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Atypical enteropathogenic Escherichia coli (aEPEC) strains are emerging

enteropathogens that have been detected worldwide. A collection of 228 aEPEC

strains (121 from diarrheal patients, 27 from healthy carriers, 47 from animals and

33 from raw meats) were investigated for serotypes, virulence gene profiles and

phylogenetic relationships. Sixty-six O serogroups were identified. Serogroup O51

was the most prevalent, followed by O119, O26 and O76. For the 20 virulence genes

detected, statistically significant differences were observed in the overall prevalence

of efa1 (lifA), nleB, nleE, set/ent, paa, and ehxA genes among strains from diarrheal

patients, healthy carriers, animals and raw meats, respectively. Strains from diarrheal

patients had significantly higher levels of efa1 (lifA) (29.8 vs. 0%, P = 0.0002), nleB

(41.3 vs. 7.4%, P = 0.0004), nleE (43.8 vs. 7.4%, P = 0.0002) and set/ent (41.3 vs.

7.4%, P = 0.0004) genes than strains obtained from healthy carriers. The paa gene was

identified more often in isolates from raw meats (63.6 vs. 14.8%, P < 0.0001), animals

(42.6 vs. 14.8%, P < 0.0122), and diarrheal patients (36.4 vs. 14.8%, P < 0.0225) than

in strains obtained from healthy carriers. The ehxA gene was detected more frequently

in strains from raw meats than in strains from diarrheal patients (27.3 vs. 2.5%, P =

0.0000) and healthy carriers (27.3 vs. 7.4%, P = 0.0474). The phylogenetic marker,

yjaA, was more frequently observed in strains among healthy carriers than in diarrheal

patient strains. Among the 228 aEPEC strains, 79 sequence types (STs) were identified.

The prominent STs, which comprised strains carrying the four OI-122 genes and lpfA,

were ST40, ST328, and ST29. Overall, the results indicate that aEPEC strains isolated

in China are highly heterogeneous. aEPEC strains that are potentially more pathogenic

appear to be related to specific STs or clonal complexes and serotypes. The high

prevalence of diarrhea-associated genes in animal or raw meat strains suggests a

zoonotic transmission pathway for potentially human pathogenic aEPEC.
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INTRODUCTION

Globally, one in ten childhood deaths are due to diarrheal
disease among children under 5 years old, leading to about
800,000 fatalities worldwide annually, most of which occur in
areas of sub-Saharan Africa and south Asia (Kotloff et al., 2013).
Enteropathogenic Escherichia coli (EPEC), the first pathogenic
type of E. coli to be associated with human disease, is one
of the most prevalent pathogen infecting children worldwide
(Ochoa and Contreras, 2011). EPEC strains are able to form
attaching and effacing (A/E) lesions through intimate adherence
and effacement of the intestinal microvilli of the host. A/E
lesion production is dependent on the pathogenicity island LEE
(locus of enterocyte effacement), which is integral to EPEC
pathogenicity. Based on the presence or absence of the EPEC
adherence factor plasmid (pEAF), EPECmay be further classified
as typical EPEC (tEPEC) or atypical EPEC (aEPEC), respectively
(Croxen et al., 2013). In the last 10 years, epidemiological studies
of tEPEC and aEPEC have shown a much higher prevalence
of aEPEC in both developed and developing countries, and
aEPEC has emerged as an important pathogen (Hu and Torres,
2015). We, and other investigators, have clearly shown its high
prevalence in China.

The majority of tEPEC strains produce virulence traits on
LEE and pEAF, while aEPEC strains mostly have both additional
and heterogeneous virulence properties (Hu and Torres, 2015).
Bando et al. found that aEPEC strains showed genetic similarity
with other diarrheagenic E. coli (DEC) pathotypes and contained
virulence factors derived from other DEC pathotypes. So they
inferred that aEPEC strains might have a particular genetic
background that allows the acquisition and expression of virulent
genes derived from other pathotypes (Bando et al., 2009). As a
consequence, aEPEC strains are phylogenetically heterogeneous
and carry virulence factors of other pathogenic E. coli more
often than tEPEC strains (Hernandes et al., 2009). However, the
virulence determinants linked with aEPEC infection have yet to
be determined.

Besides the LEE region, another pathogenicity island (PAI),
OI-122 has been described in aEPEC. This PAI harbors genes efa1
(lifA) that encodes lymphocyte inhibitory factor (LifA) (Abu-
Median et al., 2006), set/ent that encodes a homologous Shigella
flexneri enterotoxin (Nataro et al., 1995), and nleB and nleE genes
that encode proteins, which inhibit pro-inflammatory signaling
(Newton et al., 2010). The simultaneous presence of all the OI-
122 genes i.e., efa1 (lifA), set/ent, nleB, and nleE, is statistically
associated with diarrhea compared to healthy controls (Afset
et al., 2006; Mercado et al., 2016).

