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Pathogenic fungi have developed many strategies to evade the host immune system.

Multiple escape mechanisms appear to function together to inhibit attack by the various

stages of both the adaptive and the innate immune response. Thus, after entering the

host, such pathogens fight to overcome the immune system to allow their survival,

colonization and spread to different sites of infection. Consequently, the establishment of

a successful infectious process is closely related to the ability of the pathogen tomodulate

attack by the immune system.Most strategies employed to subvert or exploit the immune

system are shared among different species of fungi. In this review, we summarize the

main strategies employed for immune evasion by some of the major pathogenic fungi.

Keywords: pathogenic fungi, immune response, host-pathogen interaction, fungal immune evasion mechanisms,

fungal infection

INTRODUCTION

The increasing occurrence of fungal infectious diseases represents a major challenge for human
health worldwide. It is estimated that the total number of fungal species exceeds 1.5million
(Hawksworth, 2001), and among these species, more than 600 are reported to be capable of
infecting humans and animals, causing simple to fatal infections (Brown et al., 2012b). These
infections lead to a wide range of diseases that include allergies, superficial infections, and invasive
mycoses (Denning and Bromley, 2015), which are often associated with high rates of morbidity
and mortality (Post et al., 2007). The global burden of fungal diseases has increased in parallel
to the increased number of patients with human immunodeficiency virus, cancer, receiving
immunomodulatory therapy, and receiving transplants, as well as premature neonates and the
elderly (Vallabhaneni et al., 2015). Furthermore, the Global Action Fund for Fungal Infections
(GAFFI) estimated that ∼1.5–2.0 million people die of a fungal infection each year, surpassing
those killed by either malaria or tuberculosis (Denning and Bromley, 2015).

The host innate immune defense of immunocompetent patients is capable, in general, of
systematically eradicating opportunistic fungal pathogens. However, in immunocompromised
hosts, the fungus can more easily evade detection by host defense components and eventually
establish ensuing disease (Hage et al., 2002; Chai et al., 2009).

The outcome of a fungal infection often depends on the status of the host immune
system, which is the first line of defense against foreign pathogens. However, patients
suffering from a weakened immune system are more susceptible to the development
of a serious fungal infection (Romani, 2004; Becker et al., 2015), which can progress
to a very serious condition with the known ability of pathogenic fungi to rapidly
adapt and become resistant to antifungal agents (Vermeulen et al., 2013). These features
provide researchers with an important challenge to better understand how infection
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occurs and how we can prevent the development of a mycosis
that can rapidly lead to death. Host defense mechanisms against
fungi are numerous, and range from protective processes that
were developed early in the evolution of multicellular organisms
(“innate immunity”) to sophisticated adaptive mechanisms
(“adaptive immunity”), which are specifically induced during
infection and disease (Romani, 2011).

The surveillance and elimination of fungal pathogens depend
heavily on the sentinel behavior of phagocytic cells of the
innate immune system, especially macrophages, and neutrophils
(Erwig and Gow, 2016). Macrophages are essential for mediating
the first steps of an effective antifungal host defense, and
neutrophils are essential to eliminate the fungal invasion, as
evidenced by the observation that immunosuppression with
prolonged neutropenia is a major risk factor for invasive fungal
infections (Becker et al., 2015). Phagocytes can develop protective
mechanism against fungi, destroying them via oxidative and
non-oxidative mechanisms (Machado et al., 2004; Liu et al.,
2014).

Direct antifungal effectors can eliminate pathogens either
through phagocytic processes targeting fungi residing
intracellularly, or through the secretion of microbicidal
compounds targeting non-digestible fungal elements (Becker
et al., 2015). Phagocytic processes lead to the accumulation
of phagocytes at the site where fungal cells interact with the
host, leading to the engulfment of fungal cells, and degradation
of the same within maturing phagosomes (Erwig and Gow,
2016). The innate response can provide an instructive role for
cells of the adaptive immune system through the production
of pro-inflammatory mediators, including chemokines, and
cytokines, the induction of co-stimulatory activity by phagocytic
cells, and antigen uptake and presentation (Romani, 2011).

Consequently, to avoid these host defense mechanisms,
fungi have evolved sophisticated strategies to maximize their
probability of surviving in the host (Romani, 2011). According
to Underhill (2007), the types of immune evasion can be
divided in three categories: (1) Stealth—by which the fungus may
effectively hide themselves from detection by specific immune
cells or specific immune recognition molecules; (2) Control—
which occurs when the pathogen can specifically activate host
immune inhibitory mechanisms or actively guide immune
responses toward types that are not especially effective against
the microorganism; and (3) Attack—during which the pathogen
may produce molecules that specifically destroy or disable host
immune defenses.

Knowledge of how fungi evade the immune system can be
considered analogous to a gun to fight the harmful increase in
fungal infections because manipulation of the immune system
could be a candidate future strategy to prevent or treat fungal
infections in susceptible patients (Romani, 2011). Evasion of
the host immune system is a relevant issue, and thus the
objective of this review is to describe recent advances in our
understanding of the mechanisms employed by the fungi to
escape and efficiently infect the host by avoiding recognition by
pattern recognition receptors (PRRs), modulating inflammatory
signals, inhibiting complement activity, exerting anti-phagocytic
mechanisms, inhibiting intracellular trafficking, and acquiring

resistance to oxidative stress and antimicrobial mechanisms. This
discussion is divided into three topics according to Underhill
(2007) as described above (Figure 1).

STEALTH

Pathogen sensing occurs through PRRs localized in different
subcellular compartments of innate immune cells, which are
able to recognize conserved structures of pathogens known
as pathogen-associated molecular patterns (PAMPs) that are
not present in mammals (Janeway, 1989). When PAMPs
are recognized, the host is “warned” of the presence of
infection, initially developing a direct antifungal response
through phagocytic processes followed by pro-inflammatory
and antimicrobial responses through the activation of different
intracellular pathways via transcription factors, kinases or
adaptor molecules, leading to gene expression, and the
production of cytokines and chemokines, among others (Akira
and Takeda, 2004). The overall goal is to contain the infection
and take up and present antigen to induce the adaptive immune
system (Chai et al., 2009).

Thus, PRR recognition initiates effector and modulatory
functions of phagocytic cells (Bachiega et al., 2016). PRRs are
best characterized into one of four families: Toll-like (TLR),
NOD-like (NLR), RIG-I-like, and C-type lectin-like receptors
(CLR), each of which differ in terms of ligand recognition,
signal transduction and sub-cellular localization. Most PRRs are
expressed on dendritic cells (DCs) and other myeloid cells, and
they are notable for initiating innate immune defenses. However,
PRR signaling can also direct the development of the adaptive
immune response by secreting cytokines that polarize CD4 + T
cells (T-helper or Th cells; Plato et al., 2015). Different studies
have demonstrated that CLRs are the major group of molecules
that recognize fungi, while TRLs and NRLs play ancillary roles.

According to Underhill (2007), pathogens may shield or
camouflage themselves so that they are largely ignored by the
immune system. This is a simple strategy that requires the
pathogen to find or produce a surface coating that is not
recognized by the immune system or that is recognized but
interpreted as “self ” to the host.

Polysaccharides and other cell wall components are usually
arranged in different layers and perform architectural and
physiological functions in different locations of the cell wall.
The nature of the cell wall layers of the fungi is very important
for immunological detection (Erwig and Gow, 2016). Several
fungal PAMPs are cell wall components, such as glucan, mannan,
and chitin. Most fungi have an inner cell wall skeletal layer
composed of chitin and β-(1,3)-glucan, over which other cell
wall polysaccharides and glycoproteins are attached (Erwig and
Gow, 2016). Some fungal species can modify chitin and β-glucan
in several ways to reduce the level of host perception and thus
reduce innate immune stimulation. Table 1 summarizes the host
PRRs and their related fungal PAMPs.

Different complex patterns of inflammatory responses may
be generated by synergism or antagonism of the stimulation of
multiple receptors. Under in vivo conditions, an arsenal of fungal
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FIGURE 1 | Immune evasion mechanisms employed by pathogenic fungi divided into three categories (Underhill, 2007, with modifications).

ligands is displayed in variable concentrations that result in the
stimulation of different PRRs (Levitz, 2010).

