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Pathogenic bacteria manipulate their hosts by delivering a number of virulence

proteins -called effectors- directly into the plant or animal cells. Recent findings have

shown that such effectors can suffer covalent modifications inside the eukaryotic cells.

Here, we summarize the recent reports where effector modifications by the eukaryotic

machinery have been described. We restrict our focus on proteins secreted by the type

III or type IV systems, excluding other bacterial toxins. We describe the known examples

of effectors whose enzymatic activity is triggered by interaction with plant and animal

cell factors, including GTPases, E2-Ubiquitin conjugates, cyclophilin and thioredoxins.

We focus on the structural interactions with these factors and their influence on effector

function. We also review the described examples of host-mediated post-translational

effector modifications which are required for proper subcellular location and function.

These host-specific covalent modifications include phosphorylation, ubiquitination,

SUMOylation, and lipidations such as prenylation, fatty acylation and phospholipid

binding.

Keywords: type III secretion system, type IV secretion system, bacterial effector, bacterial virulence, eukaryotic

host, animal pathogens, plant pathogens

ACTIVATION OF BACTERIAL EFFECTORS THROUGH
INTERACTION WITH HOST FACTORS

Many effectors from bacterial pathogens of both animals and plants contain catalytic domains
on their primary sequences with predicted enzymatic activities, such as phospholipase, protease,
protein kinase, transferase, etc. and some of them have been found to be highly active enzymes
that can outcompete their eukaryotic counterparts (Levin et al., 2010). However, not all effectors
exhibit the enzyme activity when expressed in bacterial systems, but rather require interaction
with additional eukaryotic factors for activation. Recent findings provide remarkable examples of
spatiotemporal regulation of bacterial effectors by coupling the catalytic activity to the arrival into
a host cell cytoplasm (Table 1; Anderson et al., 2015). Here, we will describe the available examples
of the structure-based activation of effectors from animal and plant bacterial pathogens through
interaction with host cell factors.

Allosteric Activation of Legionella Effector VipD by Host GTPase
Rab5
Upon uptake by macrophages, Legionella pneumophila, the causative agent of legionnaires’ disease
(Horwitz and Silverstein, 1980), injects more than 250 effector proteins through the Dot/Icm type
IV secretion system (T4SS) into the host cell. These effectors allow escape from the phagosomal
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TABLE 1 | Bacterial effectors modified by host factors ordered by species.

Organism Effector Modification Host eukaryotic

factor

Effector activity Process/Target(s) References

Bartonella henselae BepD, BepE,
BepF

Phosphorylation Src family Tyr
kinases

Unknown Actin
cytoskeleton(?)/MAPK
signaling(?)

Schulein et al., 2005;
Selbach et al., 2009

Chlamydia
trachomatis

AmpA SUMOylation SUMO1 (?),
SUMO2/3

Unknown Unknown Beyer et al., 2015

Chlamydia
trachomatis

AnkA Phosphorylation Tyr kinases Src,
Abl-1

Unknown SHP-1/Histone
deacetylase
1/Chromatin
remodeling

Jw et al., 2007; Lin et al.,
2007; Rennoll-Bankert
et al., 2015

Chlamydia
trachomatis

Tarp Phosphorylation Src family kinases,
Abl, Syk

Putative paxillin-like
activity

Actin
cytoskeleton/MAPK
signaling

Clifton et al., 2004;
Mehlitz et al., 2010;
Thwaites et al., 2014

Chlamydia
trachomatis

TepP Phosphorylation Unknown kinases Unknown Crk signaling Chen et al., 2014

Entero-pathogenic
Escherichia coli

Tir Phosphorylation PKA, Tyr kinases
Src, Fyn, Abl

Unknown Actin cytoskeleton Phillips et al., 2004;
Brandt et al., 2009;
Selbach et al., 2009

Helicobacter pylori CagA Phosphorylation Tyr kinase Src, Abl Unknown Actin
cytoskeleton/MAPK
signaling

Segal et al., 1999;
Backert and Selbach,
2005; Selbach et al.,
2009; Backert et al.,
2010b

Legionella
pneumophila

AnkB Ubiquitination/
Prenylation -
farnesylation

Unknown enzymes,
Trim21 (?)/Ras, Rab,
Rho family(?)

F-box protein Trim21, SCF1
complex

Price et al., 2010a;
Bruckert and Abu Kwaik,
2015

Legionella
pneumophila

GobX, LpdA Palmitoylation Unknown E3 ubiquitin ligase Unknown Lin et al., 2015;
Schroeder et al., 2015

Legionella
pneumophila

PelA, PelH, Multiple
prenylation

Unknown farnesyl
and geranylgeranyl-
tranferases

Remodeling of
Legionella-
containing
vacuole

Unknown Ivanov et al., 2010

Legionella
pneumophila

PelE, PelF,
PelJ

Prenylation Ras, Rab, Rho
family(?)