In addition to the LEE-encoded factors, other virulence
determinants may contribute to the pathogenesis of aEPEC.
These include astA, which encodes the enteroaggregative heat-
stable toxin 1 (EAST1), and has been shown to be significantly
associated with diarrhea in a case-control study in Brazil
(Dulguer et al., 2003) and a waterborne outbreak of diarrhea in
Japan (Yatsuyanagi et al., 2003). Two toxins can cause apoptosis:
cytolethal distending toxin (CDT) which causes characteristic
and irreversible cell cycle arrest (Jinadasa et al., 2011),
and subtilase cytotoxin (SubAB) which triggers endoplasmic

reticulum stress signaling pathways leading to apoptosis (Paton
and Paton, 2010). Autotransporters are often associated with
virulence functions such as adherence, aggregation, invasion,
biofilm formation, and toxicity (Abreu et al., 2013). Pathogenesis
is mediated by the plasmid encoded toxin (Pet) (Ruiz et al., 2014),
the Pic serine protease (Abreu et al., 2016), and an extracellular
serine protease (EspP) (Brunder et al., 1999). Antiaggregation
protein (dispersin), encoded by the aap gene, acts by dispersing
the pathogen through the mucus layer produced by the intestinal
epithelial cells, and is translocated by the antiaggregation
transporter protein encoded by aat (Sheikh et al., 2002). Other
putative virulence factors such as an enterohemolysin (EhxA)
and a catalase/peroxidase (KatP), encoded by the genes located in
a megaplasmid of Shiga toxin-producing E. coli (STEC) have also
been reported (Kobayashi et al., 2013). The phylogenetic marker
gene yjaA, was reported to be negatively associated with diarrhea
(Wang et al., 2013).

The first step in gastrointestinal infection is the initial
attachment to the surface of the host intestinal epithelium
(Kalita et al., 2014). Several adherence-related factors have been
described as being present in EPEC or STEC isolates, such as, the
enterohemorrhagic E. coli (EHEC) autotransporter C, encoded
by ehaC (Abreu et al., 2013); the Iha virulence factor, encoded by
iha (Tarr et al., 2000; Bardiau et al., 2009); ToxB, encoded by toxB
on the pO157 plasmid (Tatsuno et al., 2001); an autoagglutinating
adhesin, Saa (Paton et al., 2001); porcine attaching and effacing-
associated adhesin (Paa), encoded by paa (Batisson et al., 2003;
Maluta et al., 2014); long polar fimbria (LPF) (Bardiau et al.,
2010).

Since tEPEC strains are rarely isolated from animals, humans
are generally considered to be the main reservoir of tEPEC.
Whereas aEPEC are present in both healthy and diseased animals
and humans (Hernandes et al., 2009; Hu and Torres, 2015). In
the current investigation, we characterized 228 aEPEC strains
recovered from multiple sources (diarrheal patients, healthy
carriers, animals and raw meats), and attempted to investigate
their molecular characteristics, phylogenetic relationship, and
understand the potential factors involved in human infection.

MATERIALS AND METHODS

Bacterial Strains
In a previous study, a total of 3401 specimens from different
sources were collected from 2006 to 2015 in seven geographical
regions in China. In which, stool samples of diarrheal patients
were collected during clinical treatment at sentinel hospitals,
fecal samples of healthy humans (without diarrhea in recent
2 weeks) were collected during routine physical examination,
and stool samples of animals (cattle, pig, live chicken, bird,
marmota, ochtona) and raw meat samples (chicken meat, beef,
pork, mutton) were collected in routine surveys (Xu et al.,
2016). Briefly, 1.5ml of each enrichment [cultured overnight
in modified Tryptone Soya Broth (mTSB) (Oxoid, UK)] was
centrifuged. Then, 150µl of the lysis buffer (100 mM NaCl,
10mM Tris–HCl [pH 8.3], 1 mM EDTA [pH 9.0], 1% Triton
X-100) was added, resuspended, boiled and centrifuged. The
released DNA were subjected to PCR assay for eae gene
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(Hu and Torres, 2015). The eae-positive enrichment culture
were inoculated onto CHROMagarTM ECC plate (CHROMagar,
France) and further processed for isolation of aEPEC as
previously described (Xu et al., 2016). The eae-positive colonies
were subcultured on Luria-Bertani (Oxoid, UK) plates and
incubated for further confirmation by standard biochemical tests.
Isolates with eae+, stx1/stx2−, and bfpA− were confirmed as
aEPEC (Hu and Torres, 2015). Only one isolate from each sample
was kept for further analysis.

Totally, 228 aEPEC isolates were identified during the
epidemiological studies. 121, 27, and 47 strains were isolated
from the fecal samples of diarrheal patients, healthy carriers and
animals, respectively. The remaining 33 isolates were recovered
from raw meats. Bacteria were stored at −80◦C before being
subcultured aerobically at 37◦C on Luria-Bertani (LB) agar at
37◦C.

Extraction of DNA from aEPEC Isolates
To prepare template DNA for PCR, the distilled water-boiling
method was employed (Ooka et al., 2009). A single colony from
the aEPEC isolates was suspended in 100µl of deionized water
and boiled for 10min. After being centrifuged at 10,000 × g for
5min, the supernatant containing DNA was collected, and 1µl
of the supernatant was used as template DNA.

Serotyping of aEPEC Isolates
The O serogroups were screened by the PCR-based system
arranged by Iguchi et al. (2015). The PCR results were
confirmed using complete E. coli O antisera (Statens Serum
Institute, Denmark). The isolates were defined as O-untypable
if they did not react with any O antisera. H typing was
performed by PCR amplification and sequencing of the fliC
gene using primers fliC-F (5′-ATGGCACAAGTCATTAATACC
CAAC-3′) and fliC-R (5′-CTAACCCTGCAGCAGAGACA-3′)
(Fields et al., 1997). These were then compared to the
known variants of fliC gene on the SerotypeFinder database
(https://cge.cbs.dtu.dk/services/SerotypeFinder/) (Joensen et al.,
2015). The isolate was considered as H-untypable if fliC was
negative by PCR.