β-(1,3)-glucan, the major component of the fungal cell wall,
is recognized by Dectin-1 on macrophages and monocytes,
inducing cytokine production and internalization of the fungus
via the formation of a “phagocytosis synapse” (Brown et al.,
2002). In the dimorphic fungus Candida albicans, the ability
to grow as a filament is critical for pathogenicity (Gale et al.,
1998); β-glucans are recognized by Dectin-1 only in the yeast
form of this fungus, and therefore filamentous growth shields this
cell wall component from Dectin-1 recognition and precludes
phagocytosis and ROS production (Heinsbroek et al., 2005).
Moreover, the involvement of O-mannan in masking β-glucan in
C. albicans yeast cells has been demonstrated and contributes to
blocking recognition by Dectin-1 (Bain et al., 2014).

Similar to Dectin-1 receptors, Dectin-2, and Dectin-3 are also
transmembrane proteins from the C-type lectin family. However,
while Dectin-1 recognizes β-glucans, Dectin-2 and 3 recognize
α-mannan. All three Dectins are responsible for the induction of
Th17 cell responses. These T helper cells (Th17) are characterized
as a key response in host defense against fungi (Saijo and Iwakura,
2011).

Studies have demonstrated that Dectin-2 and Dectin-3 can
form heterodimeric structures, which confer high sensitivity
to the host cells with the high affinity to bind to α-mannans
(Zhu et al., 2013). Recently, the role of Dectin-2 was evaluated
during C. albicans infection, and mice deficient in Dectin-
2 (Dectin-2−/−) are more susceptible to infection. Moreover,
phagocytosis is reduced in Dectin-deficient mice, together

with cytokine production. However, α-mannan detection was
demonstrated by the use of C. albicans α-mannan and β-
mannanmutants.C. albicans β-mannanmutants induce cytokine
production differently from α-mannan mutants, and thus the
authors suggest that albicans β-mannan can mask α-mannan
and reduce recognition (Ifrim et al., 2016). A similar study
using Dectin-2−/− mice demonstrated the importance of Dectin-
2 host defense during C. glabrata infection (Ifrim et al., 2014).
Dectin-2 can also recognize glycoproteins containing O-linked
mannobiose-rich residues present in Malassezia (Ishikawa et al.,
2013). Thus, immune detection of intact cells initially focuses on
mannan-immune response receptor interactions.

Aspergillus fumigatus conidia present a hydrophobic layer
formed by the protein RodA and the pigment DHN-melanin,
which masks β-glucans and uncharacterized TLR activators.
Consequently, resting conidia do not induce cytokine release
by macrophages, but during germination, the layer of RodA
is degraded and molecules that are recognized by PRRs on
macrophages and dendritic cells are exposed and promote
cytokine production and co-stimulatory molecule expression
(Aimanianda et al., 2009). Resting Aspergillus conidia do not
present abundant β-glucans on their surface, which might
account for the redundant role of Dectin-1. Inhibition of Dectin-
1 on alveolar macrophages does not affect the phagocytosis of this
fungus, which can be altered by the germination of conidia (Steele
et al., 2005; Slesiona et al., 2012).

In dimorphic fungi, such as Histoplasma capsulatum,
Paracoccidioides spp., and Blastomyces dermatitidis, the
constitution of the cell wall is altered during the change in
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TABLE 1 | PRR recognition of fungal components.

PRRs Pathogen(s) Fungal PAMPs References

TOLL-LIKE RECEPTORS

TRL2, TRL4 P. brasiliensis Unknown Bonfim et al., 2009

TRL2, TRL4 P. brasiliensis gp43 Nakaira-Takahagi et al., 2011

TRL9 P. brasiliensis DNA Menino et al., 2013

TRL2 A. fumigatus (conidia and hyphae form) Unknown/α-glucan Chai et al., 2009

TRL4 A. fumigatus (conidia form) Unknown/ α-, β-glucan and galactomannan Netea et al., 2003

TRL9 A. fumigatus unmethylated CpG motifs of DNA Ramirez-Ortiz et al., 2008

TRL4, TRL2 C. neoformans glucoronoxylomannan Shoham et al., 2001; Fonseca et al., 2010

TRL9 C. neoformans CpG motif-containing DNA Nakamura et al., 2008

TRL4 C. albicans mannan (O-linked) Netea et al., 2006

TRL2 C. albicans phospholipomannan Jouault et al., 2003

TRL9 C. albicans CpG-oligodeoxynucleotides Miyazato et al., 2009

TRL7 C. albicans ssRNA Biondo et al., 2012

TRL3 A. fumigatus dsRNA Carvalho et al., 2012

C-TYPE LECTIN RECEPTOR

Dectin-1 C. albicans β (1,3)- glucan Gow et al., 2007

Dectin-1 A. fumigatus β (1,3)- glucan Luther et al., 2007

Dectin-1 P. brasiliensis Unknown Bonfim et al., 2009

Dectin-2 A. fumigatus α-mannan Loures et al., 2015

Dectin-2 C. albicans High mannose structures McGreal et al., 2006; Ifrim et al., 2016

Dectin-3 C. albicans α-mannan Zhu et al., 2013

DC-SIGN C. albicans High mannose structures Cambi et al., 2003

DC-SIGN P. brasiliensis Unknown/Surface carbohydrate in

extracellular vesicles/

Peres da Silva et al., 2015

DC-SIGN A. fumigatus galactomannans Serrano-Gómez et al., 2004

Mannose receptor C. albicans mannan (N-linked) Netea et al., 2006

Mannose receptor C. neoformans mannoproteins Dan et al., 2008

Mannose receptor A. fumigatus mannan Loures et al., 2015

Mannose receptor P. brasiliensis gp43 Nakaira-Takahagi et al., 2011

Mincle C. albicans Unknown Wells et al., 2008

Galectin-3 C. albicans β-1,2-mannosides Jouault et al., 2006

Scarf1/CDC36 C. albicans, C. neoformans β (1,3)- glucan Means et al., 2009

NRLs

NRLP3 C. albicans, A. fumigatus C. neoformans

P. brasiliensis

Unknown Gross et al., 2009; Saïd-Sadier et al., 2010; Lei

et al., 2013; Tavares et al., 2013

morphology; the filamentous form contains both β- and α-
glucans, but conversion to the yeast form is accompanied
by increased production of α-(1,3)-glucan (much less
immunogenic) and has been correlated to reduced virulence that
leads to the production of α-glucans, which may be a stealthy
immune evasion mechanism (Borges-Walmsley et al., 2002;
Brandhorst et al., 2002; Brown et al., 2003; Rappleye et al., 2007).

H. capsulatum secrets Eng1 protein with glucanase
activity, which was shown by Garfoot et al. (2016) to be
involved in the reduction of β-glucan on the yeast cell
wall. Eng1-deficient yeast cells trigger increased tumor
necrosis factor alpha (TNF-α) and interleukin-6 cytokine
production by macrophages and dendritic cells in α-glucan-
producing H. capsulatum. Eng1 functions in concert with
α-glucan to minimize β-glucan exposure: α-glucan provides

a masking function by covering the β-glucan-rich cell wall,
while Eng1 removes the remaining exposed β-glucans,
enhancing the ability of the fungi to escape detection by
host phagocytes.

The Cryptococcus neoformans capsule masks recognition of
the underlying cell wall mannan and β-(1,3)-glucan. Acapsular
mutant strains of C. neoformans are readily ingested by
macrophages, and both mannose and glucan receptors have
been implicated in this recognition (Cross and Bancroft, 1995).
Although the capsule protects the organism from recognition
by phagocytic receptors (and thus is “stealthy”), it is not
entirely transparent to the innate immune system. The capsule is
recognized by TLRs and triggers an inflammatory response. This
inflammatory response is important for restricting the growth of
the pathogen during infection because TLR2-deficient mice are
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significantly more susceptible to C. neoformans infection (Yauch
et al., 2004).

Another cell wall component, chitin, is covalently linked
to β-glucan, and studies have shown that this component is
sensed by different receptors according to the particle size and
concentration, and it is involved in innate immune recognition
(Shibata et al., 1997; Da Silva et al., 2010; Wagener et al., 2014).
Small particles with 1–10µm at low concentrations are able to
induce production of anti-inflammatory cytokines such as IL-10
(Kogiso et al., 2011; Roy et al., 2012). Innate recognition of fungal
cells by PRRs, such as Dectin-1 and TLR2, leads to the induction
of pro-inflammatory cytokines such as TNF. The cytokines
induce the secretion of chitinases (e.g., chitotriosidase) from
neutrophils and macrophages. Chitin digestion from the cell
walls of fungi by cellular activity leads to the generation of small
chitin particles, which are released and taken up by the mannose
receptor to induce IL-10 secretion via the TLR9 and NOD2
pathway. This mechanism may prevent inflammation-based
damage during fungal infection and restore the immune balance
following the clearance of infection. However, an increase in
chitin particles may influence the immune system in favor of
pathogenic fungal infection as a consequence of the dampened
inflammatory response caused by IL-10 down-regulation of pro-
inflammatory cytokine secretion (Wagener et al., 2014).

