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Background: Staphylococcus aureus biofilms contribute negatively to a number of

chronic conditions, including chronic rhinosinusitis (CRS). With the inherent tolerance

of biofilm-bound bacteria to antibiotics and the global problem of bacterial antibiotic

resistance, the need to develop novel therapeutics is paramount. Phage therapy has

previously shown promise in treating sinonasal S. aureus biofilms.

Methods: This study investigates the long term (20 days) safety of topical sinonasal

flushes with bacteriophage suspensions. The bacteriophage cocktail NOV012 against

S. aureus selected for this work contains two highly characterized and different phages,

P68 and K710. Host range was assessed against S. aureus strains isolated from CRS

patients using agar spot tests. NOV012 was applied topically to the frontal sinus region

of sheep, twice daily for 20 days. General sheep wellbeing, mucosal structural changes

and inflammatory load were assessed to determine safety of NOV012 application.

Results: NOV012 could lyse 52/61 (85%) of a panel of locally derived CRS clinical

isolates. Application of NOV012 to the frontal sinuses of sheep for 20 days was found

to be safe, with no observed inflammatory infiltration or tissue damage within the sinus

mucosa.

Conclusion: NOV012 cocktail appears safe to apply for extended periods to sheep

sinuses and it could infect and lyse a wide range of S. aureus CRS clinical isolates. This

indicates that phage therapy has strong potential as a treatment for chronic bacterial

rhinosinusitis.

Keywords: bacteriophage, therapeutic safety, topical, inflammation, cilia, Staphylococcus aureus

INTRODUCTION

Staphylococcus aureus is an opportunistic bacterial pathogen forming biofilms, which are known
to be involved in a number of infective chronic diseases (Petti and Fowler, 2003; Ziran, 2007;
Baldoni et al., 2009; Foreman and Wormald, 2010; Singhal et al., 2010, 2011; Jervis-Bardy and
Wormald, 2012). These include osteomyelitis (Ziran, 2007), endocarditis (Petti and Fowler, 2003),
as well as infections of indwelling devices (Baldoni et al., 2009). In addition, sinonasal bound

Abbreviations: NOV012, Novolytics bacteriophage cocktail; Hip, Heat inactivated NOV012 bacteriophage cocktail; SEM,

scanning electron microscopy; CRS, chronic rhinosinusitis.
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biofilms of S. aureus are known to impact negatively in chronic
rhinosinusitis (CRS). The presence of such infections in CRS
reportedly leads to more frequent out-patient visits (Singhal
et al., 2011), increased risk of recurrent infections and antibiotic
use (Jervis-Bardy and Wormald, 2012) as well as poorer post-
operative progression (Foreman and Wormald, 2010; Singhal
et al., 2010). Such biofilms are up to 1000-fold more tolerant of
current antibiotic therapies than their planktonic counterparts
(Anwar et al., 1990). Further, increased levels of antibiotic
resistance observed in pathogenic bacteria around the globe
(Roca et al., 2015) also limit the success of antibiotic therapies.
It is important that new therapies which effectively treat such
infections are identified.

One alternative to antibiotics, originally described in the early
1900s and coming back into focus, is bacteriophage “phage”
therapy (Carlton, 1999). Beneficially, phages are not only effective
against planktonic infections, but can also infect and lyse biofilm-
bound cells (Doolittle et al., 1995; Corbin et al., 2001; Tait
et al., 2002; Sillankorva et al., 2004; Curtin and Donlan, 2006;
Cerca et al., 2007; Lu and Collins, 2007; Carson et al., 2010;
Fu et al., 2010). Recently, we have shown that topical phage
therapy has potential against pathogenic S. aureus bacterial
biofilms, using an animal model of rhinosinusitis (Drilling et al.,
2014a). Our previous work demonstrated the safety of once-
daily phage application into the frontal sinuses of sheep for
3 days (Drilling et al., 2014a). The first aim of the current
work was to examine the safety of phage administration for
a substantially longer period of time. In the current study we
investigated the effects of a longer-term (20 day) application
of twice-daily frontal sinus bacteriophage flushes in sheep. A
cocktail of two phages against S. aureus, designated NOV012,
was used. NOV012 contains two highly-characterized phages,
K710 and P68. Both the parental version of phage K710, phage
K (O’Flaherty et al., 2004), and phage P68 (Vybiral et al., 2003)
have had their genomes completely sequenced, and they have
been shown to lack any known genes that could increase the
virulence of S. aureus or confer resistance to antibiotics (Vybiral
et al., 2003; O’Flaherty et al., 2004). Phages K710 and P68 have
been shown to be active against a wide range of S. aureus isolates
from the United Kingdom and Europe (Takac and Blasi, 2005;
J Clark, personal communication). The second aim of this work
was to extend these observations by examining the susceptibility
of local (Australian) S. aureus isolates to the phages in
NOV012.