Evasion of lysosomal
fusion

Unknown Price et al., 2010b

Legionella
pneumophila

SetA, SidC,
SidM, LidA

Phospholipid
binding

Unknown Glycosyltransferase,
Ub ligase,
adenylyl-transferase

Vesicular
trafficking, Rab
GTPases/
Phosphoinositide

Haneburger and Hilbi,
2013; Ivanov and Roy,
2013

Legionella
pneumophila

VipD Activation Rab5 Phospholipase A1 Phospholipids
(PI3P)

Gaspar and Machner,
2014

Pseudomonas
aeruginosa

ExoS Activation 14-3-3 GAP/ADP-ribosyl-
transferase

Rho/Rac/Cdc42 Fu et al., 1993

Pseudomonas
aeruginosa

ExoT Activation 14-3-3 GAP/ADP-ribosyl-
transferase

Rho/Rac/Cdc42 Fu et al., 1993

Pseudomonas
aeruginosa

ExoU Activation/
Phospholipid
binding

Ubiquitin Phospholipase A2 Phospholipids Anderson et al., 2011;
Gendrin et al., 2012

Pseudomonas
syringae

AvrB Activation/
Phosphorylation/
Myristoylation

Unknown kinases Unknown RIN4 Nimchuk et al., 2000;
Desveaux et al., 2007

Pseudomonas
syringae

AvrPphB,
ORF4

Myristoylation/
Palmitoylation

Unknown Cysteine protease Unknown Dowen et al., 2009

Pseudomonas
syringae

AvrPto Phosphorylation/
Myristoylation/
Palmitoylation

Unknown kinases Unknown FLS2, EFR Shan et al., 2000; Thara
et al., 2004; Anderson
et al., 2006

Pseudomonas
syringae

AvrPtoB Phosphorylation/
Ubiquitination

Pto kinase/
unknown kinases/
UbcH5a, UbcH5c,
UbcH6

E3 ubiquitin ligase Fen, CERK1,
FLS2, BAK1,
Ubiquitin

Abramovitch et al., 2006;
Janjusevic et al., 2006;
Xiao et al., 2007;
Ntoukakis et al., 2009;
Mathieu et al., 2014

(Continued)
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TABLE 1 | Continued

Organism Effector Modification Host eukaryotic

factor

Effector activity Process/Target(s) References

Pseudomonas
syringae

AvrRpm1 Myristoylation/
Palmitoylation

Unknown Suppression of plant
defense responses

Unknown Nimchuk et al., 2000

Pseudomonas
syringae

AvrRpt2 Activation Cyclophilin Cystein protease RIN4 Axtell et al., 2003;
Coaker et al., 2005

Pseudomonas
syringae

HopF2,
HopZ1a,
HopZ1b,
HopZ1c,
HopZ2,
HopZ4

Myristoylation IP6 ADP-ribosyl-
transferase/
acetyltransferase+
unknown functions

RIN4/JAZ
proteins, tubulin...

He et al., 2006;
Robert-Seilaniantz et al.,
2006; Lewis et al., 2008;
Lee et al., 2012; Üstün
et al., 2014

Pseudomonas
syringae

HopQ1 Phosphorylation Unknown kinases Unknown 14-3-3 proteins Li et al., 2013

Ralstonia
solanacearum

RipAY Activation Thio-redoxin γ-glutamyl
cyclotransferase

Glutathione,
unknown
γ-glutamyl
compounds

Fujiwara et al., 2016

Rhizobium sp. NopL, NopP Phosphorylation Unknown/MAP
kinases/PKA

Unknown MAPK pathways
(?)

Bartsev et al., 2003;
Skorpil et al., 2005;
Zhang et al., 2011

Salmonella
typhimurium

SifA Prenylation–
geranylgeranyl
addition/
S-acylation

Ras, Rab, Rho
family/geranylgeranyl
transferase I

Putative Rho
GTPase

Rho1p Reinicke et al., 2005

Salmonella
typhimurium

SopA Ubiquitination HsRMA, UbcH5a,
UbcH5c, UbcH7

E3 ubiquitin ligase Unknown Zhang et al., 2005, 2006

Salmonella
typhimurium

SopB/SigD Ubiquitination TRAF6, UbcH5c Phosphoinositide
phosphatase

Actin/
Phosphoinositide/
Cdc42

Marcus et al., 2002;
Rogers et al., 2008;
Knodler et al., 2009;
Patel et al., 2009; Ruan
et al., 2014

Salmonella
typhimurium

SopE, SptP Ubiquitination Unknown enzymes Guanine nucleotide
exchange factor,
GTPase activating
protein

Rac1, Cdc42 Kubori and Galan, 2003

Salmonella
typhimurium

SseJ Activation RhoA Glycero-
phospholipid-
cholesterol
acetyltransferase
(GCAT)

Cholesterol Christen et al., 2009

Salmonella
typhimurium

SspH2, SseI Palmitoylation Unknown palmitoyl-
transferases

E3 ubiquitin ligase Nod1, IQGAP1 Hicks et al., 2011; Ivanov
and Roy, 2013

Shigella spp. OspG Activation/
Ubiquitination

E2∼ubiquitin Ser/Thr kinase NFκB signaling
pathway

Zhou et al., 2013;
Pruneda et al., 2014

Sinorhizobium fredii NopT Myristoylation/
Palmitoylation

Unknown YopT-like cysteine
protease

Unknown Dowen et al., 2009

Xanthomonas
campestris pv.
campestris

XopE1,
XopE2, XopJ,
AvrXccC

Myristoylation Unknown Ser/Thr
acetyltransferase,
cysteine protease

RPT6, unknown Thieme et al., 2007;
Wang et al., 2007; Üstün
et al., 2013; Üstün and
Börnke, 2015

Xanthomonas
campestris pv.
vesicatoria

AvrBsT Phosphorylation PIK1 Putative YopJ-like
Ser/Thr
acetyltransferase

SGT1 (cell division)
signaling

Kim et al., 2014

Yersinia enterocolitica YopE Ubiquitination Unknown enzymes GTPase activating
protein

Actin
cytoskeleton/Rac1,
RhoA, Cdc42

Ruckdeschel et al., 2006;
Hentschke et al., 2007

Yersinia spp. YopJ Activation IP6 Acetyl- transferase MEK Mittal et al., 2010

Yersinia spp. YpkA/YopO Activation G-actin Ser/Thr kinase Actin-regulating
proteins