Melanins are complex amorphous polymerized phenolic
compounds that are found in the inner cell walls of a wide range
of dimorphic fungal pathogens. Melanin-deficient fungi have
attenuated virulence because of their reduced ability to block
immune recognition. Melanins prevent complement activation,
neutralize antimicrobial peptides and protect cells from oxidative
killing mechanisms (Nosanchuck and Casadevall, 2006).
The green fungal conidial pigment dihydroxynaphthalene-
melanin (DHN-melanin) of A. fumigatus also helps to hinder
phagocytosis and conidium binding to host proteins such as
fibronectin (Jahn et al., 1997; Pihet et al., 2009).

Another important feature of fungi is their ability to form
a biofilm, which provides advantages in the environment and
during infection. Biofilms are microbial communities that are
attached to surfaces and held together by an extracellular matrix.
Growth in a mass increases the resistance of the organisms to
environmental stress, their resistance to antifungal activities and
also effectively shields them from attack by phagocytes (Williams
and Ramage, 2015). Fungi that are capable of forming biofilms
areC. albicans (Zelante et al., 2012),C. neoformans,H. casulatum,
P. brasiliensis, and A. fumigatus (Ramage et al., 2009; Pitangui
et al., 2015; Sardi et al., 2015).

The nature of the immune response may be influenced
by the interaction between cell wall components and host
PRRs, which can be quite varied because the fungal cell
wall presents interspecies and intraspecies variations. Different
patterns of recognition can be observed due to the wide range
of compositions of fungal cell walls and the finding that many
PAMPs are shielded from their associated PRRs. Receptors
that are stimulated directly influence the nature of the innate
immune response and, consequently, the acquired immune
response leading to different courses of fungal pathogenesis.
Identification of the interaction between host receptors involved

in the recognition of fungal PAMPs enables the elucidation of
new mechanisms for treatment, such as the removal of sugars
present on the fungal surface to promote recognition by the
host or targeting more than one cell wall component for greater
pathogen elimination efficiency by the host.

CONTROL

Stealth is not always possible, and generally an infectious
organism will be recognized by the host in some manner.
Successful pathogens often find ways to take advantage of host
recognition systems and control them for their own means. The
pathogens may exhibit on their surface or secrete molecules that
specifically activate regulatory mechanisms. In this manner, the
pathogen can directly inhibit the immune response or elaborate
types of immune responses that are not usually effective against
the organism (Underhill, 2007).

Complement Evasion
The complement system is a complex machinery that is
important for innate and antibody-mediated resistance to
microbial infection (Kozel, 2004). During fungal infections, many
stimuli can trigger the complement pathway, and initiate an
enzymatic cascade of reactions that is controlled by regulatory
proteins such as foreign molecular patterns on the fungal surface,
antigen-antibody complexes, and cellular debris from tissue
damage promoted by inflammation associated with infection
(Chai et al., 2009; Collette and Lorenz, 2011). These regulatory
molecules avoid excessive inflammation and prevent tissue
damage (Zipfel and Skerka, 2009).

Complement is divided into three pathways that can
be activated on the pathogen surface: classical, lectin, and
alternative, which differ in terms of the associated molecules or
modes of initiation but converge to generate the same set of
effector molecules (Janeway et al., 2001), as detailed in Figure 2.

Following activation, all complement pathways lead to the
formation of C3 convertase and the C3b fragment, which
results in the formation of the C5 convertase that cleaves C5
factor into C5a and C5b. This process results in a series of
aggregation and polymerization steps and recruitment of the
terminal components C6, C7, C8, and C9 to form the terminal
complement complex (TCC). TCC is a soluble complex that is
generated as a membrane attack complex (MAC) on the surface
of pathogenic cells, inducing cell lysis by the insertion of C9 into
the lipid layer (Speth et al., 2008; Speth and Rambach, 2012; Luo
et al., 2013). However, pathogens have developed mechanisms
to overcome complement attack and establish infection by, for
example, binding to regulatory complement proteins, secreting
proteases or avoiding opsonization.

To avoid elimination by the complement pathway, it is
known that C. albicans and Aspergillus spp. secrete proteins
onto their surface that bind to regulatory complement proteins.
When attached to the fungal surface, these proteins inhibit the
complement cascade and thus allow the evasion of complement
attack (Zipfel and Skerka, 2009).

C. albicans has proteins that have been described as ligands
for inhibitory complement proteins. Phosphoglycerate mutase
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FIGURE 2 | Inhibition of the complement system by pathogenic fungi. Activation of the different pathways is initiated by the C1q complex in the classical

pathway, MBL (mannan-binding lectins), or ficolins in the lectin pathway and the C3 thioester bond in the alternative pathway. All pathways result in the assembly of

the C3 convertase enzyme responsible for the cleavage of the C3 component into C3a and C3b. The binding of C3b to the available C3 convertase results in C5

convertase, which cleaves C5 into C5a and C5b. This latter binding to different components, such as C6, C7, C8, and C9 molecules, results in a membrane attack

complex (MAC) that causes cell lysis. Factor H is involved in the alternative pathway as a regulatory component that prevents C3 and C5 convertase formation and

inactivates C3b. Plasminogen, another protein present in plasma, is related to the complement system since it may bind to C3 and induce its cleavage into C3b and

C5, inhibiting complement activation. The figure shows examples of pathogenic fungus interactions with the different components of complement system regulatory

molecules or other molecules resulting from the decrease in cell lysis and opsonization favoring the survival of these pathogens.

(Gmp1) was the first protein described to interact with Factor
H (FH) and Factor H-like protein 1 (FHL1), which are
regulatory proteins of the alternative complement pathway, and
plasminogen, a component of coagulation cascade (Poltermann
et al., 2007).

The pH-regulated antigen 1 (Pra1) of C. albicans can bind
to FH, FHL1, and plasminogen. In addition, Pra1 was the first
protein described to bind to C4BP, which regulates the classical
and lectin complement pathways and avoids C3b and C4b
deposition on the fungal surface when captured by C. albicans,
impeding complement cascade progression (Luo et al., 2009,
2011; Zipfel et al., 2013). Recently, expression of the proteins
Gmp1 and Pra1 was shown to vary in clinical C. albicans
isolates related to virulence and immune fitness (Luo et al.,
2015).

C. albicans secretes the aspartic proteases (Saps) Sap1, Sap2,
and Sap3, which degrade and inactivate the complement proteins
C3b, C4b, and C5, resulting in inhibition of the damage caused

by the complement system (Gropp et al., 2009). C. albicans
Pra1 also binds to C3 and forms a complex that inhibits C3
activation, impeding complement cascade progression (Luo et al.,
2010).

The high-affinity glucose transporter 1 protein (CaHgt1p)
is a multifunctional protein that has been associated with
evasion of the complement system by interacting with
FH and C4BP (Lesiak-Markowicz et al., 2011). Glycerol-3-
phosphate dehydrogenase 2 (Gpd2), another multifunctional
protein secreted by C. albicans, plays a role in complement
evasion by binding to FH and FHL1. Gpd2 also binds to
plasminogen, interfering with the coagulation cascade (Luo et al.,
2013).

Aspergillus spp. are also able to bind to the complement
inhibitors FH, FHL1, and C4BP, and abrogate complement
pathway progression, but how this process occurs has not
been described (Behnsen et al., 2008; Vogl et al., 2008).
Aspergillus spp. can produce enzymes that are able to degrade
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complement factors. Rambach et al. (2010) described a fungal
protease that is able do cleave several complement components
and assist fungal evasion of complement elimination during
cerebral aspergillosis. Alp1 from A. fumigatus has also been
described as a protease with broad proteolytic activity, including
activity against the complement components C3, C4b, C5, and
C1q, downregulating of complement cascade (Behnsen et al.,
2010).

Aspergillus spp. use pigments on the conidial surface to
mask C3 binding sites and avoid opsonization and complement
attack (Tsai et al., 1997, 1998). This phenomenon has also
been described for an important dimorphic pathogenic fungus,
P. brasiliensis, which synthetizes melanin-like pigment. The
melanization of yeast cells interferes with the efficiency
of complement-dependent phagocytosis, avoiding interactions
between components of fungal cell walls and lectin receptors
on macrophages (da Silva et al., 2006). Aspergillus spp. also
synthesize a soluble factor, complement inhibitor (CI), to inhibit
complement activation and opsonization. In A. fumigatus, CI
selectively inhibits the alternative pathway of complement and
plays a role in C3-dependent phagocytosis and killing (Washburn
et al., 1986, 1990; Behnsen et al., 2008).