Detection of Virulence Genes by PCR
The 228 aEPEC strains were investigated by PCR for the presence
of putative virulence genes or adhesion genes (ehxA, subAB, nleB,
nleE, set/ent, espP, katP, astA, pet, aat, ehaC, pic, aap and cdt,
iha, efa1, lfpA, saa, toxB, and paa) and a phylogenetic marker
gene yja. Three variants (lfpAO113, lfpAO157-154, lfpAO157-141) of
the LPF encoding gene (lpfA) and two variants (cdt1, cdt2) of the
cdt gene were included. PCR amplifications were performed in
a thermal cycler (SensoQuest Labcycler, Germany). PCR cycling
was performed according to the following conditions: initial
denaturation at 95◦C for 5 min, 30 cycles, each of denaturation
at 95◦C for 1min, then annealing at the corresponding annealing
temperature of 1 min and nucleotide extension at 72◦C for 1 min.
All primers, sizes of amplified fragments and PCR conditions
used for this screening and corresponding references are shown
in Table 1. Amplified products were analyzed by 1.5% agarose gel
electrophoresis.

Multilocus Sequence Typing (MLST)
MLST was carried out on seven conserved housekeeping genes
(adk, fumC, gyrB, icd, mdh, purA, and recA) according to the
scheme of the E. coli MLST database (http://mlst.warwick.ac.
uk/mlst/mlst/mlst/dbs/Ecoli/). The PCR products were purified
with the QIAquick PCR purification kit (Qiagen, Germany),
and double-strand sequenced using the ABI 3730 Automated
DNA Analyzer (Applied Biosystems, USA). Each of the seven
gene loci was assigned an allele number upon submission of the
sequences to the E. coli MLST database. Allelic sequences with
new variations gained new allele numbers. The allelic profile
was used to generate a specific sequence type (ST) for each
isolate.

Phylogenetic Analysis
For each strain, seven gene sequences were concatenated in the
following order: adk, fumC, gyrB, icd, mdh, purA, and recA,
to generate a 3423-bp DNA sequence for phylogenetic analysis.
The concatamers were then aligned using the ClustalW program
from the MEGA 6 software (http://www.megasoftware.net/). A
Neighbor-Joining tree was constructed based on the maximum
composite likelihood model with 1,000 bootstrap re-samplings
using MEGA 6. To identify closely related genotypes, a
minimum spanning tree (MST) based on different STs was
constructed using Bionumerics software, version 4.6 (Applied
Maths, Belgium).

Statistical Analysis
The presence of each virulence gene in aEPEC isolates from
different sources were compared with each other by a two-tailed
chi-square test or a Fisher’s exact test using Epi Info software,
version 3.5.3 (Maldonado et al., 2014). P-values <0.05 were
considered statistically significant.

RESULTS

Serogroups and Serotypes
The 228 aEPEC isolates belonged to 66 O serogroups with
the exception of 17 (7.5%) strains being O-untypable (ONT)
(Table 2, Table S1). Serogroup O51 was the most prevalent
and was identified in 20 (8.8%) isolates, followed by O119
and O26, which were identified in 12 (5.3%) and 10 (4.4%)
isolates, respectively. The remaining serogroups consisted
of between 1 and 9 aEPEC strains. In diarrheal patients,
animals and raw meats, the most common serogroups detected
were O51, O119, and O76, respectively. No predominant
serogroup was observed in strains obtained from healthy
carriers.

Twenty-five different H-types were detected among the
aEPEC strains (Table 2, Table S1). The most common were the
flagellar types H11 (22 strains, 9.6%), H21 (20 strains, 8.8%),
and H7 (20 strains, 8.8%). The H-type was not identified in
11 strains (4.8%). The most frequently detected H-types in
diarrheal patients, animals and raw meats were H19, H21, and
H7, respectively. No prominent H-type was observed in strains
from healthy carriers.
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TABLE 1 | PCR primers used for the detection of putative virulence or adherence genes.

Genes Primer Oligonucleotide sequence (5′–3′) Amplicon size (bp) Annealing Temp (◦C) References