Juris et al., 2000
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maturation and establishment of a Legionella-containing vacuole
(LCV) that supports bacterial proliferation (Ensminger and
Isberg, 2009). The effector VipD can remove the endosomal
specific phospholipid, phosphaptidyinositol-3 phosphate, PI(3)P
by its robust phospholipase A1 (PLA1) activity, which is
stimulated by the host GTPase Rab5, a key regulator of
endosomes (Gaspar and Machner, 2014). Depletion of PI(3)P by
VipD causes membrane disassociation of the endosomal fusion
proteins including the tethering protein early endosomal antigen
(EEA)1, resulting in inhibition of phagosomal maturation and
allowing endosomal avoidance by LCVs. The N-terminal half of
VipD possesses high homology to patatin, a lipid acyl hydrolase
present in the potato tuber, whereas the C-terminal half of VipD
is required for binding to the Rab5 to trigger PLA1 activity
within the N-terminal domain (Gaspar and Machner, 2014). The
crystal structure of VipD confirmed the predicted bimodular
organization and in addition, revealed a surface loop called
“lid,” that obstructs a PLA1 active site (Figure 1A, Closed Lid),
explaining why recombinant VipD alone exhibits little or no
PLA1 activity in vitro (Ku et al., 2012). The crystal structure
of VipD in complex with constitutively active Rab5 provides
evidence for a heterotropic allosteric activation mechanism in
which locally induced structural changes through Rab5-binding
are transmitted from the C-terminal domain of VipD to the N-
terminal PLA1 domain, causing the reposition of the lid and
exposure of the catalytic pocket (Figure 1A, Open Lid; Lucas
et al., 2014).

E2-Ub Conjugates Stabilize an Active
Conformation of Shigella Effector OspG
Shigella spp. are human pathogens that cause shigellosis and
utilize a type III secretion system (T3SS) to deliver over
20 effector proteins to hijack cellular processes of the host
and promote bacterial invasion, survival, and proliferation
(Buchrieser et al., 2000). The Shigella effector OspG represents
a minimal kinase domain that retains key catalytic elements,
but lacks additional structural features typically found in
eukaryotic kinases (Kim et al., 2005). Using a yeast two-
hybrid analysis and pull-down experiments, Kim et al. (2005)
identified that OspG binds to the ubiquitin (Ub)-conjugating
enzymes (E2s) covalently linked with Ub (E2∼Ub) and exhibits
weak kinase activity in vitro (Kim et al., 2005). The crystal
structure of OspG in complex with E2∼Ub conjugate uncovered
how E2∼Ub conjugate-binding stimulates the kinase activity
of OspG (Grishin et al., 2014; Pruneda et al., 2014). While
OspG alone appears to be highly dynamic and weakly active,
complex formation stabilizes a highly active conformation via
simultaneous interaction with both subunits of the E2∼Ub
conjugate (Figure 1B). In vitro kinase assay revealed that OspG
alone exhibits very weak kinase activity, while OspG in complex
with E2∼Ub conjugate exhibits substantially greater activity.
Consistent with a model in which the OspG kinase domain
is stabilized by binding to an intact E2∼Ub conjugate, the
covalent linkage between E2 enzyme and Ub is required for
maximal activation of the kinase in vitro. It was recently
showen that OspG also binds ubiquitin and polyubiqutin

chains and this binding stimulates its kinase activity (see
below).

Eukaryotic Cyclophilin-Dependent
Conformational Change Activates
P. syringae Effector AvrRpt2
The plant bacterial pathogen, Pseudomonas syringae injects
between 20 and 30 effector proteins into host plant cells
via the T3SS (Chang et al., 2005). Delivery of the effector
AvrRpt2 to Arabidopsis thaliana plants expressing the plant
resistance protein RPS2 specifically induces a hypersensitive
response leading to disease resistance (Day et al., 2005).
AvrRpt2 possesses cysteine protease activity and cleaves the
Arabidopsis protein RIN4, which negatively regulates resistance
interacting with RPS2 (Axtell et al., 2003). RPS2 is activated
following RIN4 cleavage, thereby indirectly detecting AvrRpt2’s
enzymatic activity (Axtell and Staskawicz, 2003; Mackey et al.,
2003). Interestingly, AvrRpt2 is delivered into plant cells as an
inactive protease that is activated in planta and autoprocessed
to trigger RIN4 degradation and subsequent activation of
RPS2. Coaker et al. (2005), demonstrated that plant cyclophilin
triggers both self-cleavage of AvrRpt2 and limited degradation
of RIN4 (Coaker et al., 2005). Cyclophilin possesses peptidyl-
prolyl cis/trans isomerase activity, which facilitates protein
folding catalyzing the trans to cis isomerization of peptide
bonds at proline residues (Kiefhaber et al., 1990). Enzymes
from Arabidopsis plant deficient in peptidyl-prolyl cis/trans
isomerization were unable to activate AvrRpt2 in vitro, indicating
that this activity is key for AvrRpt2 activation (Coaker
et al., 2006). Interestingly, AvrRpt2 possesses four consensus
cyclophilin-binding motifs, GPxLs which are located in close
proximity to ArRpt2’s catalytic triad and are required for
enzymatic activity both in vitro and in planta. Nuclear magnetic
resonance spectra and gel filtration chromatography suggest
that AvrRpt2 may only be structured and active when ROC1
or another cyclophilins is bound in order to maintain one or
more proline residues in the appropriate isomerization state
(Figure 1C; Coaker et al., 2006), which is also supported by
analysis of protease activity using synthetic protease substrate
(Aumüller et al., 2010).