Blastomyces adhesin 1 (BAD1), the most important virulence
factor in Blastomyces dermatitidis, also plays an important role in
complement evasion by occupying C3 sites on cell wall glucans
and thus avoiding C3 deposition (Zhang et al., 2001).

C. neoformans, C. albicans, and A. fumigatus conidia can
inhibit complement activity by secreting a small protein or
binding several complement regulatory factors (Luberto et al.,
2003; Meri et al., 2004; Behnsen et al., 2008). Additionally, the
terminal MAC of the complement system is not capable of lysing
the fungal cell wall (Kozel, 1996).C. albicans expresses an integrin
called αvβ3 that acquires vitronectin to inhibit TCC formation
(Spreghini et al., 1999).

Gates et al. (2004) demonstrated that the capsular matrix
density and complement deposition in the C. neoformans capsule
differ depending on whether the encapsulated yeast cells are
obtained in vitro or in vivo. In the latter condition, there is a
higher concentration of GXM without a significant change in the
size of the capsule and with a decrease in complement deposition,
which leads to reduced opsonization and poor ingestion by
macrophages.

Complement activation/regulation components, such as C3,
C4BP, Factors B, and H, have been shown to be responsible
for 38.6% of the cell wall-bound plasma protein mass in P.
brasiliensis (Longo et al., 2013), corroborating previous reports
of immunofluorescence data showing that C3, C3a, C3d, C3g,
C4, C5b-9, and Factors H and B are present on the P. brasiliensis
yeast cell surface (Munk and Da Silva, 1992). These findings
indicate that this fungus can activate the complement system,
consistent with another study (Calich et al., 1979). A study
comparing three isolates of P. brasiliensiswith different degrees of
virulence demonstrated differential activation of the classical and
alternative pathways among the isolates. Fraction F1, an alkali-
insoluble polysaccharide fraction (containing β-glucan) from low
virulence isolates, was more efficient than F1 from the virulent

strain for activating the complement system (Crott et al., 1997;
Anjos et al., 2002).

Plasminogen is a complement regulatory protein that is
present in plasma as an inactive proenzyme that can be converted
(in the presence of tissue host factors) to plasmin, an active
serine protease that participates in the coagulation system but
that also degrades extracellular matrix (Barthel et al., 2012).
The coagulation system and complement cascades are closely
related (Peerschke et al., 2008); activated plasminogen is capable
of cleaving complement proteins, resulting in the inhibition of
complement activation.

Different fungi have plasminogen-binding proteins that bind
plasminogen leading to plasmin generation and activate it to
cleave complement effectors and block C3 and C5 convertase
to favor C3b inactivation (Barthel et al., 2012). Examples of
fungi that likely employ proteins for this evasion mechanism
by binding to plasminogen are P. brasiliensis (Marcos et al.,
2012; Chaves et al., 2015), C. albicans (Crowe et al., 2003; Luo
et al., 2009), C. neoformans (Stie et al., 2009), and A. fumigatus
(Behnsen et al., 2008), among others.

Figure 3 shows a schematic of the complement activation
pathways and examples of pathogenic fungi that interact with
the different components of the complement system, regulatory
molecules or other molecules that lead to a decrease in cell lysis
and opsonization, favoring pathogen survival. The development
of therapeutic approaches that interfere with fungal evasion of
the complement system is highly speculative. It is very important
to identify a strategy to inhibit complement activation to an
appropriate extend. Inhibitors targeting the common effector
phase of the complement cascade can be very efficient, but
systemic inhibition of the complement system increases the risk
of infections (Beinrohr et al., 2008).

Blocking fungal surface components with specific antibodies
or peptides may contribute to, for example, an increase in
C3 binding site exposure and therefore facilitate complement
deposition and phagocyte ingestion, or block the acquisition of
negative complement regulators at the fungal surface, such as
FH or C4BP, potentially increasing the susceptibility of fungi to
attack by the complement system. However, all these approaches
are still hypothetical.

The complement system is more than simply a “guard”
against pathogens. It is involved in inflammatory processes, the
modulation of cellular responses, and cell-cell interactions that
are crucial for early development and cellular differentiation
(Mastellos and Lambris, 2002). Erroneous activation or
insufficient regulation of the complement cascade may focus its
destructive activity on the host cells, highlighting an obstacle
in the design of complement-specific drugs. However, two
complement-targeted drugs for non-fungal diseases have been
introduced in the clinic: the therapeutic anti-C5 antibody
eculizumab (Soliris; Alexion Pharmaceuticals) and various
preparations of the physiological regulator C1 esterase inhibitor
(C1-INH). In addition, several new candidate drugs targeting
various components of the complement cascade are in different
stages of clinical development (Ricklin and Lambris, 2013;
Morgan and Harris, 2015; Reis et al., 2015; Mastellos et al., 2016).
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FIGURE 3 | Summary of different fungal mechanisms used to evade the immune system after phagocytosis. Following internalization, the contents of the

phagosome must be digested. Degradation is achieved by a series of phagosome maturation stages in which they receive new material from early endosomes, late

endosomes, and finally lysosomes. The figure shows examples of pathogenic fungus interactions with different components of the complement system, regulatory

molecules or other molecules resulting from the decrease in cell lysis and opsonization, favoring pathogen survival. Examples are shown of strategies used by

pathogenic fungi to escape phagosomes and phagocytes and to alter phagosome maturation and persist within phagosomes (Luberto et al., 2001; Alvarez and

Casadevall, 2006; Alanio et al., 2011, 2015; Garcia-Rodas et al., 2011; Seider et al., 2011; Bain et al., 2012; Wellington et al., 2012; Smith and May, 2013; Voltan

et al., 2013; Kasper et al., 2014; Stukes et al., 2014; Davis et al., 2015; Smith et al., 2015).

Escaping from Phagocytic Process
Once a microorganism reaches the host, the first line of defense
is the phagocytic cells. Professional phagocytes (neutrophils,
macrophages, and dendritic cells) of the innate immune response
are responsible for controlling the infection (Qian et al., 1994).
Deficient phagocytosis represents a risk factor for fungal disease.
Phagocytosis is an efficient mechanism to protect the host and
eliminate pathogens (Romani, 2011).

The morphology and size of the pathogen are important
during phagocytosis. It is important to highlight that fungi
can change morphology during different stages of infection
in response to the host temperature and for dissemination
(San-Blas et al., 2000; Klein and Tebbets, 2007; Boyce and
Andrianopoulos, 2015). These changes increase the challenges
associated with phagocytosis. The morphology will determine
how the complexity of the actin filaments for successful
phagocytosis. Moreover, if the microorganisms are larger
than the phagocytes cells, this process may be compromised
(Champion and Mitragotri, 2006). However, there are reports
of macrophages undergoing division and fusion to increase cell
size and win the battle against the invading pathogen (Garcia-
Rodas et al., 2011; García-Rodas and Zaragoza, 2012). In contrast,
dynamic studies of variously shaped and sized particles have
demonstrated that shape determines the success of phagocytosis
(Champion and Mitragotri, 2006; Paul et al., 2013).

Early studies have revealed thatC. albicans,Candida tropicalis,
Candida krusei, Candida parapsilosis, and Candida guilliermondii
undergo efficient phagocytosis; however, they are also able to
develop hyphae inside and outside the macrophage, multiplying
intracellularly, destroying the phagocytic cell, and escaping
ingestion (Stanley and Hurley, 1969).

During this transition, C. albicans produces hyphae within
macrophages to kill the cell or outside the macrophage to
avoid phagocytosis and limit the recruitment of additional
macrophages (Brothers et al., 2013; Ermert et al., 2013).
Moreover, yeasts, but not hyphae, are phagocytosed efficiently by
macrophages. One possible explanation for this difference is that
hyphal filaments contain very little glucan and do not properly
activate Dectin-1 (Shoham et al., 2001; Gantner et al., 2005; Seider
et al., 2010).

C. glabrata proliferate inside macrophages and result in
cell lysis (Kaur et al., 2007; Dementhon et al., 2012).
Candida lusitaniae escapes from macrophage activities by
producing cells chains and thus avoiding recognition by the
immune system (Dementhon et al., 2012). In a detailed
study, Garcia-Rodas et al. (2011) showed the complexity
of the C. krusei-macrophage interaction. They demonstrated
that C. krusei was able to survive inside macrophages;
furthermore it was capable of producing filaments and killing the
macrophages.
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A. fumigatus conidia can germinate and produce hyphae, also
hindering phagocytosis (Erwig and Gow, 2016). Paracoccidioides
spp. are thermally dimorphic fungi; at 37◦C, multiple budding
with irregular sizes and shapes are observed. Because of the
non-uniform morphology, small cells are more susceptible to
macrophage activities (Almeida et al., 2009).