METHODS

Bacteriophage
A phage cocktail (NOV012) comprised of preparations of highly
purified phages, K710 and P68, was obtained from Novolytics
Pty. Ltd. (Warrington, United Kingdom). This cocktail of phages
is functionally similar to the CTSA cocktail (Special Phage
Services, Brookvale, NSW, Australia) which we used previously
(Drilling et al., 2014a). For commercial reasons CTSA was
unavailable. The concentration of phages in NOV012 stock was
maintained at 1 × 108 PFU/mL for in vivo and in vitro work.
To produce a heat-inactivated version of the cocktail, the phage

stock was treated at 121◦C for 15 min and tested by plaque assay
to confirm complete inactivation prior to use.

Bacteria
Investigation of S. aureus strains isolated from CRS patients
was approved by The Queen Elizabeth Hospital Human Ethics
Committee. Written informed consent was obtained for all
study participants. To isolate S. aureus from sinonasal swabs,
Columbian blood agar plates, colistin nalidixic acid plates or
cystine lactose electrolyte deficient plates (all from Thermofisher
Scientific, Australia) were employed. Latex agglutination tests
and antibiotic sensitivity testing were performed by the
commercial laboratory Adelaide Pathology Partners and used
to confirm identification of S. aureus and MRSA strains (data
not shown). Antibiotic resistance was determined using disc
diffusion methods as according to Clinical and Laboratory
Standards Institute (CLSI) recommendations (CLSI, 2012).
Isolates were then subcultured in nutrient broth overnight
(Thermo Fisher, Scoresby, Victoria, Australia) and stored in
nutrient broth with 20% glycerol at−80◦C.

CRS Bacterial Isolate Susceptibility to
Phage Infection
Bacterial sensitivity to phage infection was assessed by spotting
phage onto bacterial lawns in an agar overlay system. Briefly, S.
aureus isolates were cultured overnight at 37◦C with shaking for
16–18 h in nutrient broth. Overnight cultures were diluted 1:30 in
liquid 0.4% nutrient agar which was overlayed onto 1% nutrient
agar. Dilutions of P68, K710, and the cocktail of these (NOV012)
were spotted onto soft agar plates and allowed to dry. Plates were
inverted and incubated overnight at 37◦C. Spots were assessed
the next day and phage titres and plaque morphologies recorded.
Plaques were ranked “+++” (highly sensitive, clear plaque)
through to “+” (slightly sensitive, plaque barely discernible), and
plaques of status intermediate between these were ranked “++”
(moderately sensitive). Results were termed “lysis from without”
(LWO) when zones of inhibition were observed however discreet
plaques were not evident when the assay used diluted phage
stocks. Bacterial isolates were considered susceptible to phages
if a plaque was discernible. To determine the strain type of the
isolates, pulsed-field gel electrophoresis was used as described
(O’Brien et al., 2006). Isolates with ≥80% similarity or <6 band
differences were considered the same strain. Efficiency of plating
was determined using the concentration of phage determined
from infection of the S. aureus reference strain ATCC 25923
(Drilling et al., 2014a,b, 2016).