Activation of R. solanacearum Effector
RipAY by Host Thioredoxins
R. solanacearum is a widely distributed soil borne phytopathogen
that possesses an exceptionally large (60–75) T3SS effector
repertoire, for which only a few members have been assigned a
molecular function (Coll and Valls, 2013). RipAY was identified
as one of the few Ralstonia effectors causing growth inhibition
in yeast (Fujiwara et al., 2016). RipAY contains a ChaC
domain, which is conserved in all phyla and recently shown to
encode γ-glutamyl cyclotransferase (GGCT) activity specifically
to degrade glutathione (Kumar et al., 2012, 2015). RipAY has
N- and C-terminal extension sequences outside of its ChaC
domain, so that is much larger than other ChaC proteins
(416 amino acids vs ∼200 amino). In spite of the limited
identity of its ChaC domain to the consensus sequence, RipAY
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FIGURE 1 | Activation of bacterial effector proteins by host eukaryotic factors. (A) Activation of Legionella pneumophila effector VipD by host small GTPase
Rab5. Rab5-binding induces conformational change to open the lid, which results in the activation of its phospholipase A1 activity. (B) Activation of Shigella spp.
effector OspG by host E2-ubiquitin (Ub) conjugate. E2∼Ub binding stabilizes an active site cleft of the kinase, which stimulates enzymatic activity. (C) Activation of
Pseudomonas syringae effector AvrRpt2 by host cyclophilin Roc1. Roc1 binds AvrRpt2 at the four potential cyclophilin-binding sites (GPxL) and properly folds the
protein by cis/trans peptidyl-prolyl isomerization, which stimulates the protease activity. (D) Activation of Ralstonia solanacearum effector RipAY by host eukaryotic
thioredoxins. Binding of eukaryotic thioredoxins stimulates the γ-glutamyl cyclotransferase activity of ChaC domain in RipAY by unknown mechanisms. GST,
glutathione; 5OP, 5-oxoproline; Cys-Gly, cysteinylglycine.

was found to exhibit a robust GGCT activity in yeast cells.
In addition, intracellular glutathione levels were significantly
decreased following ripAY expression in yeast or inoculation
of R. solanacearum wild-type, but not a RipAY-deficient strain,

into plant leaves. Recombinant RipAY protein purified from a
bacterial expression system showed undetectable GGCT activity,
but addition of eukaryotic thioredoxins (Trxs) stimulated this
activity in vitro (Figure 1D; Fujiwara et al., 2016). Yeast two
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hybrid analysis revealed that RipAY bound to plant cytoplasmic
thioredoxins in an isoform-specific manner. RipAY preferentially
bond to the plant cytoplasmic thioredoxin Trx-h5, whose
expression is specifically induced during pathogen infection and
the GGCT activity of RipAY was most efficiently stimulated by
Trx-h5. Unlike the requirement of cyclophilin enzymatic activity
for AvrRpt2 activation, the Trx-h5 oxide reductase activity is
not indispensable, although a Trx-h5 redox inactive mutant
showed decreased binding and activation of RipAY. The crystal
structure of RipAY in complex with thioredoxin will uncover the
mechanisms underlying recognition and activation of RipAY at
the molecular level.

POST-TRANSLATIONAL MODIFICATION
OF PATHOGEN EFFECTORS INSIDE THE
HOST CELLS

Besides interacting with the host components, bacterial
effectors can suffer a number of different post-translational
modifications in the eukaryotic environment. These host-specific
covalent modifications include phosphorylation, ubiquitination,
SUMOylation and lipidation—mainly prenylation and fatty
acylation. The main function of these modifications seems to
be effector targeting to a precise subcellular compartment or
regulation of its biological activity

Serine and Threonine Phosphorylation of
Plant-Associated Type III Effectors
Specific kinases attach negatively charged phosphate groups
to the phosphorylatable aminoacid residues (histidine, serine,
threonine, and tyrosine) of their substrates, which regulates
their function and changes their biochemical properties (Backert
and Selbach, 2005; Korkuc and Walther, 2016). Such post-
translational modifications by the host are essential for some
plant-associated virulence proteins to manipulate host defense
signaling. It is the case of Pseudomonas syringae type III effectors
AvrPto and AvrPtoB, known to elicit plant resistance in the
form of a hypersensitive cell death (Coll et al., 2011) after
interaction with the tomato immunity-associated kinase Pto
(Kim et al., 2002). Phosphorylation on two serine residues of
AvrPto C-terminal domain was shown to contribute to both its
virulence and avirulence activity inside the host cell (Anderson
et al., 2006; Yeam et al., 2010). P. syringae strains carrying
mutations in AvrPto S149, a phosphorylation site confirmed
in vivo, and in S147 caused less severe disease symptoms in
susceptible tomato plants lacking Pto kinase (Anderson et al.,
2006). By contrast, these alterations still elicited cell death in
resistant tomato cultivars, as a result of unaffected Pto-mediated
recognition of AvrPto (Yeam et al., 2010). Still, phosphorylation
on S147 and S149 was required for AvrPto recognition by a
putative resistance protein in Nicotiana sylvestris and Nicotiana
tabacum (Yeam et al., 2010). The Pto-independent kinase activity
responsible for AvrPto phosphorylation was observed in various
plant species (Anderson et al., 2006), however it seems that
not all hosts use similar recognition mechanisms for the same
effector.

