
(Mellouk et al., 2014). Interestingly, a genome-wide siRNA
screen for Chlamydia infection in Drosophila cells where Listeria
infection was also assessed in a secondary screen indicated that
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FIGURE 1 | The involvement of host membrane trafficking in Shigella

vacuolar rupture. Shigella induces its uptake into a vacuole that gets

surrounded by an actin cage. Concomitantly, vesicles around the bacteria are

modulated by IpgD to deplete PI(4,5)P2 and form PI(5)P (highlighted in green).

This change of lipid content leads to the recruitment of the Rab GTPases

Rab5 and Rab11. Vesicles around the Shigella-containing vacuole make

contact with the bacterial compartment. During these contacts, the vacuole

ruptures through a mechanism that requires further characterization.

Rab11 knockdown inhibits bothChlamydia and Listeria infection
(Derré et al., 2007). Later on, it was shown that both Rab6
and Rab11 knockdown prevent Golgi fragmentation induced
by Chlamydia, thereby causing a defect in bacterial growth
by impairing lipid transport to the inclusion (Rejman Lipinski
et al., 2009). The preliminary results concerning Listeria require
further investigations in a more physiological model, but it is
tempting to speculate that the findings on Rab11 involvement
in Shigella vacuolar rupture may be extended to other cytosolic
pathogens.

A LINK BETWEEN RAB11 AND PI
SUBVERSION

Several pathogens hijack Rab11 cellular function, however
we only start to understand the underlying mechanism for
controlling Rab11 recruitment to the bacteria-containing vacuole
(Guichard et al., 2014). Nevertheless, a widespread strategy used
by intravacuolar pathogens to diverge from the degradative
pathway and establish their replicative niche is the subversion
of phosphoinositides (Weber et al., 2009). For instance, a
key feature of Legionella-containing vacuole maturation is the
accumulation of PI(4)P, most likely involving bacterial and host
cellular phosphatases and kinases. In turn, PI(4)P anchors the

effector DrrA (also called SidM), a Rab1-GEF required for Rab1
recruitment to the LCV (Machner and Isberg, 2006; Brombacher
et al., 2009; Weber et al., 2013). Mycobacterium depletes PI(3)P
by inhibiting the host PI3K hVPS34 and by the bacterial PI(3)P
phosphatase, SapM thereby preventing further phagolysosomal
maturation (Fratti et al., 2003; Vergne et al., 2005). In contrast,
Salmonella generates PI(3)P on the SCV via the T3SS effector
SopB to subsequently promote fusion with LEs. Although SopB
may directly hydrolyse PI(3,4,5)P3 at the plasma membrane or
PI(3,5) P2 on endosomes, it seems that SopB indirectly mediates
PI(3)P accumulation on the SCV presumably by depleting
PI(4,5)P2 to promote the recruitment of Rab5 and its effector
hVPS34 (Marcus et al., 2001; Terebiznik et al., 2002; Hernandez
et al., 2004; Mallo et al., 2008). Recently, Bakowski et al. showed
that SopB depletion of PI(4,5)P2 increases the surface charge of
the SCV, thereby preventing the accumulation of Rab8B, 13, 23,
and 35 commonly targeted to the plasma membrane through
their polycationic prenyl motif, and this potentially plays a role
in the avoidance of the SCV-lysosome fusion (Bakowski et al.,
2010). Collectively, bacterial pathogens thoroughly subvert PIs,
which alter membrane identity subsequently affecting trafficking.
Likewise, Shigella also modulates PIs through its effector IpgD,
which acts as a phosphatidylinositol-phosphatase that specifically
dephosphorylates PI(4,5)P2 into PI(5)P (Niebuhr et al., 2002).
Results by us showed that the IpgD inositol phosphatase
activity is absolutely required for the recruitment of Rab11-
positive vesicles to the invasion site of Shigella. Using large
volume correlative light and electron microscopy (CLEM), the
ultrastructural details of the Shigella WT and ipgD invasion site
were further characterized within epithelial cells and revealed
that indeed Rab11-positive vesicles accumulate at the vicinity
of the Shigella WT-containing vacuole but not around the
ipgD-containing vacuole. More broadly barely any vesicles were
observed at the ipgD invasion site, indicating that IpgD is
not only required for Rab11 recruitment but also for the
abundant presence of miscellaneous vesicles at the bacterial
invasion site. The origin of these vesicles requires further
investigations but based on their heterogeneous morphology we
suggest that they could undergo successive fusion and fission
events.

