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Bacterial pathogens have coevolved with their hosts and acquired strategies to

circumvent defense mechanisms of host cells. It was shown that bacteria interfere with

the expression of mammalian microRNAs to modify immune signaling, autophagy, or

the apoptotic machinery. Recently, a new class of regulatory RNAs, long non-coding

RNAs (lncRNAs), was reported to have a pivotal role in the regulation of eukaryotic gene

expression. A growing body of literature reports on specific involvement of lncRNAs in

the host cell response toward bacterial infections. This mini review summarizes recent

data that focuses on lncRNA function in host cells during bacterial infection and provides

a perspective where future research in this regard may be going.
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INTRODUCTION

Interkingdom communication between hosts and microbes is one of the propelling aspects in
mammalian evolution. Mucosal surfaces provide an extensive area, which is in direct contact
with bacteria, fungi and viruses. Bilateral communication of the mucosal tissue with microbiota is
essential for colonization, homeostasis, and development. On the other hand, bacterial pathogens
have coevolved with their hosts and have acquired mechanisms to defeat mucosal barrier, invade
and hijack phagocytes, and interfere with phagosome biogenesis or apoptotic pathways to manifest
infection (Pieters, 2008; Rocco and Irani, 2011; Sharbati et al., 2011). Many bacterial pathogens such
asmycobacteria, listeriae, and salmonellae can invade host cells and replicate inside.

Intracellular bacterial pathogens have been shown to interfere with expression of small non-
coding, regulatory RNAs like microRNAs (miRNA) affecting host cell response signaling pathways
such as apoptosis and autophagy (Rodriguez et al., 2007; Schulte et al., 2011; Sharbati et al., 2011,
2012; Hoeke et al., 2013; Pawar et al., 2016b; zur Bruegge et al., 2016). While the role of miRNAs
in bacterial infections has been extensively studied and excellently reviewed in previous years
(Eulalio et al., 2012; Das et al., 2016; Kim et al., 2017), we are beginning to realize the pivotal
role of another class of regulatory RNA molecules, which are collectively referred to as long non-
coding RNAs (lncRNAs). Next-Generation RNA sequencing (RNAseq) studies have examined
that the majority of the mammalian genome is transcribed but very little of it has the ability to
encode for proteins (Birney et al., 2007). lncRNAs are distinguished from other non-coding RNAs
primarily based on their size of larger than 200 nt. Their numbers are estimated to reach those of
protein coding genes but they are generally shorter, have fewer exons and possess low evolutionary
conservation (Bertone et al., 2004; Heward and Lindsay, 2014). Furthermore, they have lower
level of cellular concentration than protein-coding transcripts but have a higher degree of tissue
specificity (Pang et al., 2006; Marques and Ponting, 2009). lncRNAs are frequently localized in
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the nucleus functioning both in cis (at the site of their
transcription) and in trans (at the sites on other chromosomes),
which points to potential functions as interfaces with the
epigenetic machinery, chromatin organization, and regulation
of gene expression. lncRNAs function e.g., as protein scaffolds,
activators, or inhibitors of transcription, antisense RNA or
miRNA sponges, respectively (Cech and Steitz, 2014; Rinn, 2014).
The latter has been reported recently as a novel mode of action
of lncRNAs, where they act as competing endogenous RNA
(ceRNA). This suggests the existence of a network of lncRNAs,
miRNAs, and mRNAs crosstalking based on mutual miRNA
response elements (MRE; Salmena et al., 2011; Hanisch et al.,
2017). There are many subclasses of lncRNAs, classified e.g.,
based on their length and location such as long intergenic RNAs
(lincRNAs) or based on their association with annotated protein
coding genes such as natural antisense transcripts (NATs; St
Laurent et al., 2015). A growing body of literature reports on
specific lncRNA involvement in host cell response to bacterial
infections. This mini review is intended to summarize very recent
data on lncRNA function in bacterial infections. We aim at
combining these pioneering data with relevant cellular signaling
pathways that are manipulated by bacterial pathogens to provide
a perspective where further research in this regard may be
going.