Similarly, AvrPtoB was shown to be phosphorylated on two
amino acid residues by host kinases (Xiao et al., 2007; Ntoukakis
et al., 2009). Whereas phosphorylation on serine-258 contributed
to AvrPtoB full activity (Xiao et al., 2007), phosphorylation on
threonine-450 by Pto kinase itself had controversial outcomes on
AvrPtoB-mediated recognition in resistant tomatoes. Ntoukakis
and coworkers demonstrated that Pto kinase phosphorylates
AvrPtoB on a threonine residue in its E3 ubiquitin ligase
C-terminal domain, leading to effector inactivation and its
inability to degrade the tomato kinase and suppress the immune
response (Ntoukakis et al., 2009). On the contrary, another
study described that Pto binding to the N-terminal domain
of AvrPtoB (which includes residue serine-258), and not T450
phosphorylation, allows this kinase to evade degradation and
activate immunity in response to the effector protein (Mathieu
et al., 2014).

Other effectors from phytobacteria are substrates for host
immunity kinases. Recent findings highlight phosphorylation as
a key event during the resistance response of the host plant
to the action of Xanthomonas campestris pv vesicatoria AvrBsT
effector (Kim et al., 2014). Phosphorylation of AvrBsT by PIK1
(Pathogen-Induced Protein Kinase1), dependent on the presence
of SGT1 (part of a protein complex with AvrBsT and PIK1),
was shown to play a role in effector recognition and cell death-
associated phenotype in N. benthamiana leaves (Kim et al.,
2014). In a likewise manner, P. syringae HopQ1 phosphorylation
on serine-51 residue strongly promoted bacterial virulence and
modulated effector interaction with multiple tomato 14-3-3
proteins (Li et al., 2013). This is in accordance to a recent study,
confirming a regulatory role of phosphorylation in compound
binding (Korkuc and Walther, 2016).

Finally, two effectors from the symbiotic Rhizobium strain
NGR234, NopL and NopP, are phosphorylated in vitro by
different plant kinases, including MAPKs (Bartsev et al., 2003,
2004; Skorpil et al., 2005). Further experiments confirmed
four phosphorylated serines of NopL and revealed this effector
interference with MAPK pathways in yeast and tobacco, but it is
yet unknown whether phosphorylation is involved in NopL and
NopP function (Zhang et al., 2011).

Tyrosine Phosphorylation of Effector
Proteins from Animal-Associated Bacteria
Phosphoproteomic studies have demonstrated that
phosphorylation of proteins on tyrosine residues occurs at
a minor ratio compared to serine and threonine phosphorylation
(Olsen et al., 2006). Nevertheless, tyrosine phosphorylation is
crucial for the regulation of processes like growth, division and
differentiation in all eukaryotes, and it has recently emerged
as a key circuit controlling many cellular functions in bacteria
(Hunter, 2009; Whitmore and Lamont, 2012). In the last
decades, many effector proteins from animal-associated bacteria
such as enteropathogenic Escherichia coli, Helicobacter pylori,
Chlamydia trachomatis, Bartonella henselae, and Anaplasma
phagocytophilum have been shown to target and perturb host
tyrosine (Tyr) phosphorylation mechanisms. H. pylori effector
CagA and Tir from E. coli possess Tyr phosphorylation sites
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within conserved Glu-Pro-Ile-Tyr-Ala or related sequence
motifs, described to be modified by host cytosolic kinases
involved in signal transduction, including Src, Abl, and Fyn
(Phillips et al., 2004; Tegtmeyer and Backert, 2011). Time-
dependent regulation of CagA tyrosine phosphorylation process
by host Src and Abl family kinases (Mueller et al., 2012) plays
a direct role in effector activation and triggering of host cell
morphological changes related to cytoskeletal rearrangements
and induction of cell elongation (Backert et al., 2010b; Sougleri
et al., 2016). Similarly, manipulation of actin signaling by E.
coli Tir requires phosphorylated tyrosine-454 and tyrosine-474
residues, suggesting these phosphorylation events are triggered
by infection with the bacteria and are crucial for the effector
activity inside host (Campellone and Leong, 2003; Bommarius
et al., 2007). Furthermore, E. coli and wild-type Tir specifically
activate host protein kinase A (PKA), which phosphorylates
Tir at serine-434 and serine-463, modifications that, in contrast
to CagA-induced phenotype, inhibit cell elongation (Brandt
et al., 2009; Backert et al., 2010a). Recent studies concluded
multiple phosphorylation sites of type III or type IV effectors
like CagA (H. pylori), Tir (EPEC E. coli), BepD-F (Bartonella
henselae), Tarp (Chlamydia trachomatis) and AnkA (Anaplasma
phagocytolium) allow these bacterial proteins to interfere with
host cellular signaling at different levels, by recruiting a rich
repertoire of interacting partners (Selbach et al., 2009; Hayashi
et al., 2013).

Chlamydia trachomatis Tarp is another effector shown
to undergo tyrosine phosphorylation, immediately after its
translocation inside the host cell (Clifton et al., 2004). In this case,
Tarp phosphorylation was required and led to an increase in the
number of effector interactions with host partners, such as the
human adaptor protein SHC1, involved in activation of growth
and MAPK signaling (Mehlitz et al., 2010). Recent findings
identified a novel Chlamydia type III effector, TepP, whose
interaction with Crk, another host adaptor protein, depends on
effector phosphorylation at tyrosine and serine residues (Chen
et al., 2014). Interestingly, tyrosine phosphorylation of TepP was
shown to occur later than Tarp phosphorylation, suggesting that
C. trachomatis together with a type III secretion chaperone Slc1
are able to regulate translocation of the effector repertoire to the
pathogen’s benefit (Chen et al., 2014).