efa1 (lifA) efa1-F AAGGTGTTACAGAGATTA 266 51 Nicholls et al., 2000

efa1-R TGAGGCGGCAGGATAGTT

set set-F TTCCTGGGTTGCTTTTAGCTCT 171 60 Wang et al., 2013

set-R CATGTCCATTTTGAAGGGCCTG

nleB nleB-F GGTGTGCTGGTAGATGGA 175 53 Afset et al., 2006

nleB-R CAGGGTATGATTCTTGTTTATG

nleE nleE-F CTAATACTCAGGGCGTGTCC 192 53 Afset et al., 2006

nleE-R ACCGTCTGGCTTTCTCGTTA

lpfAO113 lpfAO113 –F ATGAAGCGTAATATTATAG 573 50 Afset et al., 2006

lpfAO113 –R TTATTTCTTATATTCGAC

lpfAO157/OI−154 OI-154-F GCAGGTCACCTACAGGCGGC 525 55 Toma et al., 2004

OI-154-R CTGCGAGTCGGCGTTAGCTG

lpfAO157/OI−141 OI-141-F CTGCGCATTGCCGTAAC 412 54 Szalo et al., 2002

OI-141-R ATTTACAGGCGAGATCGTG

paa paa–F ATGAGGAACATAATGGCAGG 360 55 Afset et al., 2006

paa–R TCTGGTCAGGTCGTCAATAC

iha iha–F CAGTTCAGTTTCGCATTCACC 1,305 56 Schmidt et al., 2001

iha-R GTATGGCTCTGATGCGATG

saa saa-F CGTGATGAACAGGCTATTGC 119 52 Paton and Paton, 2002

saa-R ATGGACATGCCTGTGGCAAC

pet pet-F GGCACAGAATAAAGGGGTGTTT 302 62 Patzi-Vargas et al., 2015

pet-R CCTCTTGTTTCCACGACATAC

aat aat-F CTGGCGAAAGACTGTATCAT 629 55 Patzi-Vargas et al., 2015

aat-R CAATGTATAGAAATCCGCTGTT

astA astA-F GCCATCAACACAGTATATCC 111 62 Patzi-Vargas et al., 2015

astA-R GAGTGACGGCTTTGTAGTC

aap aap-F CTTGGGTATCAGCCTGAATG 310 55 Patzi-Vargas et al., 2015

aap-R AACCCATTCGGTTAGAGCAC

cdt1 CDT-Is CAATAGTCGCCCACAGGA 411 55 Patzi-Vargas et al., 2015

CDT-Ias ATAATCAAGAACACCACCAC

cdt2 CDT-IIs GAAAGTAAATGGAATATAAATGTCCG 556 55 Patzi-Vargas et al., 2015

CDT-IIas TTTGTGTTGCCGCCGCTGGTGAAA

subAB subAB-F TATGGCTTCCCTCATTGCC 556 55 Patzi-Vargas et al., 2015

subAB-R TATAGCTGTTGCTTCTGACG

ehxA ehxA-F GGTGCAGCAGAAAAAGTTGTAG 1,551 57 Bai et al., 2013

ehxA-R TCTCGCCTGATAGTGTTTGGTA

katP katP-F CTTCCTGTTCTGATTCTTCTGG 2,125 56 Brunder et al., 1996

katP-R AACTTATTTCTCGCATCATCC

(Continued)
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TABLE 1 | Continued

Genes Primer Oligonucleotide sequence (5′–3′) Amplicon size (bp) Annealing Temp (◦C) References

espP espP AAACAGCAGGCACTTGAACG 1,830 56 Bai et al., 2013

espP GGAGTCGTCAGTCAGTAGAT

toxB toxB-F ATACCTACCTGCTCTGGATTGA 602 55 Tarr et al., 2002

toxB-R TTCTTACCTGATCTGATGCAGC

pic pic-F GGGTATTGTCCGTTCCGAT 1,176 60 Abreu et al., 2013

pic-R ACAACGATACCGTCTCCCG

ehaC ehaC-F TAATGACGGCAAAGGTGGT 599 59 Abreu et al., 2013

ehaC-R CATTCATCAGGGAGTTGCT

yjaA yjaA-F TGAAGTGTCAGGAGACGCTG 211 59 Clermont et al., 2000

yjaA-R ATGGAGAATGCGTTCCTCAAC

Virulence Gene Profiles
With the exception of saa, subAB, espP, aat, aap, and pic, all
of the genes investigated were detected (Table 3, Table S1). The
most frequently detected virulence gene among the 228 aEPEC
isolates was ehaC (n = 183, 80.3%). The isolates from diarrheal
patients, healthy carriers, animals, and raw meats exhibited a
high prevalence of ehaC, with a detection rate of 82.6, 59.3,
83.0, and 84.8%, respectively. Significant difference in the overall
presence of ehaC among the four different sources (P = 0.0350)
was observed. ehaC was identified more often in isolates from
diarrheal patients (82.6 vs. 59.3%, P = 0.0066), animals (83.0 vs.
59.3%, P = 0.0158) and raw meats (84.8 vs. 59.3%, P = 0.0159)
than in isolates from healthy carriers.

Among the adhesion genes investigated, lpfA exhibited the
highest prevalence in animal strains (66.0%), followed by
diarrheal patient strains (54.5%), raw meat strains (48.5%), and
healthy carrier strains (40.7%). However, we could not detect a
significant difference in the overall presence of lpfA. The paa gene
was identified with the highest prevalence in raw meat strains
(63.6%), followed by animal strains (42.6%), diarrheal patient
strains (36.4%), and healthy carrier strains (14.8%). There was
a statistically significant difference in the overall presence of
paa between the four different sources (P = 0.0013). paa was
identified more often in isolates from raw meats (63.6 vs. 14.8%,
P < 0.0001), animals (42.6 vs. 14.8%, P < 0.0122) and diarrheal
patients (36.4 vs. 14.8%, P < 0.0225) than in strains from healthy
carriers. Compared to lpfA or paa, the prevalence of iha and toxB
was lower in aEPEC strains (15.8 and 8.8%, respectively).