EXPLORING lncRNA FUNCTION
THROUGH THE ANALYSIS OF
NEIGHBORING CODING GENES

The fact that lncRNAs are prominently involved in the
response of different host cells to various bacterial agents such
as Mycobacterium (M.) spp., Salmonella (S.) Typhimurium,
Escherichia coli, Listeria (L.) monocytogenes, Helicobacter pylori,
and Campylobacter (C.) concisus as well as TLR ligands has been
recently demonstrated in several studies but the functions of
these lncRNAs remain to be elucidated (Ilott et al., 2014; Yi et al.,
2014; Yang et al., 2015; Zhu et al., 2015; Yang R. et al., 2016;
Westermann et al., 2016).

lncRNAs have been reported to regulate the expression
of neighboring protein-coding genes through a locus control
process (Wang and Chang, 2011; Wang et al., 2011). Therefore,
functions may be speculated from their locus and adjacent
protein coding genes. According to this assumption, genes
related to immune functions are most likely influenced by
lncRNAs induced by bacterial pathogens. For example, Toll-
like-receptor (TLR)4 activation of primary human monocytes
stimulated with LPS led to differential expression of a
comprehensive set of lncRNAs. Two hundred and twenty-
one out of nine hundred and eighty nine lncRNAs showed
LPS-induced differences in expression levels (Ilott et al.,
2014). Interestingly, differentially expressed lncRNAs were
closely located to differentially expressed inflammatory genes.
Another group investigated publicly available microarray data
of LPS stimulated mouse macrophages and identified several
lncRNAs to be differentially regulated upon stimulation. They
found a correlation in the expression of many lncRNAs

and neighboring protein-coding genes, for example NFκB2
or Rel, both involved in NFκB signaling (Mao et al.,
2015).

In THP-1 macrophages infected with C. concisus 333 long
intergenic RNAs (lincRNAs, a subclass of lncRNAs) were
differentially expressed compared to uninfected cells (Kaakoush
et al., 2015). Among these, eight were exclusively expressed
in infected cells. The functions of these eight lincRNAs are
unknown but their adjacent protein coding genes were shown
to be involved in the regulation of immune responses. For
example, in C. concisus infected cells the protein coding gene
TNFAIP3 (which was upregulated 25.7-fold by the infection)
adjacent to regulated lncRNAs was shown to inhibit TNF-
and IL1-induced NFκB gene expression (Song et al., 1996).
It was shown that TNFAIP3 is induced by TNF and IL-1
and might therefore be involved in the regulation of NFκB
dependent genes in diverse bacterial infections. Consequently,
the lncRNA adjacent to TNFAIP3 induced by C. concisus might
be a NFκB regulator influenced by several pathogens known
to affect NFκB signaling. In accordance with this, Ma et al.
recently demonstrated that there is a lncRNA (lincRNA-Tnfaip3)
located at mouse chromosome 10 proximal to TNFAIP3 which
acts as an early response gene controlled by NFκB signaling in
LPS stimulated mouse macrophages (Ma et al., 2016). LincRNA-
Tnfaip3 seems to assemble a NFκB/Hmgb1/lincRNA-Tnfaip3-
complex in response to LPS which leads to epigenetic chromatin
remodeling and transactivation of inflammatory genes in mouse
macrophages.

Speculating on lncRNA function based on their locus and
function of neighboring protein coding genes might therefore
be useful to predict potential lncRNA mechanisms and identify
possible targets to discover gene regulatory functions during
infection. However, only a fraction of reported lncRNAs involved
in the immune response toward bacterial infection were validated
in terms of mechanisms andmode of action. Directed approaches
as described below and suitable knock-out models are needed
to predict and functionally explore suchlike lncRNAs in host
organisms infected with bacterial pathogens.

FUNCTIONAL AND MECHANISTIC
STUDIES

A wealth of research projects have been carried out to elucidate
the mechanisms how small ncRNAs, especially miRNAs, interact
with their target molecules and post-transcriptionally inhibit
gene function during bacterial infections. However, in case of
lncRNAs the current knowledge is restricted to a handful of
studies that investigated the functional role of certain lncRNAs
during pathogen challenge or stimulation with pathogen
associated molecular patterns (PAMPs). Some lncRNAs mediate
their function through similar mechanisms e.g., promoting
changes in chromatin methylation states or interacting with
heterogenous ribonucleoproteins (hnRNPs). For other lncRNAs
the function could be associated to a specific pathway, however,
the molecular mode of action by which the function is mediated
remains to be explored. A summary of lncRNAs that were
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validated in terms of function and/or mode of action is listed in
Table 1.

lncRNA-Mediated Modulation of
Chromatin Methylation States
Several lncRNAs were shown to control transcription of mRNAs
by turning the methylation state of their target genes to an active
or suppressive condition.