Frontal Sinus Access and Treatment
Animal work performed in this study was approved by the
South Australian Health and Medical Research Institute and the
University of Adelaide Animal Ethics Committees. Access to
the ovine frontal sinus was achieved through the placement of
mini-trephines, as described (Ha et al., 2007). Once accessed,
sinuses where flushed twice daily with 50 mL of treatment
using an extension cannula for 20 days. Sheep were treated
with one of three different treatments: 0.9% saline (“CONT”),
0.9% saline containing 2 × 106 pfu/mL heat-inactivated phage
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NOV012 (HIp) or 0.9% saline containing 2 × 106 pfu/mL
active NOV012 (NOV012). Each treatment group consisted of 4
sheep. One trephine from each treatment group became blocked
during the treatment, resulting in n = 7 sinuses per group.
Sheep were monitored for general wellbeing during treatment.
At the completion of treatment, sheep were euthanized and sinus
tissue harvested for analysis. Microbiology swabs were taken to
determine the bacterial composition of the sinus.

Histology and Scanning Electron
Microscopy
Mucosal sections were dissected and placed in either 10%
formalin for histological analysis, or scanning electron
microscopy (SEM) buffer [4% paraformaldehyde/1.25%
glutaraldehyde in phosphate-buffered solution (PBS) with 4%
sucrose] for SEM. For histological analysis, tissue was embedded
into paraffin blocks, sectioned, mounted on slides, and stained
using haematoxylin and eosin (H&E). Sections were examined
by an experienced tissue pathologist (author CJ). Sections were
identified only by a code to ensure the examining pathologist
was unaware of which treatment had been provided to the
animals. The examining pathologist graded the tissue for levels
of inflammation, oedema, fibrosis, and presence or absence of
goblet cell hyperplasia. For SEM, tissue was counterstained using
2% osmium tetroxide and dehydrated using a graded series of
70–100% ethanol washes. The tissue was chemically dried using
hexamethyldisilazane (Sigma Aldrich) and mounted on SEM
stub specimen mounts (Ted Pella, Redding, CA). The stubs
were then coated in carbon using a standard carbon coater (Ted
Pella) and viewed using an XL30 field emission Gun scanning
electron microscope (Philips, Eindhoven, Netherlands). Five
images of each tissue section were captured at magnification
2500× where at least 50% of the image allowed visualization of
the tissue surface. Each image was broken down into 2 cm2 grid
sections and scored either: 1, full cilia coverage; 0.5, some cilia
coverage; 0, no cilia present. Not counted, mucus covering cilia
or epithelial layer, so tissue could not be visualized.

Isolation of Phage from Serum Samples
Serum samples were collected from all sheep prior to the first
treatment flush. Further, sheep in the inactivated phage group
and in the control group had serum samples taken on days 7,
14 and 19 after the first flush. Phage-treated sheep had serum
samples taken 10 min, and 1, 2, and 4 h after flush 1, and 18 h
after the second flush. Serum samples were not found to contain
phages at any of the tested time points. Therefore on days 7, 14,
and 19, serum samples were harvested directly after phage flush 1
as well as 1 and 2 h post-flush 1 and 18 h post-flush 2. A mucosal
sample (1 g) harvested from each phage-treated sheep on day
21 was processed and filtered as previously described (Drilling
et al., 2014a). All harvested serum and mucosal samples were
tested for infectious phage using the agar overlay plaque assay
method. Serum (1 ml) or processed mucosal sample was mixed
with cultures of S. aureus strain ATCC 25923 (cultured as above)
and incubated at room temperature for 15 min. Samples were
then mixed with 2 mL of 0.7% nutrient agar and overlayed onto
1% nutrient agar plates. Plates were examined every 24 h for 3

days for the presence of plaques. Agar overlays were performed
in triplicate.

Statistics
Statistical analyses were performed using SPSS version 23
software (IBM R© SPSS R© Statistics, New York, USA). Fisher’s
exact tests were used to compare the range of S. aureus stains that
the phage preparations (P68 vs. K710 vs. cocktail) could infect
and kill. All other statistical comparisons were performed using
Kruskal-Wallis analysis and post-hoc with Bonferroni correction
(Theodorsson-Norheim, 1986).