We also investigated four genes located on OI-122 (efa1 (lifA),
set/ent, nleB, and nleE), and the phylogenetic marker yjaA gene.
Of the 121 strains from diarrheal patients, 36 were efa1 (lifA)-
positive (29.8%), 50 were nleB-positive (41.3%), 53 were nleE-
positive (43.8%), 50 were set/ent-positive (41.3%), and 44 were
yjaA-positive (36.4%). Of the 27 strains from healthy individuals,
none were efa1 (lifA)-positive, two strains were nleB-, nleE-
, and set/ent-positive (7.4%), respectively, and 17 were yjaA-
positive (63.0%). Among the 47 strains from animals, 14 were
efa1 (lifA)-positive (29.8%), 22 were nleB-positive (46.8%), 24

were nleE-positive (51.1%), 21 were set/ent -positive (44.7%),
and 18 were yjaA-positive (38.3%). Of the 33 strains from raw
meats, 9 were efa1 (lifA)-positive (27.3%), 22 were nleB-positive
(66.7%), 20 were nleE-positive (60.1%), 22 were set/ent -positive
(66.7%), and 14 were yjaA-positive (42.4%). The complete OI-
122 was detected in 35 (28.9%), 0, 13 (27.7%), and 6 (18.2%)
strains from diarrheal patients, healthy carriers, animals and
raw meats, respectively (Table S1). In contrast, incomplete OI-
122 was observed in 19 (15.7%), 2 (7.4%), 12 (25.5%), and 18
(54.5%) strains from diarrheal patients, healthy carriers, animals
and raw meats, respectively. aEPEC strains carrying OI-O122
genes with different combinations but lacking efa1 (lifA) were
also found. There were statistically significant differences in the
overall presence of efa1 (lifA), nleB, nleE, and set/ent genes among
the four different sources (P = 0.0130, P = 0.0001, P = 0.0002,
and P= 0.0001, respectively). Strains from diarrheal patients had
significantly more efa1 (lifA) (29.8% vs. 0, P= 0.0002), nleB (41.3
vs. 7.4%, P= 0.0004), nleE (43.8 vs. 7.4%, P= 0.0002) and set/ent
(41.3 vs. 7.4%, P = 0.0004) genes than strains obtained from
healthy carriers. Meanwhile, efa1 (lifA), nleB, nleE, and set/ent
genes were each found to be more prevalent in aEPEC strains
isolated from animals or raw meats than strains from healthy
carriers. yjaA was more frequently observed among healthy
carrier strains than in diarrheal patient isolates (63.0 vs. 36.4%,
P = 0.0105) and in animal isolates (63.0 vs. 38.3%, P = 0.0354).

Among the virulence genes linked to the EHEC pO157
plasmid, ehxA and katP were detected at high prevalence in
raw meat strains (27.3 and 18.2%, respectively), while these
genes were detected at low prevalence in diarrheal patient strains
(2.5 and 7.4%, respectively). There was a statistically significant
difference in the overall presence of ehxA among the four
different sources (P = 0.0001). It was detected more often in
isolates from raw meats than in strains from diarrheal patients
(27.3 vs. 2.5%, P= 0.0000) and healthy carriers (27.3 vs. 7.4%, P=
0.0474). However, no significant difference was observed between
raw meat strains and animal strains. In contrast, cdt was present
at higher prevalence in animal strains (12.8%) and healthy carrier
strains (11.1%) than in raw meat strains (6.1%) and diarrheal
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TABLE 2 | Serotypes of 228 aEPEC isolates from different sources.

O:H serotype Diarrheal

patient

Healthy

carrier

Animal Raw

meat

Total (%)

O2:H40/H48/H49 3 0 0 3 6 (2.6)

O5:H19 0 0 1 0 1 (0.4)

O7:H11 1 0 0 0 1 (0.4)

O9:H19 1 0 0 0 1 (0.4)

O10:H2/HNT 1 0 0 2 3 (1.3)

O13(O129/O135):H11 2 2 0 0 4 (1.8)

O19:H9 1 0 0 0 1 (0.4)

O21:H6/H21 2 0 0 0 2 (0.9)

O23:H18 0 0 1 0 1 (0.4)

O26:H8/H11/HNT 2 1 6 1 10 (4.4)

O33:H6/H34 3 0 0 0 3 (1.3)

O34:H4/H9/HNT 1 1 1 0 3 (1.7)

O35:H19/H48 2 0 0 0 2 (0.9)

O37:H10 0 0 0 2 2 (0.9)

O40:H2/H19 2 0 0 0 2 (2.1)

O45:H2/H11/HNT 1 0 1 1 3 (1.3)

O49:H10 0 0 0 2 2 (0.9)

O50:H2 1 0 0 0 1 (0.4)

O51:H7/H21/H40/

H49/HNT

16 0 3 1 20 (8.8)

O55:H7 1 0 0 0 1 (0.4)

O61:H2/H6/H10/H19 3 0 0 2 5 (2.2)

O63:H6 1 0 1 0 2 (0.9)

O70:H2/H11 1 0 0 1 2 (0.9)

O71:H11 0 0 0 1 1 (0.4)

O76:H6/H7 1 0 1 7 9 (3.9)

O82:H11 1 0 0 0 1 (0.4)

O85:H31 2 1 1 0 4 (1.8)

O86:H45 0 1 0 0 1 (0.4)

O88:H5/H8/H25 7 1 0 0 8 (3.5)

O91:H19 2 0 0 0 2 (0.9)

O92:H6 1 0 0 0 1 (0.4)

O101:H33/H4 4 0 0 0 4 (1.8)

O103:H4/H5/H8

/H21/H33

1 0 4 0 5 (2.2)

O107:H31 0 1 0 0 1 (0.4)