Ubiquitin-Dependent Function of
Pseudomonas syringae, Salmonella,

Yersinia and Legionella Effector Proteins
Ubiquitination is a post-translational protein modification
involving the addition of the small (8.5 kDa) ubiquitin molecule
on lysine residues (rarely on cysteine and serine) in the substrate
N-terminus (Behrends and Harper, 2011). Attachment of a single
ubiquitin moiety is called monoubiquitination, and it can affect
the localization or the activity of the target protein (Ramanathan
and Ye, 2012). The ubiquitin (Ub) subunit is itself modified
on one or more of its seven lysine residues, leading to the
formation of a poly-Ub chain (polyubiquitination), which can
constitute a signal for target protein degradation or play a
role in modulating substrate function (Behrends and Harper,

2011). Because ubiquitination regulates and participates in many
cellular functions such as protein degradation, cell cycle, vesicle
trafficking or immune responses, some bacterial effectors have
evolved to exploit this system by binding to or modifying
host ubiquitin components, while other effectors are themselves
subjected to ubiquitination (Angot et al., 2007; Zhou and
Zhu, 2015). Yersinia YopE and Salmonella thyphimurium SopA,
SopB/SigD, SopE, and SptP type III effectors are all ubiquitinated
after their translocation inside the host cell (Ruckdeschel
et al., 2006; Narayanan and Edelmann, 2014). Time-dependent
ubiquitination of SopE and SptP leaded to their degradation
by the host ubiquitin-proteasome system (Kubori and Galan,
2003). Similarly, YopE belonging to Y. enterocolitica serotype O8,
but not its homologs from serogroups O3 and O9, was shown
to be polyubiquitinated at lysine-62 and lysine-72, suggesting
that some effectors have evolved to escape ubiquitination and
subsequent degradation by the host (Hentschke et al., 2007). This
is also the case of type III effector SopB, whose host-mediated
ubiquitination serves as a non-proteolytic signal and contributes
to effector function and intracellular localization (Thomas and
Holden, 2009; Narayanan and Edelmann, 2014). For example,
a SopB mutant that cannot be ubiquitinated demonstrated
that effector modification on any of its nine lysine residues
is required for redistribution from the plasma membrane to
the Salmonella-containing vacuole (SCV) and recruitment of
the small GTPase Rab5 (Patel et al., 2009). Importantly, SopB
forms -regardless of their ubiquitination status- are still present
at the plasma membrane and function to stimulate bacterial
internalization and actin remodeling. Effector delivery to SCV
by the host-ubiquitin machinery concentrated SopB activities,
such as alteration of phosphoinositide metabolism, at this site,
which allows Salmonella to escape degradation by the lysosomes
(Knodler et al., 2009; Patel et al., 2009). Regarding the host
enzyme(s) that modify SopB, it was recently described that
its ubiquitination is mediated by the E2 ubiquitin-conjugating
UbcH5c enzyme and the TRAF6 member of E3 ubiquitin ligases
(Ruan et al., 2014), enzymes regulating substrate specificity in the
ubiquitination process (Berndsen and Wolberger, 2014). SopA
is itself an ubiquitin E3 ligase, polyubiquitinated by the host
HsRMA1, with the same E3 ligase activity (Zhang et al., 2005,
2006). Although SopA ubiquitination by HsRMA1 finally leads
to effector “sacrifice” and its proteasomal degradation, it also
serves as a signal regulating Salmonella escape into the cytosol,
where it can rapidly multiply (Zhang et al., 2005). In a likewise
manner, ubiquitination of P. syringae AvrPtoB by host enzymes,
together with the effector intrinsic E3 ligase activity, play a role
in AvrPtoB interaction with ubiquitin itself and suppression
of plant immunity (Abramovitch et al., 2006; Janjusevic et al.,
2006).

Finally, Shigella spp. OspG and L. pneumophila AnkB are
also ubiquitinated. OspG binds ubiquitin and polyubiqutin
chains, which stimulates its kinase activity (Zhou et al., 2013)
and AnkB is polyubiquitinated through Lys11 (Bruckert and
Abu Kwaik, 2015). Lys11-linked polyubiquitinated AnkB is not
degraded by the proteasome, suggesting this post-translational
effector modification might lead to other cellular outcomes,
distinct from the established function of Lys11-linked chains
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as proteasomal targeting signals (Behrends and Harper, 2011;
Bruckert and Abu Kwaik, 2015). Additional data would be
needed to thoroughly understand the biological significance of
the host-mediated polyubiquitination of this Legionella effector
protein.

AmpA, a Bacterial SUMOylated Effector
Functionally distinct from the ubiquitin pathway, protein
SUMOylation involves target substrate modification of one or
more lysine residues by covalent attachment of a member of
the small ubiquitin-like modifier (SUMO) family of proteins
(Guo and Henley, 2014). By altering interactions of the
modified substrate, or changing its localization, stability and
activity, SUMO conjugation controls a broad network of cellular
processes, including nuclear processes, metabolic pathways,
endocytic trafficking of receptors and resistance to pathogens
(Wilson, 2012).

Many pathogenic bacteria were described to exploit and
negatively regulate host SUMOylation system (Wilson,
2012; Verma et al., 2015), however there are few cases
when pathogens utilize this essential pathway to “adorn”
their own effectors. Effector protein AmpA (Anaplasma
phagocytophilum) was shown to be poly-SUMOylated by
conjugation to SUMO2/3 and this modification promoted
bacterial survival inside the host (Beyer et al., 2015).
Although the molecular consequences of AmpA host-
mediated SUMOylation are yet unknown, Beyer and
coworkers insinuate this modification would offer the
possibility to manipulate a wide range of host activities
to a bacterium with a limited number of effector proteins
(Beyer et al., 2015).