The increased size of the C. neoformans capsule during
infection confers resistance to several immune response
mechanisms including phagocytosis (Maxson et al., 2007;
Zaragoza et al., 2008). However, C. neoformans displays another
feature to escape phagocytosis. Cell enlargement is an in vivo
phenomenon, and these cells can be 5 to 10-fold larger than
normal C. neoformans cells. These giant cells, also called titan
cells, are polyploid, uninucleate, and have a thinner cell wall
than normal cells. These cells are resistant to phagocytosis
and oxidative stress (Cruickshank et al., 1973; Feldmesser
et al., 2001; Okagaki et al., 2010). The capsule protects cells
against phagocytic processes, assisting the development of
disease by interfering with T cell functions (Feldmesser et al.,
2000; Rodrigues and Nimrichter, 2012). The C. neoformans
capsule comprises GXM, glucuronoxylomannogalactan (GXM
Gal) and mannoproteins (MP), which trigger variations in
immune responses (Doering, 2009). GXM acts as an important
immune modulator by directly inhibiting the proliferation
of T-cells; GXM Gal shows the ability to induce apoptosis
of human T-cells, inhibiting cell-mediated immunity, and
apoptosis in macrophages; MPs are immunogenic and induce the
accumulation of TNF and other cytokines, such as IL-12, IL-6,
IL-10, IFN-γ, and IL-8, in monocytes (Martinez and Casadevall,
2005; Li and Mody, 2010; Vecchiarelli and Monari, 2012).

Other studies have shown that GAT201, a transcription
factor in C. neoformans, plays a role in the capsule-independent
mechanism of antiphagocytosis. Deletion of this gene increases
phagocytosis by macrophages (Liu et al., 2008). Luberto et al.
(2003) described the role of the protein App1 in the inhibition
of phagocytosis by alveolar macrophages through a complement-
mediated mechanism. They used an app1∆ strain (with no
differences in capsule size, melanin formation, or growth at 30◦

or 37◦C) that was more easily ingested by macrophages even in
immunocompetent mice that were deficient for complement C5.

Apoptosis or programmed cell death is a mechanism
employed to regulate the innate immune response (Busca et al.,
2009). Interestingly, some fungi can also use this mechanism as a
strategy to avoid the immune system. Prevention of apoptosis,
a phenomenon that can prevent phagocytosis, is helpful for
microorganisms because they can protect themselves inside host
cells and are protected from the cytotoxic activity of the immune
system, such as secreted antimicrobial substances or immune
cell attack (Ali et al., 2003; Voth et al., 2007; Volling et al.,
2011).

C. albicans is able to induce apoptosis and use it as an evasion
mechanism, and phospholipomannan has been reported to be
involved in this process (Ibata-Ombetta et al., 2003).A. fumigatus
can manipulate apoptosis, and this manipulation is morphology-
dependent, in which the conidia are able to inhibit the apoptosis
of different cell types (Volling et al., 2007; Féménia et al.,
2009). However, during the hyphal phase, A. fumigatus produces

gliotoxin, which is a fungal metabolite that can kill different
types of cells, has anti-phagocytic activity, induces apoptosis, and
consequently suppresses immune responses (Müllbacher et al.,
1985;Waring et al., 1988; Sutton et al., 1994; Stanzani et al., 2005).
A. fumigatus melanin plays an important role in fungal evasion
because despite its ability to provide protection against reactive
oxygen species (ROS) produced by the immune system, the
melanin present in conidia is also responsible for the inhibition
of apoptosis (Volling et al., 2011).

P. brasiliensis is also able to induce apoptosis in macrophages
via the expression of caspase-2, 3, and 8; however, infection
by this fungus can also induce anti-apoptotic genes (caspase-
8 and Fas-L inhibitors; Silva et al., 2008). Moreover, during
paracoccidioidomycosis, the fungi produces gp43, which is the
main antigen detected during infection. Studies have shown
that gp43 and peptides derived from this glycoprotein have the
ability to avoid phagocytosis and are also considered as evasion
mechanisms of this fungus (Flavia Popi et al., 2002; Konno et al.,
2009).

Surviving
Akoumianaki et al. (2016) showed that during A. fumigatus
germination, β-glucan is exposed on the fungal surface, and this
exposure leads to activation of an Atg5-dependent autophagy
pathway called LC3-associated phagocytosis (LAP) that kills the
fungus, but this activation requires removal of the melanin in
the fungal cell wall. In this way, Aspergillus melanin confers
resistance to killing by macrophages by inhibiting NADPH-
oxidase-dependent activation of LAP by selectively excluding the
p22phox subunit from the phagosome membrane; LAP blockade
is a general property of fungal cell wall melanin.

C. neoformans has a multiple-hit intracellular survival
strategy, resulting in the progressive deterioration of host
cellular functions. When macrophages are infected, any cellular
process can be disrupted and subsequently affect multiple
cellular processes. For example, the activation of several stress
pathways affects protein translation and cause mitochondrial
depolarization. Mitochondrial alterations can be caused by
the deregulation of cyclin D1 or, alternatively, mitochondrial
alterations can potentiate endoplasmic reticulum stress. The
decreased mitochondrial potential results in the deregulation
of fuel and energy requirements and in poor functioning of
mitochondria, which play a role in the integration of cellular
decisions concerning death, survival, and immune activation,
such as the activation of macrophages and their microbicidal
abilities (Wagener et al., 2014). This damage results in the
inability to clear the infection and facilitates the persistence of
C. neoformans within macrophages. These inefficient immune
responses rapidly lead to chronic infections (Coelho et al.,
2015).

Manipulating Phagosome Maturation
The phagocytosis of microorganisms and subsequent
degradation of the particles internalized by phagocytic cells
is a vital innate immune response to contain the dissemination
of pathogens (Smith et al., 2015). Some pathogenic fungi have
developed strategies to resist phagocytosis, thus increasing their
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pathogenicity, and survival in the host (Brown et al., 2012a).
Some fungi, including C. neoformans, C. albicans, C. glabrata, C.
krusei, and H. capsulatum, can be phagocytosed by and persist
within immune cells (Eissenberg et al., 1993; Sebghati et al., 2000;
Johnston and May, 2010; Seider et al., 2011).

The phagocytosis of microorganisms and subsequent
degradation of the internalized particles by phagocytic cells is a
vital innate immune response to contain the dissemination of
the pathogen (Smith et al., 2015). Although little is known about
the factors responsible for controlling phagosome maturation
after yeast cell phagocytosis (Gilbert et al., 2015), pathogens
utilize several approaches to prevent killing and degradation by
phagocytic cells, such as inhibition of phagosome maturation
or fusion, blocking phagosomal acidification, or escaping from
the phagosome (Clemens et al., 2000; Deleon-Rodriguez and
Casadevall, 2016).

After internalization, pathogens may be contained in the
phagosome, and subsequently the maturation process is initiated
(Smith and May, 2013). The fusion of the late phagosome and
lysosome gives rise to the phagolysosome, in which the pH
decreases to below 5.5 and hydrolytic enzymes and high levels of
free radicals are together introduced to degrade the internalized
pathogen or inhibit the microbial growth (Eissenberg et al.,
1993; García-Rodas and Zaragoza, 2012). It is also believed that
acidification is required for intracellular trafficking and antigen
presentation; some pathogens have developed mechanisms to
avoid the hostile low pH by modulating this pH change
(Eissenberg et al., 1993).

Levitz et al. (1999) demonstrated that C. neoformans, in
contrast to other intracellular pathogens, does not avoid fusion
with macrophage lysosomal compartments but rather resides,
and survives in the acidic phagolysosome. The growth of C.
neoformans is inversely proportional to the pH; alkalization of
the pH retards its growth. When the pH of the phagolysosome
is artificially increased, a reduction of intracellular proliferation
of the yeast was observed, indicating that C. neoformans has
the ability to divide in an acidic pH (Luberto et al., 2001).
In addition to the ability to grow under acidic pH conditions,
this pathogen seems to have increased resistance to macrophage
lysosomal enzymes, which require the acidic pH for their activity
(Deleon-Rodriguez and Casadevall, 2016).