For example, the Polycomp Repressive Complex 2 (PCR2)
exhibits methyltransferase activity through its subunit EZH2 and
leads to trimethylation of a lysine residue at position 27 in the
protein histone H3 (H3K27me3). H3K27me3 is a marker for
transcriptional repression. PCR2 consists of several subunits.
Two of them, mentioned EZH2 (exhibits methyltransferase
activity) and SUZ12 (a zinc-finger protein) have been reported
to interact with lncRNAs to inhibit expression of target genes by
repressing chromatin at the respective promotors (Khalil et al.,
2009).

TNF-α seems to be a prominent target regulated by this
mechanism during bacterial infections. It was shown that the
lncRNA-CD244 which is upregulated by the T-cell inhibitory
molecule CD244 inM. tuberculosis infection acts as an epigenetic
inhibitor of TNF-α and INF-γ expression. The authors were able
to show that lncRNA-CD244 directly interacts with the PCR2
subunit EZH2 which leads to trimethylation of H3K27 and a
more repressive chromatin state at the INF-γ or TNF-α loci

(Wang et al., 2015). A similar mechanism in terms of lncRNA-
mediated control of TNF expression has been reported through
bidirectional lncRNAs upstream of the TNF gene locus (Shi
et al., 2014). The authors were able to show that these unnamed
lncRNAs bind LRRFIP1 (a repressor of TNF) and chromatin.
Furthermore, the data suggests a scaffolding function for these
lncRNAs by which the 2 subunits of the PCR2 complex (EZH2
and SUZ12) and LRRFIP1 are assembled to the TNF region
to maintain a repressed chromatin state at the TNF promotor
forming an inhibitory complex.

TNF-α plays a major role in the host response to control
M. tuberculosis infection. To promote infection and ensure
persistence and replication in the host cell, M. tuberculosis is
known to successfully inhibit TNF-α production via diverse
mechanisms including modulation of the miRNA host response
(Reed et al., 2004; Kurtz et al., 2006; Singh et al., 2013).
Depending on the cellular context, TNF can either induce
apoptosis or NFκB-mediated survival. Many bacterial pathogens
such as S. Typhimurium or Yersinia enterocolitica are known to
interfere with TNF signaling to promote pathogenicity (Rahman
and McFadden, 2006). Modulation of TNF expression through
lncRNAs is a new reported mechanism which might possibly
be employed by other pathogens interfering with TNF levels to
establish infection.

Another lncRNA affecting the trimethylation state of H3K27 is
lnc-IL7R. It was highly induced in THP-1 cells as well as PBMCs

TABLE 1 | Validated functions and mechanisms of lncRNAs expressed in host cells during bacterial infection or stimulation with bacterial compounds.

lncRNA Host organism Pathogen/microbial

component

Function Mechanism References

LincRNA-Tnfaip3 Mouse macrophages LPS Activation and repression

of distinct classes of

inflammatory genes

Assembles a NFkB

/Hmgb1/lincRNA-Tnfaip3

complex which modulates

Hmgb1-associated

histone modifications

Ma et al., 2016

lncRNA- CD244 CD8+ T cells M. tuberculosis Inhibition of TNF-α and

INF-γ expression

Interaction with PCR2 Wang et al., 2015

Unnamed lncRNAs THP-1 cells LPS Regulates TNF-α

expression

Interaction with PCR2

subunit EZH2, SUZ12 and

LRRFIP1

Shi et al., 2014

lncRNA-IL7R THP-1 LPS, TLR2-ligand Reduces the expression of

LPS induced inflammatory

mediators such as

E-selectin and VCAM-1

Increases trimethylation of

H3K27

Cui et al., 2014

NeST Mice Salmonella (and

Theiler’s virus)