Prenylation of the Effectors AnkB and SifA
S-prenylation covalently adds isoprene groups, usually farnesyl
(15-carbon) and geranylgeranyl (20-carbon), to specific cysteine
residues within 5 amino acids from a protein C-terminus
via thioether linkages. The CaaX (Cys—aliphatic—aliphatic—
X) motif is the most common prenylation site in proteins, a
reaction carried out by farnesyl transferase, Caax protease and
geranylgeranyl transferase I (Casey and Seabra, 1996). Prenyl
moieties can play an important role in increasing molecular
hydrophobicity, so that they serve as mediators of membrane
association or determine specific protein-protein interaction
(Ivanov and Roy, 2013). Unlike S-palmitoylation (see below),
S-prenylation is an irreversible process.

PelH and AnkB from Legionella pneumophila are known
examples of farnesylated bacterial effectors (Price et al., 2010a,b).
Specific inhibitors and mutant cell lines showed that host-
dependent farnesylation -but not geranylgeranylation- of AnkB
was shown to be indispensable for its anchoring to the cytosolic
face of the membrane surrounding the LCV. This modification
was also shown to be essential for biological function, as bacteria
bearing a mutation in the farnesylated cysteine showed a reduced
capacity to proliferate in mice lungs (Price et al., 2010a). The
same experiments performed with PelH demonstrated that its
farnesylation is essential for proper membrane location (Price
et al., 2010b).

Prenylation by geranylgeranyl addition has been indirectly
proven for the Salmonella typhimurium effector protein SifA.
SifA is required for maintenance of the membrane that
surrounds replicating bacteria in the so-called SCV. It was shown
that for SifA targeting and association to membranes a C-
terminal cysteine in a conserved CAAX and Rab geranylgeranyl
transferase prenylation motif was required (Reinicke et al.,
2005). This cysteine residue within the CAAX was shown to be
modified by isoprenoid addition through the action of protein
geranylgeranyl transferase I (Reinicke et al., 2005).

Prenylation may be a conserved mechanism for effector
modification in animal pathogens, as in silico analyses show
that most bacterial species contain effectors with the conserved
prenylation motif. An exhaustive in silico screen of microbial
genomes for C-terminal CXXX-motif-containing proteins
identified 56 proteins (Al-Quadan et al., 2011), 10 of them
corresponding to Legionella pneumophila type IV effectors
(Ivanov et al., 2010). Mutation of this motif in the Legionella
effectors or inhibition of isoprenoid biosynthesis in the host
cell confirmed lipidation of AnkB, and PelH, and showed
altered membrane localization of PelA, PelE, PelJ, and PelF.
Treatment with specific enzyme inhibitors showed that AnkB
and PelJ are farnesylated, whereas PelE and PelF are modified
by a geranylgeranyltransferase (Ivanov et al., 2010). Prenylated
eukaryotic proteins include Ras and members of the Rab and
Rho families. It will be interesting to check whether effectors
mimicking these eukaryotic activities (Popa et al., 2016) are also
prenylated.

Effector Fatty Acylation: Myristoylation in
Plant Cells and Palmitoylation in Animal
Cells
Acylation involves the covalent attachment of fatty acids at
certain amino acid residues. The saturated myristic (14-carbon)
acid and palmitic acid (16-carbon) are the most common
fatty acids covalently attached to proteins, providing different
biochemical characteristics to the protein. Myristoylation is a
common acylation through which a myristic acid is attached to
the α-amino group of an N-terminal glycine residue through an
amide linkage. This irreversible protein modification typically
occurs co-translationally (Martin et al., 2011). Addition to
a myristoyl group provides proteins sufficient hydrophobicity
and affinity for membranes, but it is insufficient to maintain
permanent association with them (Resh, 2006). For this
reason, myristoylation is often combined with S-acylation on
proximal cysteine residues (see below). S-palmitoylation is
another acylation in which a palmitic acid is attached to
the thiolate side chain of a cysteine residue via thioester
linkage. In contrast to N-myristoylation, S-acylation is a post-
translational and reversible modification and no consensus
sequence for protein palmitoylation has been identified so
far. Because of its long hydrophobic group, S-palmitoylation
can permanently anchor the protein to the membrane,
sometimes concentrated at lipid rafts and thioesterases can
release the protein by cleaving the linkage to the lipid (Resh,
2006).
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Myristoylation has been described in a number of effectors
from bacterial plant pathogens. The Pseudomonas syringae
effectors AvrRpm1 and AvrB were the first shown to require a
consensus Glycine2 fatty acid acylation site for full functionality
and to be myristoylated in the plant host cell (Nimchuk et al.,
2000). This seems a common strategy for P. syringae effectors,
as myristoylation sites in HopF2, AvrPphB, AvrPto, and four
of the five HopZ family effectors (HopZ1a, HopZ1b, HopZ1c,
and HopZ2) are also required for targeting these effectors to
the plant plasma membrane (He et al., 2006; Robert-Seilaniantz
et al., 2006; Lewis et al., 2008). The putative myristoylation site
was essential for HopZ2 and HopF2 virulence functions and for
HopZ1a and AvrPto recognition by the plant immune system.
In the case of AvrPphB, the eukaryotic N-myristoylation site
was only exposed after protein autoprocessing in the plant cell
and direct binding of the lipid was proven (Nimchuk et al.,
2000). In a recent report, HopZ4 was also shown to the plasma
membrane and this location was required for its activity as a
proteasome inhibitor (Üstün et al., 2014). The Xanthomonas
effectors XopE1, XopE2, XopJ, and AvrXccC are also anchored
to the plant plasma membrane via myristoylation, as point
mutations in their putative myristoylated G2 glycine residues
resulted in cytoplasmic localization (Thieme et al., 2007; Wang
et al., 2007). In the case of XopJ -a cysteine protease that
degrades its target RPT6 (Üstün and Börnke, 2015)- a G2A
exchange in the N-terminal myristoylation motif also abolished
its proteasome inhibitor activity inside host cells (Üstün et al.,
2013). Although these results suggest that acylation plays an
important role in effector function, direct myristoylation in
plant host cells has not been demonstrated so far for any
of them.