H. capsulatum, an obligate intracellular pathogen, possesses
mechanisms that allow it to survive and replicate within
macrophages (Inglis et al., 2013). The major mechanism is the
ability to manipulate the phagosome to maintain an internal
pH of 6.5, inactivating acid-dependent hydrolytic proteases and
maintaining the capacity to acquire iron (a process that is usually
dependent on acidification), thus favoring its replication by
generating a more neutral environment (Smith and May, 2013).
It is believed that this strategy involves the blockade of lysosomal
fusion with the phagosome and vacuolar H+-ATPase (V-ATPase;
Strasser et al., 1999), which is a large multiprotein complex that
is related to the acidification process (Kissing et al., 2015).

A feature that contributes to C. neoformans dissemination
through blood brain barrier is via Trojan horse hypothesis inside
macrophages (Alanio et al., 2011), in which the pathogen takes
advantage of the intracellular environment of phagocytic cells

as a place to hide from direct attack by the immune system
(Charlier et al., 2009; Casadevall, 2010). Inside the macrophage,
the fungus can persist in the host in a state of dormancy
that is resuscitated in response to the appropriate stimulus
(Alanio et al., 2015). Moreover, it can escape the intracellular
limitations of the macrophage in an actin-dependent manner
via cell-to-cell transfer, leading to the infection of adjacent cells
(Alvarez and Casadevall, 2007; Stukes et al., 2014). It is believed
that this pathogen also has the ability to inhibit phagosome
maturation during infection. Recently, Smith et al. (2015) used
different markers of phagosome maturation to demonstrate that
cryptococcal-containing phagosomes induce premature removal
of Rab5 (involved in the recruitment of host effectors such as
early endosome marker 1 and Rab7) and Rab11 (present on
early phagosomes), thus modifying the phagosome in which
it resides to alter phagosome acidification, calcium flux, and
protease activity.

Analysis of the genome of C. albicans verified the presence
of several genes that, when transcribed, allow survival in
macrophages (Gilbert et al., 2015). Smith et al. (2004) found that
the protein kinase Hog1p is activated by a variety of stress factors
and may regulate genes in response to phagosomal conditions.
Miramón et al. (2012) showed that the loss of Hog1p increases
the sensitivity of C. albicans to killing by phagocytes.

Although, several study findings support macrophage lysis in
response to the hyphal form of the fungus, Wellington et al.
(2012) showed that a mutant deficient for IL-1β secretion leads
to lower levels of lysis, independent of its ability to form hyphae,
demonstrating that the physical formation of hyphae alone is
not sufficient to trigger IL-1β secretion or macrophage lysis.
This finding suggests that other processes, such as pyroptosis, a
caspase-1-dependent response to intracellular pathogens, could
play a role in C. albicans-macrophage interactions (Wellington
et al., 2012). Macrophage death caused by C. albicans hyphae
during the initial period post-phagocytosis (6–8 h) occurs by the
induction of pyroptotic caspases and is dependent on caspase-
1 (Uwamahoro et al., 2014) and the inflammasome subunits
NLRP3 and ASC (Wellington et al., 2014). After the macrophage
is destroyed via pyroptosis, it may lose its ability to release
cytokines that signal for the recruitment of other immunes cells,
leading to a weakened immune system.

More recently, Tucey et al. (2016) characterized the
C. albicans endoplasmic reticulum (ER)-mitochondria tether
complex ERMES (mediator of interactions between organelles,
providing membrane contact sites) and showed that the ERMES
mmm1mutant has a severely crippled ability to kill macrophages
despite hyphal formation and normal phagocytosis and survival.

C. glabrata is able to alter phagosome maturation by
blocking phagolysosome formation and phagosome acidification.
C. glabrata-containing phagosomes recruit EEA-1 and LAMP-
1 (lysosomal-associated membrane protein-1) marker proteins,
indicating normal progression in the early and late endosomal
stages, but the biogenesis of phagolysosomes is altered because
this pathogen does not acquire cathepsin D (a lysosomal acidic
enzyme) and acidification does not occur, allowing fungal
replication (Seider et al., 2011). Similarly, inmurinemacrophages
infected with C. albicans, the pathogen actively recycles cathepsin
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D and LAMP-1 out of the phagosomes (Fernández-Arenas et al.,
2009). Bain et al. (2015) used live cell imaging to show that
C. albicans arrests phagosome maturation and acidification.
Another mechanism by which C. glabratamodulates phagosome
maturation was demonstrated using mutant yeasts lacking both
the class III phosphoinositide 3-kinase (PI3K) subunit-encoding
genes VPS15 and VPS34, which displayed a slightly larger
number of acidic phagosomes, suggesting that PIK3 participated
in phagosome maturation (Rai et al., 2015).

The deposition of melanin in the cell wall is essential for
the pathogenicity of Cryptococcus spp. Melanin is formed from
L-Dopa and is likely one of the mechanisms responsible for
yeast neurotropism (Nosanchuk and Casadevall, 2003). URE1
encodes a urease enzyme, which is involved in the hydrolysis
of host and pathogen-produced urea into ammonia, resulting
in pH neutralization in the phagosomes of several fungi (Smith
and May, 2013). For example, after internalization, Coccidioides
ssp. is able to resist death via several mechanisms, and urease
production and secretion is fundamental for their protection
(Mirbod-Donovan et al., 2006). The up-regulation of urease
synthesis genes has been noted in the parasitic spherule phase of
both C. posadasii and C. immitis (Whiston et al., 2012).

After phagocytosis of A. fumigatus, an unknown mechanism
inhibits phagosome maturation, maintaining a neutral pH, and
promoting the survival of infective particles until subsequent lysis
of the macrophages by the formation of hyphae (Morton et al.,
2012). It is known that the DHN-melanin present at the conidial
surface is required to avoid lysosomal fusion (Thywißen et al.,
2011).

Another mechanism that is shared by different pathogenic
fungi, such as C. neoformans, C. albicans, and C. krusei, is a
process called vomocytosis, in which the fungus is cast out
of the macrophage without lysis of the host cell (Alvarez and
Casadevall, 2006; Garcia-Rodas et al., 2011; Bain et al., 2012). This
non-lytic escape is likely to confer advantages to the pathogen by
decreasing proinflammatory signals (Gilbert et al., 2015). Little
is known about the factors involved in this process. The only
evidence reported to date is the participation of the enzyme
CnPlb1, the loss of which reduces the process (Chayakulkeeree
et al., 2011).

The mechanisms involved in phagosome maturation in P.
brasiliensis remain unknown. The only study on this subject
has been reported by Voltan et al. (2013), who performed an
expression analysis of EEA1 and showed an effect on infected
macrophages. The authors showed a significant reduction of
EEA1 expression after a few hours of infection, resulting
in the blockade of trafficking from the trans-Golgi network
to phagosomes and the inhibition of phagosome-endosome
fusion, suggesting a strategy that is used by P. brasiliensis for
survival in this environment. Figure 3 summarizes the different
fungal mechanisms used to evade the immune system after
phagocytosis.

It was recently reported that C. neoformans can induce
lysosomal damage in infected murine bone marrow-derived
macrophages. Consequently, Davis et al. (2015) developed a
novel flow cytometric method for measuring lysosomal damage
and found that the magnitude of the damage in this organelle

is correlated to the increase in C. neoformans replication.
They also activated the macrophages with IFN-γ to prevent
macrophage lysosomal damage and observed an inhibition of C.
neoformans replication. They concluded that this fungus utilizes
lysosome damage as a virulence mechanism to overcome host
defense mechanisms and to promote fungal survival; they further
suggested that the development of interventions that oppose this
ability of C. neoformansmay be an effective therapeutic strategy.

Numerous reports have suggested that C. neoformans
expresses several virulence factors, including the heat shock
protein 70 homolog to Ssa1, which occurs through the induction
of laccase and can modulate host defense mechanisms. Eastman
et al. (2015) determined the effect of Ssa1 in mice infected with a
highly virulent serotype A (serA) strain of C. neoformans (H99—
Ssa1 deleted) and, surprisingly, noted that, unlike serotype D,
H99-serA does not require Ssa1 for laccase expression. The
authors further showed that Ssa1 directly promotes early M2
macrophage polarization to improve fungal growth during the
innate phase of the immune response.

The interaction between phagocytes and fungi is critical
for early control of the infection and thus the ability of
the host to clear the infection. Many fungi have developed
efficient mechanisms to evade or modulate host cells. Thus,
the elucidation of these interactions may contribute to the
development of novel immunotherapies to prevent phagocytosis.