At the Shigella invasion site (characterized by membrane
and actin rearrangements) it was found that: (i) PI(4,5)P2 was
dramatically depleted in an IpgD-dependent manner, (ii) its
precursor PI(4)P was enriched in an IpgD-independent manner
presumably together with membrane ruffling rather than true
enrichment, (iii) PI(5)P was enriched in an IpgD-dependent
manner, and (iv) PI(3)P was not enriched in both cases (Mellouk
et al., 2014). Secondly, at the Shigella-containing vacuole neither
PI(4,5)P2, PI(5)P, PI(4)P, nor PI(3)P were found enriched,
independently of IpgD. However, PI(3)P dynamically localized to
a number of large vesicles present at the invasion site of Shigella
WT but not ipgD, resembling PI(3)P-positive macropinosomes.
These recent results corroborate the study from Niebuhr et al.
where biochemical analysis revealed a global drop of PI(4,5)P2
cellular levels with a concomitant increase in PI(5)P controlled
by the IpgD effector (Niebuhr et al., 2002). Furthermore, in
our own studies we observed a certain enrichment of PI(5)P
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in the surrounding of the Shigella-containing vacuole but not
particularly on its surface similarly to the previously reported
data (Pendaries et al., 2006).

Yet in the case of Salmonella, SopB (homolog of IpgD)
not only depletes PI(4,5)P2 at the plasma membrane but is
also required for PI(4,5)P2 clearance at the surface of the
SCV, thereby pinpointing a divergence between Salmonella
and Shigella remodeling of PIs (Terebiznik et al., 2002; Mallo
et al., 2008). In addition, despite the presence of large PI(3)P-
positive vesicles at the invasion site, the Shigella-containing
vacuole remains PI(3)P-negative. This corroborates the findings
on Rab5 which is also transiently recruited at the invasion
site without decorating the Shigella-containing vacuole (Mellouk
et al., 2014). By contrast, as mentioned above Salmonella
promotes the recruitment of Rab5 and the accumulation of
PI(3)P on the SCV via SopB. Collectively, this suggested that
Shigella diverges very rapidly from the classical endosomal (and
intravacuolar pathogen) maturation by altering the PIP signature
on the Shigella-containing vacuole and its surrounding trafficking
notably by recruiting Rab11 and avoiding Rab5, ultimately
leading to its vacuolar escape. Further studies are required to
investigate the molecular mechanism of Rab11 recruitment via
IpgD-mediated modulation and to decipher how Shigella avoids
PI(3)P/Rab5, thereby shedding light on the intricate interplay
between Rabs and PIPs.

ACTIN SURROUNDING THE
SHIGELLA-CONTAINING VACUOLE AND
ITS RUPTURE

In agreement with the fact that Rab11 promotes efficient
vacuolar rupture and that ipgD completely abolishes the Rab11
recruitment to the invasion site, an ipgD mutant delays vacuolar
rupture significantly. The ipgD mutant-containing vacuoles are
predominantly surrounded by an F-actin meshwork we would
like to coin an “actin cage,” which appears to confine the bacteria
for extended periods of time. In contrast, ShigellaWT-containing
vacuoles are rarely observed confined within actin cages,
suggesting that Shigella either prevents or rapidly disassembles
the actin cage in an IpgD-dependent manner prior to vacuolar
escape (Figure 1, right side). Previous observations of actin cages
around Shigella WT-containing vacuoles have been reported,
however the underlying mechanism controlling their dynamics
remain uncovered (Ehsani et al., 2012). Given that PI(4,5)P2
dynamically controls numerous actin-binding proteins, the actin
cage dynamics may be directly coordinated by IpgD modulation
of the PI(4,5)P2 level at the invasion site. In particular, IpgD-
mediated PI(4,5)P2 depletion is believed to be important for
disrupting the linkage between the plasma membrane and
cortical actin, thereby promoting membrane protrusions. In
a similar manner, IpgD could prevent F-actin linkage to the
vacuolar membrane, potentially by acting on cortical actin
regulators such as the ERM-family proteins (Niebuhr et al.,
2002; Fehon et al., 2010; Saarikangas et al., 2010). Remarkably,
chemical depolymerization of the actin cage structure around the
ipgD mutant-containing vacuole induces rapid rupture, further

supporting that the actin cage confinement impairs efficient
vacuolar escape (Mellouk et al., 2014). Noteworthy, Salmonella
and Chlamydia promote the assembly of an F-actin meshwork
resembling the actin cage structures observed in our study, which
are crucial to maintain their vacuole integrity (Méresse et al.,
2001; Kumar and Valdivia, 2008). Similarly, the actin cage could
stabilize the ipgDmutant-containing vacuole by direct structural
support.