O107(O117):H40 1 1 0 0 2 (0.9)

O108:H9/H45 1 0 4 0 5 (2.2)

O109:H4/H19/

H21/H34

6 0 0 0 6 (2.6)

O111:H9 1 2 0 0 3 (1.3)

O118:H5 1 0 0 0 1 (0.4)

O119:H4/H8/H21/H25 3 0 8 1 12 (5.3)

O120:H2/H10/H21/H45 1 0 3 0 4 (1.8)

O121:H33 0 0 1 0 1 (0.4)

O123:H11/H40/H45 2 0 1 1 4 (1.8)

O126:H19 3 0 0 0 3 (1.3)

O128:H2/HNT 5 0 1 0 6 (2.9)

O129:H11 1 1 0 0 2 (0.9)

O133:H10 2 0 0 0 2 (0.9)

(Continued)

TABLE 2 | Continued

O:H serotype Diarrheal

patient

Healthy

carrier

Animal Raw

meat

Total (%)

O136:H21/H40 2 1 0 0 3 (1.3)

O137:H6 0 0 1 0 1 (0.4)

O138:H2/H48 3 2 0 0 5 (2.2)

O139:H14/H19 0 3 0 0 3 (1.3)

O141:HNT 0 0 1 0 1 (0.4)

O142:H34 1 0 0 0 1 (0.4)

O145:H2/H10/H28/

H31/H34/H45

1 1 4 0 6 (2.6)

O152:H38 1 1 0 0 2 (0.9)

O156:H8/H21 1 0 0 1 2 (0.9)

O157:H5/H7/H33/H39 3 0 1 0 4 (1.8)

O158:H39 1 0 0 0 1 (0.4)

O164:H21 1 0 0 0 1 (0.4)

O167:H31 0 1 0 0 1 (0.4)

O170:H5/H8/H49 3 0 0 0 3 (1.3)

O171:H19 0 1 0 0 1 (0.4)

O172:H6 1 0 0 0 1 (0.4)

O177:H9/H11/H45 2 2 0 1 5 (2.2)

O180:H2 0 1 0 1 2 (0.9)

O182:H25 0 0 0 2 2 (0.9)

ONT:H2/H5/H6/H10/

H16/H21/H25/H45/

H48/H49/HNT

10 2 2 3 17 (7.5)

Total 121 27 47 33 228

TABLE 3 | Virulence genes in 228 aEPEC isolates recovered from different

sources.

Genes No. of aEPEC isolates carrying virulence gene (%)

Diarrheal

patients

Healthy

carriers

Animals Raw meats Total

efa1(lifA) 36 (29.8) 0 (0) 14 (29.8) 9 (27.3) 59 (25.9)

nleB 50 (41.3) 2 (7.4) 22 (46.8) 22 (66.7) 96 (42.1)

nleE 53 (43.8) 2 (7.4) 24 (51.1) 20 (60.1) 99 (43.4)

set/ent 50 (41.3) 2 (7.4) 21 (44.7) 22 (66.7) 95 (41.7)

lpfA 66 (54.5) 11 (40.7) 31 (66.0) 16 (48.5) 124 (54.4)

toxB 12 (9.9) 1 (3.7) 6 (12.8) 1 (3.0) 20 (8.8)

iha 19 (15.7) 5 (18.5) 7 (14.9) 5 (15.2) 36 (15.8)

paa 44 (36.4) 4 (14.8) 20 (42.6) 21 (63.6) 89 (39.0)

ehxA 3 (2.5) 2 (7.4) 7 (14.9) 9 (27.3) 21 (9.2)

astA 13 (10.7) 5 (18.5) 9 (19.1) 3 (9.1) 30 (13.2)

pet 13 (10.7) 8 (29.6) 0 (0) 0 (0) 21 (9.2)

cdt 1 (0.8) 3 (11.1) 6 (12.8) 2 (6.1) 12 (5.3)

katP 9 (7.4) 3 (11.1) 5 (10.6) 6 (18.2) 23 (10.1)

ehaC 100 (82.6) 16 (59.3) 39 (83.0) 28 (84.8) 183 (80.3)

yja 44 (36.4) 17 (63.0) 18 (38.3) 14 (42.4) 93 (40.8)

patient strains (0.8%). Furthermore, astA and pet were observed
at higher prevalences in healthy carrier strains (18.5 and 29.6%,
respectively) than in diarrheal patient strains (both were 10.7%).
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Multilocus Sequence Typing
Seventy-nine different sequence types (STs) were detected among
228 aEPEC isolates (Figure 1, Table S1). In diarrheal patients,
healthy carriers, animals and raw meats, 53, 17, 26, and 15 STs
were detected, respectively. The most frequently detected ST was
ST40 (20/228, 8.8%), with 12 strains from diarrheal patients,
seven from animals and one from a healthy carrier. The second
predominant ST, ST10, was identified from eight diarrheal patient
isolates, four raw meat isolates, three healthy carrier isolates, and
one animal isolate. ST29 and ST328 comprised 14 and 13 isolates,
respectively. Another 35 STs comprised 2-10 isolates, while 40 STs
had only one single isolate. Among 25 STs that included three or
more isolates, four STs (ST328, ST378, ST2178, and ST2346) were
detected only in diarrheal patient isolates, and four STs (ST342,
ST302, ST21, and ST4059) were present only in animal isolates.