ATTACK

Pathogens may express on their surface or secrete molecules that
directly harm or counter specific host immune defenses. The
secretion of toxins or proteases falls into this category (Underhill,
2007). If host defense mechanisms cannot be avoided completely
or controlled sufficiently, the last resort for a pathogen is simply
to survive or destroy the defenses. To the extent that fungi
are robust and hardened against their environments, this is not
formally “immune evasion” so much as it is simple survival.
However, there are many examples of cases in which fungal
pathogens actively destroy or counter specific immune defenses.

Scavenging Oxidative Mechanisms
Pathogens are recognized, quickly engulfed, and trapped within
an extremely hostile compartment called the phagosome.
This organelle is deficient in nutrients and trace elements
and undergoes acidification accompanied by increased
acidic hydrolase activity. Furthermore, into this organelle
are transported a battery of antimicrobial peptides, ROS and
reactive nitrogen species (RNS), produced through the NADPH
oxidase complex, which combine with nitric oxide (NO)
to produce the nitrogen reactive species peroxynitrite. The
combined action of these factors has a powerful antimicrobial
effect and is normally sufficient to eliminate the pathogen
(Nathan and Shiloh, 2000; Babior, 2004).

ROS production by macrophages and neutrophils is a primary
mechanism for killing internalized pathogens. A successful
pathogenic fungus is one that is able to effectively survive
in this powerful antimicrobial environment, resulting in the
development of disease. The literature includes many reviews
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describing some strategies employed by these pathogenic fungi
to avoid killing by oxidative stress or antimicrobial mechanisms
(Missall et al., 2004; Brown et al., 2014).

The pathogens can choose enzymatic (superoxide dismutases-
SODs, catalases-CATs, and peroxiredoxins-PRXs) and non-
enzymatic (melanin, mannitol and trehalose) mechanisms to
maintain the redox homeostasis within the host cell and resist
oxidative stress and/or repair damage. The rapid inductions
of mRNAs that encode oxidative stress detoxification and
repair proteins have been well-characterized in eukaryotic
microorganisms. The transcriptional responses to oxidative stress
induce a set of antioxidant enzyme-encoding genes, in addition to
genes that encode components of the glutathione/glutaredoxin
(GSH, TTR) and thioredoxin (TSA, TRX, TRR) systems, which
play critical roles in repairing oxidatively damaged proteins,
protein folding, and sulfur metabolism (Missall et al., 2004;
Aguirre et al., 2006; Chai et al., 2009).

Several studies have identified individual proteins of the
remarkably robust and redundant antioxidant system in
different fungi. C. neoformans has four CATs, two SODs,
glutathione peroxidases, thioredoxin proteins, the inositol
phosphosphingolipid-phospholipase C1, and protein kinase
C, which are essential for surviving within the oxidative
environment of macrophages (Cox et al., 2003; Missall et al.,
2005; Missall and Lodge, 2005; Giles et al., 2006; Gerik et al.,
2008). The increase in capsule size that occurs during infection
by this pathogen provides protection against oxidative stress and
antimicrobial peptides (Zaragoza et al., 2008).

Inactivation of detoxifying enzymes, such as SODs, leads
to severe attenuation of the virulence, and viability inside
immune cells (Fradin et al., 2005; Frohner et al., 2009). A
study conducted by Holbrook et al. (2013) evaluated the
importance of extracellular and intracellular CAT activity, which
presented redundant detoxification activity and facilitated H.
capsulatum pathogenesis. The same profile was observed for
SOD, as shown by Youseff et al. (2012). A study was initiated
to characterize P. brasiliensis CAT and demonstrated that this
protein was induced when the yeast cells were exposed to H2O2,
suggesting that it might be involved in the response to and
degradation of this toxic species and thus contribute to the
survival of the parasite during infection (Moreira et al., 2004).
Candida spp. also possess several enzymes that function in a
protective manner against the respiratory burst, such CATs,
SODs, and glutathione peroxidases (Briones-Martin-Del-Campo
et al., 2014).

Campos et al. (2005) and Parente et al. (2015) described
the powerful antioxidant defense system possessed by
Paracoccidiodies spp., which consists of an integration of all
the previously described systems. Like so many other fungal
pathogens, it uses mechanisms to evade the human immune
system, and to survive within infected host cells (Dantas et al.,
2008). These features have also been described recently by
Tamayo et al. (2016), who showed that the antioxidant enzymes,
SODs, assist in combating the superoxide radicals generated
during host-pathogen interactions: during the transition process,
the fungi are exposed to oxidative agents and interact with
phagocytic cells.

NO and its derivatives are important reactive species in
the macrophage response to fungal infection. In fact, NO
generated by the inducible nitric oxide synthase (iNOS) in
mammal hosts exerts a fungistatic effect. Exposure to RNS
such as NO causes molecular damage such as S-nitrosylation
of the thiol groups of cysteines in proteins and glutathione
(Missall et al., 2004; Brown et al., 2014). The enzymes
that detoxify RNS have relevant roles in survival and/or
virulence in several fungi, including C. neoformans (Missall
et al., 2006), H. capsulatum (Lane et al., 1994), C. albicans
(Kaloriti et al., 2012), and Paracoccidioides spp. (Gonzalez et al.,
2000).

Following exposure to NO, C. albicans induces increased
gene expression. Hromatka et al. (2005) demonstrated that the
most highly induced gene is YHB1, a flavohemoglobin that
combats the RNS stress originating from the developing nitrite
(Cánovas et al., 2016) not only in C. albicans but also in
other fungal pathogens such as C. neoformans and A. fumigatus
(de Jesús-Berríos et al., 2003; Lapp et al., 2014). Furthermore,
deletion of this gene results in hypersensitivity to NO and
a moderate attenuation of virulence (Hromatka et al., 2005).
Other proteins involved in the detoxification of NO are the
porphobilinogen deaminase hemC, which promotes the activity
of flavohemoglobin, the NO-inducible nitrosothionein ntpA,
which scavenges NO through S-nitrosylation in A. nidulans
(Zhou et al., 2012, 2013) and S-nitrosoglutathione (GSNO)
reductase, which reduces GSNO to ammonia and glutathione
disulfide and is important for the detoxification of RNS in C.
neoformans (Fernández et al., 2003) andA. fumigatus (Lapp et al.,
2014).

P. brasiliensis mutants of cytochrome C peroxidase display
increased sensitivity to RNS, and this mitochondrial heme
enzyme reduces the peroxy bond of H2O2 and functions as
a heme-based peroxide sensor in yeast mitochondria (Parente
et al., 2015).

In addition to combating nitrosative stress, B. dermatitidis
resists macrophage killing by NO not through detoxification
as described above, but rather by suppressing macrophage NO
production by interfering with the activity of iNOS (Rocco
et al., 2011). In other pathogens such as P. brasiliensis and
C. immitis, NO suppression has also been postulated to occur
during infection, with an upregulation of IL-10 that reduces the
expression of iNOS and the production of NO, and induction
of the host enzyme arginase, which reduces the availability of
arginine for iNOS, subsequently reducing the ability of the host
to produce nitric oxide, respectively (Hung et al., 2007; Moreira
et al., 2010).

In addition to antioxidant enzymes, there are non-enzymatic
defenses against ROS and RNS in the form of several metabolites
that are important scavengers for detoxification. The ability to
produce melanin is one of these defenses. It is known that
melanin reacts with most ROS, and acting as a buffer against
external ROS, it might function as a sink for potentially harmful
unpaired electrons. In fungi, several different types of melanin
have been identified, and the two most important ones are DHN-
melanin and DOPA-melanin (Jacobson, 2000; Langfelder et al.,
2003).
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In addition to serving as a reserve carbon source, mannitol
is known to scavenge ROS. Mannitol extinguishes reactive
oxygen species, prompting speculation that it can assume a
cell reinforcement role during host-pathogen interactions. There
are reports that during the infection processes, the pathogenic
fungus secretes large amounts of mannitol, and a low-producing
mannitol mutant exhibited reduced pathogenicity and oxidative
stress tolerance (Chaturvedi et al., 1996, 1997; Meena et al., 2015;
Erwig and Gow, 2016).

In yeast and filamentous fungi, large amounts of trehalose are
stored as a reserve carbohydrate. Trehalose is a non-reducing
disaccharide that constitutes up to 15% of the dry weight. It
accumulates in response to heat and oxidative stress and has
important role as a stress metabolite, stabilizing membranes,
and native proteins, as well as by suppressing the aggregation
of denatured proteins. It also has distinctive properties such
as strong hydrophilicity and chemical stability (Argüelles, 2000;
Missall et al., 2004).

Table 2 highlights studies examining pathogenic fungi in
relation to mechanisms of protection against oxidative and
nitrosative stress, indicating the specific antioxidant agents, and
approaches used to identify them.