VACUOLAR RUPTURE BY OTHER
BACTERIAL PATHOGENS

Interestingly, intravacuolar pathogens have evolved intricate
strategies to maintain vacuolar integrity concomitantly with
vacuolar expansion to accommodate bacterial replication.
Similarly to the process of vacuolar rupture induced by
cytosolic pathogens, the process of vacuolar integrity
maintenance is not well-understood. However, it appears
that the recruitment of potentially “destabilizing” host factors
needs to be counterbalance to avoid vacuolar rupture (Kumar
and Valdivia, 2009; Creasey and Isberg, 2014). For instance,
numerous Salmonella effectors regulate the interaction of
the SCV with cytoskeletal motors. In particular, PipB2 and
SopD2 recruit kinesin-1 whereas SifA binds to the host SKIP
to promote Sif formation. Importantly, in the absence of
SifA, kinesin-1 accumulates on the SCV leading to vacuolar
rupture (Beuzón et al., 2000; Boucrot et al., 2005; Dumont
et al., 2010; Schroeder et al., 2010). In contrast, the Salmonella
double mutant sifA/sseJ maintains vacuolar integrity, indicating
that SseJ rather promotes vacuolar destabilization. SseJ is
a phospholipase that promotes the depletion of cholesterol
from the SCV, thus increasing membrane fluidity that may
facilitate tubulation from the SCV but may also increase
sensitivity to cytoskeleton motor-dependent forces leading
to a loss of vacuolar integrity (Ohlson et al., 2005; Lossi
et al., 2008). Likewise, Legionella secretes PlaA (homolog
to SseJ), which also lead to vacuolar rupture in the absence
of another bacterial effector, SdhA (Creasey and Isberg,
2012).

Vacuolar rupture induced by Listeria monocytogenes or
Rickettsia was commonly believed to be directly and solely
driven by bacterial effectors, notably through the pore-
forming toxin listeriolysin O (LLO) and phospholipases (such
as Listeria phospholipases C and Rickettsia phospholipases
A and D) (Whitworth et al., 2005; Pizarro-Cerdá et al.,
2012; Rahman et al., 2013). This has been changing due to
an increasing number of reports revealing the implication
of host factors in the process of vacuolar rupture for a
number of bacterial pathogens. For instance, LLO-mediated
Listeria vacuolar escape requires the host factors gamma-
interferon-inducible lysosomal thiol reductase (GILT) and
cystic fibrosis transmembrane conductance regulator (CFTR)
to potentiate its activity (Singh et al., 2008; Radtke et al.,
2011).

In contrast, the molecular mechanisms underlying Rickettsia
and Francisella access to the host cytosol are poorly understood.
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Rickettsia species produce hemolysin C and phospholipases
that seem to play a role in vacuolar escape (Renesto et al.,
2003; Whitworth et al., 2005; Rahman et al., 2013). On the
other hand, the Francisella-containing vacuole (FCV) subverts
the endolysosomal route and harbors certain late endosomal
markers but is devoid of lysosomal enzymes (Clemens et al.,
2009). Acidification of the FCV is important for vacuolar
escape and requires the host V-ATPase. Additionally, the host
ubiquitin ligase CDC27 seems important to reach the cytosol,
although the mechanism remains to be explored (Chong et al.,
2008; Akimana et al., 2010). Furthermore, a subset of bacterial
factors are involved in phagosomal escape, presumably by
injecting some virulence factors such as IglI through a T6SS
(Barker et al., 2009). Recently, Ramond et al. revealed that
the Francisella glutamate transporter GadC plays a crucial role
in phagosomal escape by neutralizing reactive oxygen species
(ROS) production within the phagosome linking oxidative stress
defense and phagosomal escape for this pathogen (Ramond et al.,
2014).

Noteworthy, at late infection (12–18 h after its uptake
into macrophages), Legionella is also released into the host
cytosol prior to host cell lysis for bacterial dissemination
(Molmeret et al., 2004). Recent studies have shown that
Mycobacterium species can also escape from their phagosomal
vacuole. In dendritic cells, a large portion of M. tuberculosis
and M. leprae were found to reach the host cytosol in a
T7SS-dependent manner after 2 days of infection (van der
Wel et al., 2007). Furthermore, phagosomal escape of M.
tuberculosis in macrophages was confirmed through the T7SS
and especially requires the T7SS effector ESAT-6 (Simeone
et al., 2012, 2015). Importantly, ESAT-6 has been directly
implicated in vacuolar escape of the fish pathogen M. marinum
by forming small pores into the vacuolar membrane (Smith et al.,
2008).

CONCLUSION

Collectively, it emerges that Shigella and other intracellular
bacteria have evolved sophisticated ways to destabilize their
vacuole to reach the host cytoplasm. The classic view of a
process driven entirely by bacterial effectors or toxins has been
amended by more recent findings putting the subversion of host
processes in the spotlight. Here, the modulation of PIPs through
dedicated effectors, such as SopB in the case of Salmonella
and IpgD for Shigella that correlates with altered Rab GTPase
recruitment to the bacteria-containing vacuoles drives the fate
of this compartment. The precise molecular mechanisms that
underlie these events remain to be studied. It is likely that
deciphering this will provide fundamental information on how
cells regulate endomembrane integrity.
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