INF-γ upregulation Interaction with WDR5 Gomez et al., 2013

lincRNA- Cox2 Mouse macrophages LPS, TLR2-ligand, L.
monocytogenes

Regulates the expression

of immune related genes

Interaction with hnRNP Carpenter et al., 2013

Mouse bone marrow derived

dendritic cells

LPS Guttman et al., 2009

THRIL THP-1 TLR2-ligand Regulates TNF-α

expression

Interaction with hnRNP Li et al., 2014

lincRNA- EPS Macrophages and dendritic

cells

L. monocytogenes,
TLR2-, TLR3-,

TLR4-ligands

Controls immune related

genes

Interaction with hnRNP Atianand et al., 2016

lncRNA AS-IL1α Mouse macrophages L. monocytogenes,
TLR ligands

Enhances IL1α expression recruits RNA polymerase II

to the IL1-α promotor

Chan et al., 2015

MEG3 THP-1 cells M. bovis BCG autophagy Unknown Pawar et al., 2016a
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when they were stimulated with TLR4- and TLR2- but not with
TLR3-ligands (Cui et al., 2014). By increasing trimethylation of
H3K27 at the proximal promotor, lnc-IL7R was able to reduce
the expression of LPS-induced inflammatory mediators such as
E-selectin and VCAM-1. However, the mechanism by which
the trimethylation state of H327k was affected could not be
elucidated since the authors found no interaction between lnc-
IL7R andmembers of the PCR2 complex or other protein binding
partners of lnc-IL7R.

In contrast to generating a repressive chromatin state, the
lncRNA NeST has been shown to turn chromatin to an
active state by binding WDR5 in the Histone 3 Lysine 4
methyltransferase complex (H3K4). The trimethylation of H3K4
establishes an active chromatin state at the INF-γ locus leading
to INF-γ accumulation. Initially the lncRNA NeST was linked to
Theiler virus susceptibility. Gomez et al. found out that it controls
the pathogenesis of another pathogen. They demonstrated that
mice expressing NeST RNA show increased susceptibility to
Theiler but decreased Salmonella pathogenicity (Gomez et al.,
2013). Binding of the adapter protein WDR5 by lncRNAs to
generate an active chromatin state at H3K4 has been shown for
other lncRNAs (e.g., HOTTIP) and might be demonstrated for
further lncRNAs in the future.

The Role of NFκB
As described above, many lncRNAs were reported to interfere
with NFκB signaling (Ilott et al., 2014; Ma et al., 2016). NFκB
proteins are a family of five structurally related transcription
factors controlling the expression of inflammatory molecules to
counteract bacterial infection. The process of NFκB activation
is mediated via recognition of pathogen-associated-molecular
patterns (PAMPS) on the outer side of the microbe through
respective pattern-recognition receptors such as TLRs found
on the membrane and in the cytoplasm of host cells. To
overcome immune response, bacteria have developedmechanism
to modulate NFκB signaling (Johannessen et al., 2013).

Interestingly, the expression of several lncRNAs has been
linked to TLR-dependent NFκB activation. This suggests
that lncRNAs are involved in NFκB signaling regulating the
transcription of not only cytokines during host response but
also regulating several aspects of innate and adaptive immune
response such as differentiation, proliferation and survival. An
example is lincRNA-Cox2. It has been first reported to be
upregulated in mouse bone-marrow-derived dendritic cells after
TLR4 stimulation while it was only slightly increased upon TLR3
stimulation. It is located 51 kb upstream of the Cox2 coding
gene and induced directly via NκFκB (Guttman et al., 2009).
Similarly, in another study, lincRNA-Cox2 was among the most
highly induced lncRNA candidates in mouse macrophages when
stimulated with the TLR2 ligand Pam3CSK4 but also induced
by TLR4- and TLR7/8-stimulation as well as L. monocytogenes
infection (Carpenter et al., 2013). Although it was shown to
form a complex with hnRNP A/B and A2/B1, no direct target of
lincRNA-Cox 2 was identified. However, the authors were able to
show that lincRNA-Cox2 both positively and negatively regulated
the expression of immune related genes.

The interaction with hnRNPs to influence TLR/NFκB
signaling has also been demonstrated for other lncRNAs. The

lncRNA THRIL (TNF-α and hnRNPL related immunoregulatory
LincRNA) has been found to be dysregulated in human THP-1
macrophages stimulated with TLR2 ligand. The authors found
that THRIL regulates TNF-α expression by interacting with
hnRNP-L (Li et al., 2014). THRIL and hnRNP-L possibly form a
complex that stimulates TNF-α transcription by binding to the
TNF-α promotor. Furthermore, the expression of many other
NFκB-dependent pro-inflammatory cytokines were influenced
by THRIL, demonstrated through THRIL knockdown. Atianand
et al. identified another lncRNA (lincRNA-EPS) that controls
NFκB dependent immune related genes in TLR-stimulated as
well as L. monocytogenes infected macrophages and dendritic
cells by binding hnRNPs (Atianand et al., 2016). Besides
lincRNA-Cox2 and lincRNA-EPS another lncRNA called AS-
IL1α has been shown to be induced after L. monocytogenes
infection of mouse macrophages as well as stimulation
with a range of TLR ligands (Pam3CSK4-TLR2, LPS-TLR4,
polyinosinic-polycytidylic acid-TLR3) in a NFκB dependent
fashion. AS-IL1α is partially complementary to IL1α and has been
shown to enhance IL1α expression by recruiting RNApol II to the
IL1α promotor (Chan et al., 2015).