Scavenging Non-oxidative Mechanisms
However, the host may use non-oxidative mechanisms
against fungi based on the finding that patients with chronic
granulomatosis disease, an inherent disease in which the
fundamental genetic defect is in the assembly of NAPDH
oxidase, and thus phagocytic oxidative is hampered, have an
incidence of aspergillosis ranging from 40 to 70% during their
lifetime (Herbrecht et al., 2002; Segal and Romani, 2009).

Furthermore, human granulocytes that are deficient in either
NADPH oxidase or MPO are incapable of efficient killing of
Candida in vitro (Lehrer and Cline, 1969; Lehrer, 1970). NADPH
oxidase deficiency in patients is associated with significantly
increased susceptibility to invasive mold infection, but it has
little effect on susceptibility to Candida infection. This finding
suggests that alternative mechanisms in vivo can compensate
for a defect in NADPH oxidase-dependent killing mechanisms.
Similarly, MPO deficiency in humans does not lead to a
predisposition to Candida infection unless concomitant risk
factors are present (Lanza, 1998; Netea et al., 2015).

Among these mechanisms we can cite the following:
extracellular traps ejected by macrophages and neutrophils
(METs and NETs), which are web-like structures composed of
dsDNA, histones and antimicrobial peptides and proteases (Boe
et al., 2015), nutritional stress, cationic stress, and proteases,
among others (Brown et al., 2014).

The microenvironment of phagocytic cells is inhospitable
before phagocytosis, and during the generation of ROS, the
cation levels are also increased. Kaloriti et al. (2012) reasoned
that the potency of neutrophils might be due the synergistic
combination of oxidative and cationic stress, rather than the
additive effects of the individual stresses.

In the macrophage environment, pathogens switch to a
gluconeogenic growth mode (shift from fermentative to non-
fermentative metabolism during the infective process; Lorenz
et al., 2004). The starvation-like response is specific to carbon
metabolism and the mutation of genes encoding key steps
in gluconeogenesis; the glyoxylate cycle and β-oxidation of
fatty acids attenuate virulence to a greater or a lesser degree.
The pathogen induces genes in the glyoxylate cycle and

TABLE 2 | Different studies related to protection against oxidative and nitrosative stress in pathogenic fungi.

Pathogenic fungi Antioxidant agent Stress Approach Reference(s)

C. neoformans Srx1 Oxidative Deletion constructs and

Northern blot

Upadhya et al., 2013

C. neoformans Tsa1 Oxidative and nitrosative Deletion constructs Missall et al., 2004

C. neoformans Trx1 and Trx2 Oxidative and nitrosative Real-time polymerase chain Missall and Lodge, 2005

C. neoformans Yap1 (a transcriptional factor) that

stimulates Trx and Gpx

Oxidative Mutant strains Paul et al., 2015

C. neoformans PKC1 Oxidative and nitrosative Deletion construct Gerik et al., 2008

P. brasiliensis CAT, SOD, Trx, CCP Oxidative Proteomic analysis de Arruda Grossklaus et al.,

2013

P. brasiliensis CAT Oxidative Western blot Moreira et al., 2004

P. brasiliensis CAT, CCP Oxidative Enzyme assays, Northern blot Dantas et al., 2008

P. brasiliensis SOD1, SOD3 Oxidative Knockdown constructs Tamayo et al., 2016

P. brasiliensis CCP Nitrosative Knockdown construct Parente et al., 2015

C. albicans CAT, Trx, Tsa, Trr, Gpx, Gsh Oxidative DNA microarray Enjalbert et al., 2006

C. albicans Flavodoxin-like proteins (FLPs) Oxidative Mutant construct Li et al., 2015

C. glabrata Gsh Oxidative Mutants constructs Gutiérrez-Escobedo et al., 2013

C. albicans Cwt1p (acting antagonistically

repressing the flavohemoglobin Yhb1p)

Nitrosative Mutant construct Sellam et al., 2012

A. fumigatus Skn7 and AfYap1p (transcriptional

regulators)

Oxidative Deletion constructs Lamarre et al., 2007; Lessing

et al., 2007

A. fumigatus SOD1, SOD2 Oxidative Deletion constructs Lambou et al., 2010
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uses two-carbon (C2) compounds as a carbon source for
gluconeogenesis, such as the products of fatty acid degradation
for energy production and survival inside host cells (Barelle et al.,
2006). With the increasing population of immunocompromised
people, the frequency of invasive fungal infection continues to
rise, making the need for effective treatments more imperative.
The enzymes of the glyoxylate cycle are valuable targets for the
development of antimicrobial drugs because this pathway does
not exist in the mammalian host.

ECE1 is a specific hyphal gene encoding a membrane protein
that is dependent on the cAMP pathway (Miwa et al., 2004)
and was one of the first genes to be identified during hyphal-
specific expression. Furthermore, ECE1 is among the most highly
expressed genes in the extension of hyphae, displaying increased
expression during the course of mycelial growth; however, it
does not participate in the initial occurrence of the morphology
(Fan et al., 2013). Additionally, this protein may be involved
in the formation of biofilms (Bandara et al., 2013). The amino
acid sequence of the fungus suggests that it is secreted from
hyphae as a group of eight short protein fragments, or peptides,
and thus would be well-positioned to interact with host cells.
An analysis of synthetic versions of each peptide revealed that
one, Ece1-III, elicited the same responses from epithelial cells
as hyphae and was denoted “candidalysin” (Moyes et al., 2016).
Candidalysin directly damages epithelial cell membranes, triggers
a danger response signaling pathway and activates epithelial
immunity. Membrane permeabilization is enhanced by a positive
charge at the carboxy terminus of the peptide, which triggers an
inward current concomitant with calcium influx (Moyes et al.,
2016).

Upon the initiation of fungal infection, PRRs, especially
dendritic cells, recognize fungal pathogens and surfaces
and recruit Ly6Chi monocytes to inflammatory sites during
infection. Once in the tissue, these monocytes differentiate into
macrophages and inflammatory dendritic cells, including TNF-α
and iNOS-producing cells and playing an important role in
the control of infection (Serbina et al., 2008; Wüthrich et al.,
2012). However, Blastomyces dermatitidis have the ability to
interfere with Ly6Chi recruitment after respiratory vaccination
by inducing MMP2 (lung matrix metalloproteinase 2), which
suppresses CCL7, one of the signals for monocyte recruitment
(Wüthrich et al., 2012). In addition, B. dermatitidis DppIVA,
which is a multifunctional protein that can act as a serine
protease, assists in evasion of the host immune response during
infection by cleaving CCL7, a C-C chemokine signal, which
recruits Ly6Chi CCR2+ monocytes to the sites of infection
(Sterkel et al., 2016). DppIVA also acts on mammalian GM-CSF
(granulocyte-macrophage colony-stimulating factor), which is
involved in the differentiation and activation of monocytes,
macrophages, dendritic cells, and neutrophils during the
immune response to pathogens. Inactivation of GM-CSF

indirectly affects the production of ROS, increasing the survival
of fungi (Sterkel et al., 2016).

DISCUSSION

Many efforts have been initiated to understand fungal evasion
of the immune system. The results of these efforts have shed
new light on the diversity and sophistication of the means
by which each fungal pathogen subverts the immune system.
Some fungi can use more than one strategy to escape immune
responses; moreover, sometimes there are different mechanisms
within the same species to avoid extermination. While these
mechanisms are generally insufficient to overcome a fully intact
immune system—hence the rarity of systemic fungal infections—
they are likely an important component of pathogenesis in
debilitated hosts and represent a fascinating window into the
evolution of a complex host-pathogen interaction. The next few
years are certain to identify additional means by which fungi
modulate immune functions and thus provide new insights
regarding challenging questions related to fungal pathogenesis.
An understanding of these sophisticated mechanisms of immune
evasion can also facilitate the development of novel preventive
and treatment therapies to control infection. Conventional
antifungal therapy associated with adjuvant immunotherapy
appears to be the prominent treatment for fungal infections
because failure therapy, rather than the absence of effective
antifungal agents, has the highest correlation to ineffective host
defense mechanisms. For this purpose, knowledge of the immune
system and its interaction with pathogenic fungi is needed,
such as the identification of fungal recognition receptors, host
defense mechanisms, and cell types involved in these processes,
as well as strategies used by fungi to escape the immune
system. Understanding the mechanisms by which fungi elude
host immune system antimicrobial defense to achieve successful
infection could lead to the identification of new drug targets
and the development of safe vaccines. Since the availability of
antifungal agents is still limited and no vaccine is currently
available, this goal is of great importance for the treatment of
fungal infections.
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