Contrary to mysristoylation, palmitoylation is more common
in effectors from animal bacterial pathogens. For instance, the
Salmonella effector proteins SspH2 and SseI are localized to
the plasma membrane of host cells through S-palmitoylation
of a conserved cysteine residue within their N-terminal
domains. In these cases, lipidation is mediated by specific
palmitoyltransferases from the host cell and is critical for effector
function (Hicks et al., 2011; Ivanov and Roy, 2013). Interestingly,
palmitoylated SspH2, and SseI are targeted to different domains
of the plasma membrane, suggesting that this modification is
not sufficient for proper localisation. Legionella effectors GobX
and LpdA were also shown to be post-translationally modified
by palmitoylation, which targets them to the Golgi or the
Rab4- and Rab14-containing endosomes, respectively (Lin et al.,
2015; Schroeder et al., 2015). AvrPto and AvrPphB from the
plant pathogen P. syringae is an exception to the described
specific acylation in animal vs plant cells, as they can be
palmitoylated. For AvrPto disruption of a putative myristoylation
motif abolished membrane association and its avirulence activity
in tomato and tobacco. Regarding AvrPphB was shown be
palmitoylated -as well as myristoylated- inside the plant cells (see
below).

Phospholipid Binding to Effectors in
Animal Cells
Phosphoinositideipids are phosphorylated derivatives of
phosphatidylinositol and control key cellular processes, such as

vesicular trafficking. Different phosphoinositide species target
different intracellular membranes, so that they can play an
essential role as anchor moieties to target proteins to precise
locations. L. pneumophila type IV effectors SetA, SidC, SidM,
and LidA have been shown to bind different phosphoinositides
to target the LCV (Haneburger and Hilbi, 2013). This lipid
association and the ensuing location is essential to carry out
their function promoting interaction of the LCV with the
host organelles (Ivanov and Roy, 2013). The type III-secreted
effector ExoU from Pseudomonas aeruginosa is also modified
by phosphoinositide binding. ExoU acts as a phospholipase
that is localized to the plasma membrane. Effector binding
to precise phosphatidylinositol species that are abundant at
the cytoplasmic side of the plasma membrane was shown
to be required for its location and activity as a necrotic
factor to promote bacterial multiplication (Gendrin et al.,
2012).

Multiple Lipidation of Effectors
Protein modification with palmitate can stably target to the
plasma membrane proteins previously modified by other
types of lipidation, such as myristoylation or farnesylation
(Resh, 2006). It has been proposed that multiple protein
lipidation would start with N-myristoylation, which would
target the protein to the endomembrane system, followed by
S-acylation—normally S-palmitoylation of nearby cysteines-,
which enhances membrane association of lipidated proteins
(Resh, 1999). This process also takes place for some effectors
once in their eukaryotic target cells. The first report of multiple
lipidation was Pseudomonas syringae effector AvrRpm1, in
which a G2A mutation in the myristoylation site eliminated
membrane localization, while a C3A exchange in the putative
palmitoylation site reduced membrane association (Nimchuk
et al., 2000). This is logical given the requirement for
myristoylation to occur before palmitoylation. In this same
work, palmitoylation consensus sequences were identified in
AvrRpm1, AvrB, AvrC, AvrPto, and AvrPphB. Some years later,
multiple lipidation by both myristoylation and palmitoylation
were demonstrated by heterologous expression in yeast for the
Pseudomonas syringae effectors AvrPphB and ORF4 and their
related effector NopT from Sinorhizobium fredii (Dowen et al.,
2009). As described for AvrPphB, these effectors are auto-
processed inside the plant cell, exposing the previously hidden
acylation motifs. Lipidation targeted the effectors to the plasma
membrane, which was required, at least for AvrPphB, to exert
its functions. Interestingly, myristoylation-deficient variants of
these effectors were also not palmitoylated, indicating that
the former modification is required for subsequent acylation
(Dowen et al., 2009). Although not proven biochemically,
conservation of the predicted dual acylation motif containing
G2 and a proximal cysteine suggests that at least 10 more
Pseudomonas and Xanthomonas effectors may be modified in
plant cells by myristoylation and S-acylation (Hicks and Galán,
2013).

The S. typhimurium effector protein SifA was shown to be
modified both by the animal host cell prenylation (see above) and
the S-acylation machineries (Reinicke et al., 2005). Interestingly,
mutation of the S-acylation motif in SifA did not affect bacterial
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survival in the host, whereas disruption of the prenylated residue
attenuated bacterial growth in the rat liver, suggesting the latter
modification plays a more prominent role in bacterial virulence
(Reinicke et al., 2005).

Finally, various forms of prenylation have also been
proposed to coexist in a single effector. For instance, location
of the L. pneumophila type IV effectors PelA and PelH is
dependent on prenylation but neither farnesyltransferase
nor geranylgeranyltransferase inhibitors perturbed their
localization, suggesting that both enzymes can modify them
(Ivanov et al., 2010).
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