RESULTS

Infection Range of Phages P68 and K710
Against CRS-Derived S. aureus Clinical
Isolates
S. aureus isolates from 61 patients diagnosed with CRS were
examined (Table 1). When tested for strain type by pulse-field
gel electrophoresis, 25 different strains were identified. Each
strain contained 1–6 different clonal types. Clonal types R1, R3,
and T3 were observed in the isolate population more twice.
When tested for susceptibility to K710, P68, and NOV012, 36/61
isolates (59%) were found sensitive to phage K710, 45 (74%)
were sensitive to P68, and 52 (85%) were sensitive to NOV012
(Table 1). The cocktail was able to infect significantly more S.
aureus strains compared to single K710 application (p= 0.0022).
The cocktail lysed more strains compared to P68, however this
was not statistically significant. Five CRS isolates were identified
to bemethicillin-resistant S. aureus (MRSA) isolates. Three of the
five MRSA isolates were susceptible to K710 and all five MRSA
isolates were susceptible to P68. Efficiency of plating for each
isolate ranged from 0.002 to 4-fold for K710, 2.7E-06 to 6.7-fold
for P68 and 4E-06 to 8-fold for NOV012.

Animal Studies
Observations of Sheep General Health
During phage administration to sheep, there was no change in the
general well-being of three out of four sheep in each of the control
group and the phage group. One sheep in the control group
and one in the phage group experienced some loss of appetite
during the treatment period. Both sheep were found to have
infections at the site of catheter insertion, which was thought to
be the cause of appetite disruption. Antibiotic treatment during
the treatment period, in accordance with the ethics committee-
approved experimentation protocol, improved the appetite of
both sheep. The general health of all four sheep treated with HIp
was as expected and no change in sheep well-being was observed
in this group.

Histology of Sheep Sinus Mucosa
H&E stained tissue sections taken from sheep euthanized at
the end of the treatment period (Figure 1) were examined for
inflammation, oedema, fibrosis and the presence or absence of
goblet cell hyperplasia. There were no significant differences
between the groups in regard to each of these parameters (data
not shown).
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TABLE 1 | Sensitivity of S. aureus isolates of CRS origin to bacteriophage

lysis (efficiency of plating indicated in brackets).

Pulsotype K710 P68 NOV012

A1 LWO LWO LWO

A2 +++ (0.07) ++ (0.006) +++ (0.3)

A3 + (0.004) + (0.0003) + (0.003)

B1 +++ (0.7) + (0.0006) +++ (0.5)

B2 LWO +++ (0.2) +++ (0.2)

C1 LWO ++ (0.0002) + (0.0003)

C2 ++ (0.2) R ++ (0.1)

C3 + (0.02) R + (0.02)

C4 R + (2.7E-06) + (4E-06)

C5 + (0.002) LWO + (0.004)

C6 R + (6E-06) + (4E-06)

D1 LWO R LWO

D2 R R R

D3 LWO + (0.003) + (0.9)

D4 LWO R LWO

E +++ (0.5) +++ (0.26) +++ (0.6)

F +++ (0.02) +++ (0.19) +++ (0.29)

G + (0.007) R + (0.008)

H1 LWO LWO LWO

H2 R +++ (2) +++ (3)

H3 R R R

H4 +++(0.58) +++ (3) +++ (3)

H5 +++ (0.19) +++ (0.02) +++ (0.53)

H6 +++ (0.3) +++ (1.1) +++ (2)

I1 +++ (4) +++ (2) +++ (5)

I2 +++ (0.3) +++(0.03) +++ (3)

J +++ (0.13) +++ (4) +++ (6)

K +++ (0.74) +++ (0.04) +++ (0.79)

L +++ +++ +++

M +++ LWO +++

N1 LWO ++ ++

N2 +++ (0.25) ++ (0.9) +++ (0.6)

N3 +++ (0.1) +++ (0.5) +++ (3)

O1 +++ (0.5) +++ (1.3) +++ (0.4)

O2 +++ (0.2) + (0.0006) +++ (0.5)

O3 +++ (0.14) R +++ (0.16)