We constructed an MST containing 79 STs obtained in our
study (Figure 2, Table S1). They were clustered into 34 singletons
and 14 non-overlapping groups or clonal complexes (CC). Most
STs differed from each other by 2 or more alleles. Only two
STs (i.e., ST10 and ST29) contained isolates from all sources
(diarrheal patients, health carriers, animals and raw meats).

Prevalence of Virulence Genes among
Different STs
There were quite differences in the number of virulence genes
among different isolates, ranging from 0 to 12 genes per
isolate. Two isolates from diarrheal patients belonging to ST11
(O157:H7) and ST29 (O7:H11) contained 12 and 11 virulence
genes, respectively (Figure 1, Table S1).

Genes located on the pathogenicity island OI-122 (nleB, nleE,
set/ent, or efa1 (lifA)) were identified in isolates belonging to
33 different STs. Complete OI-122 was detected in 54 isolates
belonging to 16 different STs. The most prominent STs were ST40
(15 isolates), ST328 (13 isolates), and ST29 (8 isolates). The most
common clonal complexes were CC278 (16 strains), CC40 (15
strains), and CC29 (11 isolates). The presence of the OI-122 genes
was associated with different combinations of other virulence
genes. Among the 54 isolates harboring the complete OI-122,
51 strains were ehaC positive with 42 strains being lpfA positive,
while paa, ehxA, iha, toxB, katP, astA, and cdt were present in 26,
9, 9, 6, 6, 4, and 1 isolates, respectively (Figure 1, Table S1).

Three variants of the lpfA gene (lpfAO113, lpfAO157/OI–154,
and lpfAO157/OI–141) were detected in 40 different STs, which
contained 124 isolates. The most prominent STs were ST40 (all
carrying lpfA), ST328 (all carrying lpfA) and ST29 (all except one
carrying the lpfA gene). In contrast, for the 32 isolates contained
in CC10, the lpfA gene was only detected in four isolates without
any of the OI-122 genes.

DISCUSSION

The present study is the first detailed molecular profiling study
of aEPEC strains from China. Serotyping results showed that
66 serogroups were identified, most of which were non-classical
serogroups (Hernandes et al., 2009). The WHO has recognized
12 O serogroups as the classical EPEC serogroups, i.e., O26, O55,

O86, O111, O114, O119, O125, O126, O127, O128, O142, and
O158. Nine classical serotypes were found in our study, which
contained 38 (16.7%) aEPEC isolates. They were not collectively
more prevalent than the remaining serogroups. In fact, the most
frequently detected serogroup of aEPEC reported so far is O51,
followed by O145, O26, O55 and O111, and O119 (Hernandes
et al., 2009). Globally, there are various studies showing that
aEPEC has different serogrous, such as O76 (Møller-Stray et al.,
2012), O127 (Hao et al., 2012), O119, O26, and O88 (Jenkins
et al., 2003). In this study, 7.4% of aEPEC isolates were O
untypable, which is much lower than that reported by others
(Blanco et al., 2006; Monaghan et al., 2013; Zhang et al., 2016).
Blanco et al. found that 110 EPEC strains were typed to 43
O serogroups and 69 serotypes with 44 new serotypes and
only 13% could be assigned to classical EPEC serotypes (Blanco
et al., 2006). So, the vast diversity of serotypes suggested that
serotyping alone is insufficient for the detection of aEPEC. To
better characterize aEPEC strains, it is necessary to combine the
phenotypic and genotypic information.

Virulence gene profiling is essential in determining the
pathogenic potential of these strains. In our investigation,
statistically meaningful differences were observed among the
distributions of OI-122 genes efa1 (lifA), nleB, nleE, set/ent and
the phylogenetic marker gene yjaA. Afset et al. observed that
efa1 (lifA) was the gene with the strongest statistical association
with diarrhea (Afset et al., 2006). The other three genes were also
found to be linked to diarrhea, while gene yjaA was negatively
associated with diarrhea. Our results showed that OI-122 genes
efa1 (lifA), nleB, nleE, set/ent, and the phylogenetic marker gene
yjaA were associated with diarrhea among the aEPEC isolates
studied, which is consistent with the results detected by Afset
and colleagues (Afset et al., 2006). Furthermore, efa1 (lifA), nleB,
nleE, and set/ent were found to be more prevalent in aEPEC
strains isolated from animals or raw meats than in strains from
healthy carriers. These findings indicated that aEPEC strains
from different sources might carry different virulence gene
profiles. The presence of aEPEC strains carrying OI-122 genes in
animals and raw meats might pose a zoonotic risk to humans.
This finding also supports the concept that animals are the
sources of aEPEC infection in humans (Wang et al., 2013).