The question if lncRNA-interference with NFκB and other
immune related pathways favors the host or the pathogen
needs to be investigated under defined conditions. The lncRNAs
expressed in response to TLR stimulation might belong to
a core response to fine tune immune function as described
for microRNAs (Siddle et al., 2015). If there are specific
lncRNA candidates manipulated by bacterial effector proteins
or individual virulence factors needs to be in the focus of
further investigations. Interestingly, viable but not heat killed
M. bovis BCG were able to downregulate the lncRNA MEG3
in macrophages indicating a participation of effectors derived
from viable bacteria influencing lncRNA expression (Pawar et al.,
2016a).

Interaction with MicroRNAs
As described in the introduction, there is evolving evidence
that lncRNAs and miRNAs influence each other through diverse
mechanisms (Yoon et al., 2014). However, until today there is
no data confirming this crosstalk in host cells during bacterial
infection.

Nevertheless, our group recently identified a participation of
the lncRNA MEG3 in the process of autophagy in macrophages
infected with M. bovis BCG based on the hypothesis that
lncRNAs and miRNAs directly interact. Pathway analysis and
subsequent follow-up experiments revealed MEG3 to exhibit a
regulatory function in autophagy (Pawar et al., 2016a). Although,
the exact mechanism and miRNA-interaction partner remains to
be elucidated in this case, we presume that diverse functions of
lncRNAs involved in bacterial infections are mediated through
their interaction with miRNAs.

CONCLUSION/OUTLOOK

According to the reviewed literature, lncRNAs seem to be
important epigenetic regulators of the mammalian immune
response toward bacterial infection. However, lncRNA research
is still in its infancy compared to research on miRNAs, especially
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regarding their role in bacterial diseases. Not only based on
their length but also because of heterogeneous mechanisms
and molecular modes of action lncRNAs completely differ from
miRNA and are believed to prompt substantial clues in regulation
of host response to bacterial infections.

Since miRNAs were first described in 1993, the use of miRNAs
as a diagnostic tool but also their therapeutic application for
various types of diseases are a major focus of investigation
and initial miRNA-based therapeutics are currently examined
in clinical trials (Li and Rana, 2014). So far, it appears that
the use of lncRNAs as a diagnostic marker and therapeutic
agents might be more prosperous since lncRNAs seem to be
tissue- and target-specific in contrast to miRNAs which are
master-regulators in several tissues and often target multiple
mRNAs. This could make lncRNAs more specific biomarkers
but also promising therapeutics for a certain disease due to
minimized off-target effects. However, a lncRNA exhibiting
exclusively pathogenic or beneficial potential during infection
has yet not been described. Furthermore, it is still unknown if
there are specific lncRNAs expressed in response to a certain
pathogen or if lncRNAs are mainly involved in basic cellular
immune responses to different stress stimuli. In case of miRNAs
it was shown that a core temporal miRNA expression pattern
is induced in response to infection, shared across different
bacterial species. In addition, pathogen-specific miRNAs were

identified reflecting the mechanism by which certain pathogens
interfere with the host response to infection (Siddle et al.,
2015). Studies comparing the lncRNA expression in response to
different pathogens possessing different virulence mechanisms
are missing. However, it was shown that two strains of M.
tuberculosis that differ in virulence induced distinct lncRNA
expression profiles (Yang X. et al., 2016). Regarding the
therapeutic application, lncRNAs are interesting candidates for
host-directed therapies which is a new evolving concept to
treat bacterial infections such as tuberculosis. Targeting the host
rather than the pathogen prevents development of antibiotic
resistance and supports immune defense mechanisms during
infection (Zumla et al., 2016). Influencing the expression of
lncRNAs that augment cellular antimicrobial mechanisms such
as autophagy or directly reducing inflammation is therefore
a promising approach, especially to treat multi-drug-resistant
infections.

Finally, there is still a long journey ahead to identify
and elucidate cellular functions and mechanisms of lncRNAs
regulated by bacterial pathogens.
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