P LWO LWO LWO

Q LWO +++ (0.24) +++ (0.14)

R1 R +++ (4) +++ (6)

R1 R ++ (0.15) ++ (0.2)

R2 +++ (0.09) +++ (3.8) +++ (2.7)

R3 R +++ (5.3) +++ (8)

R3 R +++ (0.9) +++ (1.1)

R4 R +++ (2) +++ (3)

R5 +++ (0.4) +++ (2) +++ (3.3)

R6 +++ (0.27) +++ (2.7) +++ (4)

S1 ++ (0.05) + (0.0038) ++ (0.11)

S2 +++ (0.08) ++ (0.001) +++ (0.4)

T1 LWO R LWO

T2 LWO +++ (6.7) +++ (5.3)

(Continued)

TABLE 1 | Continued

Pulsotype K710 P68 NOV012

T3 +++ (0.07) +++ (0.47) +++ (0.27)

T3 +++ (0.04) +++ (0.74) +++ (0.79)

T4 +++ (0.6) R +++ (1.2)

T5 LWO +++ (0.19) +++ (0.53)

U +++ (0.7) ++ (0.0006) +++ (0.54)

V1 +++ (0.27) +++ (0.03) +++ (0.25)

V1 +++ (0.1) +++ (0.4) +++ (7.3)

W LWO R LWO

X +++ (0.93) +++ (0.09) +++ (1.2)

Y1 +++ (0.12) +++ (0.02) +++ (0.3)

Y2 LWO +++ (0.15) +++ (1.13)

Showing lysis of S. aureus isolates distinguished on the basis of pulsed-field gel

electrophoresis (“pulsotypes”). NOV012 lysed 52/61 (85%) of isolates. LWO, lysis from

without; R, resistant;+, slightly sensitive;++, moderately sensitive;+++, highly sensitive.

Gray shaded isolates represent MRSA strains. All strains where obtained from The Queen

Elizabeth hospital, Woodville, Australia.

Presence and Appearance of Cilia of Mucosa Tissue
SEM was performed to allow closer inspection of sinus mucosa
cilia. Cilia of all seven sinus samples harvested from HIp
treatment were able to be visualized. The cilia of one control
treated sheep sample and one phage treated sample were
obscured from view by mucus, hence these samples were
excluded from analysis. The appearance and coverage of the cilia
was similar across the groups (Figure 2).

Phage Detection in Sheep Serum
Using plaque assays, no infectious phages were detected in serum
of the CONT, Hip, or NOV012-treated sheep taken at any
timepoint during the experiment.

DISCUSSION

Phage therapy has almost a 100 year history of human application
for treating bacterial infections (Carlton, 1999). Accompanying
this long history is an outstanding record of safety. There are
numerous reports of the safety of phage therapy in animal
(Soothill, 1994; Biswas et al., 2002; Wills et al., 2005; McVay
et al., 2007; Hawkins et al., 2010; Park et al., 2014) and in
human trials (Markoishvili et al., 2002; Bruttin and Brussow,
2005; Rhoads et al., 2009; Wright et al., 2009; Sarker et al., 2012;
McCallin et al., 2013). Our previous work showed that short-
term bacteriophage application is safe when applied topically to
the sheep sinonasal region (Drilling et al., 2014a). This study
aimed to extend this work by assessing longer-term (20 days)
sinonasal phage application. This safety data is needed to support
the further preclinical development of phage therapy in general
and NOVO12 specifically as it is likely that phage therapy would
be used in patients for an extended period of time, at least 2
weeks.