The paa gene is frequently detected in porcine EPEC. Paa is
involved in intimate attachment of the bacteria to enterocytes
and causes post-weaning diarrhea in pigs (Batisson et al., 2003).
In accordance with previous studies, the positive association
between paa and diarrhea was also observed in our study. Balière
et al. (2016) observed a significantly higher (60%) occurrence
of paa in EPEC isolates from environment samples, which
is similar to the frequency we observed in raw meat isolates
(63.6%) in this study. paa was much more frequently detected
in strains isolated from raw meats than from other sources, and
was especially higher than strains from healthy carriers (14.8%).
Similarly, the gene ehxA that encodes the EHEC hemolysin,
was also found at a higher frequency among aEPEC from raw
meats, although we could not confirm the positive association
of ehxA with diarrhea (Afset et al., 2006; Scaletsky et al., 2009)
in this study. In a previous study, an outbreak caused by aEPEC
following the consumption of contaminated food or water was
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FIGURE 1 | Phylogenetic relationships and virulence profiles of the 79 STs among the 228 aEPEC isolates. An unrooted phylogenetic tree was constructed

by the neighbor-joining algorithm based on the Maximum Composite Likelihood model of nucleotide substitution. Bootstrap values greater than 90% based on 1000

replications are given at the internal nodes. STs highlighted in gray were the most prominent STs containing aEPEC isolates and harbored genes located on OI-122

(nleB, nleE, set/ent, or efa1 (lifA)) and lpfA.

reported (Wedley et al., 2013). Thus, the high presence of aEPEC
possessing paa or ehxA in raw meats indicates that these isolates
could cause disease if ingested by humans, and therefore, remains
a serious public health threat to consumers.

In a previous study, the virulence marker astA was
significantly associated with diarrhea (Dulguer et al., 2003).
In Japan, a waterborne outbreak of diarrhea was found to
be associated with aEPEC strains carrying the astA gene
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FIGURE 2 | Minimal spanning tree of the 228 aEPEC isolates based on STs. Each circle represents a given ST with size proportional to the number of isolates.

The colors for the slices of the pie represent different sources of isolates: diarrheal patient in green, animal in red, healthy carrier in yellow and raw meat in purple. The

numbers on connecting lines show the number of allelic difference between two STs. The number in the circle is the ST number.

(Yatsuyanagi et al., 2003). However, a negative statistical
association with diarrhea has also been reported (Afset et al.,
2006). In the current investigation assessing 228 isolates, no
correlation was confirmed, in agreement with another study
(Scaletsky et al., 2009).

Autotransporter (AT) proteins are often associated with
virulence attributes such as adherence, biofilm formation, and
toxicity and these proteins have been identified in both tEPEC

and aEPEC (Abreu et al., 2013). Several studies have investigated
the presence of AT genes in EPEC (Abreu et al., 2013; Balière
et al., 2016). In the present study, four AT genes (ehaC, espP, pet,
and pic) were detected. Among these genes, the most frequent
gene observed in our isolates was ehaC, which was detected at
frequencies similar to those observed by Abreu and colleagues
(Abreu et al., 2013). However, it was found more often in isolates
from diarrheal patients, animals and raw meats than in isolates

Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 9 April 2017 | Volume 7 | Article 109

http://www.frontiersin.org/cellular_and_infection_microbiology
http://www.frontiersin.org
http://www.frontiersin.org/cellular_and_infection_microbiology/archive


Xu et al. Atypical EPEC in China

from healthy carriers. Our hypothesis is that gene ehaC might
play a role in aEPEC infection.

Afset et al. assessed the phylogenetic group and association
with diarrhea of 56 aEPEC strains and found that phylogenetic
groups B1 and D were weakly associated with diarrhea (Afset
et al., 2008). Wang et al. observed that phylogroup B1 was
detected more frequently among patient strains than healthy
carrier strains (Wang et al., 2013). Furthermore, they also
demonstrated that the virulence group Ia comprising the efa1
(lifA) gene and/or lpfA genes but without the yjaA gene, was
also detected more frequently in clinical isolates compared with
healthy carriers. A gene cluster encoding enzymes involved in O-
antigen synthesis was found to be significantly associated with
lethal infections (Donnenberg et al., 2015). The pathogenesis of
aEPEC also seems to be related to the serotypes (Hu and Torres,
2015). In our investigation, a different method of MLST was
employed for phylogenetic group determination. There was a
trend for the retention of complete OI-122 and the relationship
with specific STs or clonal complexes and serotypes. Genes of
OI-122 or lpfA were more frequently detected in ST40 strains
with O119:H21 or O109, ST328 strains with O51:H7 or O88:H25,
ST795 strains with O76:H7, and ST29 or ST21 strains with
O26. These aEPEC strains that were isolated from diarrheal
patients, animals and raw meats harbored genes reported to be
associated with human diarrhea and might be considered more
potentially pathogenic. It has been reported that many virulence
genes are present on mobile elements, such as, plasmids, PAIs, or
phages and are highly interchangeable among different bacterial
strains through horizontal transfer (Hacker and Kaper, 2000).
The results that some virulence genes are present more often
in specific STs and serotypes than other members suggest that
some STs and serotypes of aEPEC might have different genomic
backgrounds which permit the acquisition and expression of
virulence factors. However, the reason for this is unknown. The
detection of such aEPEC strains by subgroup demands further
attention.Molecular assessment combining phylogenetic analysis

and virulence gene profiling might be employed to establish the
pathogenic potential of aEPEC strains.

However, in the present study, there were fewer isolates from
raw meats and healthy carriers than from diarrheal patients.
Unequal sample sizes and bias in data collection might exist.
Nevertheless, this was the most comprehensive data analyzing
aEPEC isolates in China. Also, the results did show the vast
diversity of the aEPEC isolates from different sources in China.

In conclusion, aEPEC strains in China are heterogeneous in
serotypes, virulence gene profiles and phylogenies. It is possible
that different aEPEC strains might have different pathogenic
potential. The aEPEC strains which were more potentially
pathogenic seemed to be related to specific STs or clonal
complexes and serotypes.
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