It is recognized that phage may interact with some aspects of
the host immune system, and it is important to ensure they do not
elicit adverse immune responses (Kaur et al., 2012). Supporting
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FIGURE 1 | Haematoxylin and eosin stained sheep nasal mucosa sections. Sections are of tissues taken from animals euthanized after 20 days of treatment as

below. No differences in tissue inflammation, oedema, fibrosis and the presence or absence of goblet cell hyperplasia was observed between treatment groups (A,B)

control, (C,D) heat-inactivated NOV012 (Hip) treatment and (E,F) active NOV012 treatment.

our previous work (Drilling et al., 2014a), this study shows that
20 days of topical phage therapy did not modify or damage
the architecture of the sinus mucosal lining. Phage application
for this extended period did not appear to increase or alter the
profile of immune cells in the sinus mucosa. A limitation of
this study is that only the presence of the cells was examined,
whereas stimulation of the cells in relation to immune effector
molecules such as cytokines was not investigated. Previous work
has investigated this parameter, applying phage T4 or purified
phage T4 proteins to mice and humans (Miernikiewicz et al.,
2013). It was shown that such products did not stimulate
the production of inflammatory related cytokines and reactive
oxygen species (ROS; Miernikiewicz et al., 2013). In contrast,
it has been suggested that through complex bacterial-phage-
host interaction, phage can reduce ROS production (Przerwa

et al., 2006; Miedzybrodzki et al., 2008). Recent research has
also investigated the effect on phage infectivity when exposed to
cell lines that mounted an inflammatory response to the phage.
This study found that the phage still retained infectivity against
bacterial cells (Khan Mirzaei et al., 2016).

It is not known whether phages can traverse the sinonasal
mucosal barrier to gain access to the bloodstream. During the 20
days of treatment, no phages were detected in the bloodstream.
A limitation of this study, which relied on plaque assays,
is that it could not determine whether inactivated phage or
phage genomes entered the bloodstream. A further limitation
is that this study did not address the question of whether
the sheep developed antibodies against phages. It has been
shown that neutralizing antibodies may be produced following
phage treatment (Kucharewicz-Krukowska and Slopek, 1987),
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FIGURE 2 | Representative images of sheep nasal mucosa viewed

using scanning electron microscopy and analysis of cilia coverage. Cilia

coverage and morphology were similar between all treatment groups including

(A) control, (B) heat-inactivated NOV012 (Hip) treatment, and (C) active

NOV012 treatment. (D) Five images of each tissue section were captured at

2500× magnification, divided into 2 cm2 grid sections and each grid scored

according to 1, full cilia coverage; 0.5, some cilia coverage; 0, no cilia present.

This graph shows the average percentage coverage across the three

treatment groups, no statistical difference was observed between the groups.

and our future work will examine this possibility. This is of
interest because it is not yet confirmed whether development
of anti-phage antibodies will have a negative impact on phage
therapy (Sulakvelidze et al., 2001). Recent research however has
shown positive results, showing that development of antibodies
may not necessarily strongly impact the clinical success of
phage therapy (Zaczek et al., 2016; Lusiak-Szelachowska et al.,
2017).

In addition to examining the safety profile of phage cocktail
NOV012, this study also investigated the NOV012 host range
in the context of CRS S. aureus infections. The findings of this
study build on our previous work (Drilling et al., 2014a) that
suggests using a cocktail of phage assisted in overcoming issues
of matching phage to bacteria. We found that phage K710 was
effective against 59% of the S. aureus strains in our panel of
isolates, which was increased to 85% with addition of phage P68.
Using cocktails rather than a single phage has the additional
benefit of reducing the rate of generation of bacteria resistant to
phage infection (Chan et al., 2013).

This work has implications beyond the treatment of CRS.
For example, nasal colonization with S. aureus increases the
risk of surgical wound infection (Perl and Roy, 1995). S. aureus
decolonization reduces such risks (Bode et al., 2010; Chen et al.,
2013), and phage have potential to achieve this. Other potential
applications include topical treatment of burn wounds (Mousa,
2005) and treatment of indwelling catheter infections (Piraino,
2000). Importantly, this therapy can be broadened to target other
bacterial pathogens.

CONCLUSIONS

This work confirms that the NOV012 phage cocktail infects a
broad range of S. aureus isolates, including a number of MRSA
isolates, from CRS patients. Further, we find that longer term (20
day) topical application of the cocktail is safe for sheep sinonasal
application. This safety data supports the potential for the use of
phage as a topical antimicrobial treatment in CRS and will help
build the profile of the product to lead to the ability to use the
product in clinical trials and eventually commercially.
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