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Neutrophils are specialized at killing bacteria and are recruited from the blood in a rapid

and robust manner during infection. A cascade of adhesion events direct their attachment

to the vascular endothelium and migration into the underlying tissue. A disintegrin

and metalloproteinase 17 (ADAM17) functions in the cell membrane of neutrophils and

endothelial cells by cleaving its substrates, typically in a cismanner, at an extracellular site

proximal to the cell membrane. This process is referred to as ectodomain shedding and

it results in the downregulation of various adhesion molecules and receptors, and the

release of immune regulating factors. ADAM17 sheddase activity is induced upon cell

activation and rapidly modulates intravascular adhesion events in response to diverse

environmental stimuli. During sepsis, an excessive systemic inflammatory response

against infection, neutrophil migration becomes severely impaired. This involves ADAM17

as indicated by increased levels of its cleaved substrates in the blood of septic patients,

and that ADAM17 inactivation improves neutrophil recruitment and bacterial clearance

in animal models of sepsis. Excessive ADAM17 sheddase activity during sepsis thus

appears to undermine in a direct and indirect manner the necessary balance between

intravascular adhesion and de-adhesion events that regulate neutrophil migration into

sites of infection. This review provides an overview of ADAM17 function and regulation

and its potential contribution to neutrophil dysfunction during sepsis.
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NEUTROPHILS

Neutrophils are the predominant leukocyte population in the blood of healthy individuals
and serve a critical function in host protection and wound healing, as described by others
in this research topic and in recent reviews (Kolaczkowska and Kubes, 2013; Mayadas
et al., 2014). These innate immune cells are produced in the bone marrow and reside
in the blood where they are poised for a rapid influx into sites of acute inflammation.
Neutrophils are professional phagocytes that engulf bacteria and kill them through the
release of lytic enzymes and reactive oxygen species. They can also impede the spread of
extracellular pathogens through the production of neutrophil extracellular traps. Circulating
neutrophils infiltrate sites of inflammation by an exquisitely orchestrated multistep adhesion
cascade (Figure 1A) (Kolaczkowska and Kubes, 2013). The first step is their attachment
to vascular endothelial cells (e.g., lining post-capillary venules) that have been activated by
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FIGURE 1 | (A) Circulating neutrophils attach to and transmigrate through the vascular endothelium in a step-wise process. Neutrophils accumulate on the vascular

endothelium by direct (1◦) and indirect (2◦) manners, roll and scan the endothelial cells for chemokines, which promotes stable tethers and eventual transmigration

into the underlying tissue. Various neutrophil and endothelial cell adhesion molecules and receptors directly involved in this process (represented by black dots) are

listed in the figure, and those that are ADAM17 substrates are indicated in red. (B) Over-activation of ADAM17 by inflammatory stimuli during sepsis may result in

excessive ectodomain shedding by neutrophils and endothelial cells that in turn impairs neutrophil recruitment and bacterial (green rods) clearance.

events in the underlying tissue. The loosely attached neutrophils
are pushed along by the blood flow, causing them to roll, and
survey the luminal surface of endothelial cells for chemokines
that will promote their stimulation and more stable attachment
and transmigration through the vascular wall. Neutrophil
attachment and rolling is primarily mediated by selectin adhesion
proteins (L-selectin on neutrophils and E- and P-selectin on
activated endothelial cells) that recognize various mucin-like
molecules, such as PSGL1. In addition to free-flowing neutrophils
attaching directly to endothelial cells (referred to as 1

◦

or direct
attachment), they can also attach to other neutrophils that have
already accumulated on the vascular endothelium (2

◦

or indirect
attachment) (Figure 1A). The latter process is mediated by L-
selectin and PSGL1 (Walcheck et al., 1996b), and has been shown
in vitro and in vivo to amplify neutrophil accumulation (Bargatze
et al., 1994; Walcheck et al., 1996b; Sperandio et al., 2003; St.
Hill et al., 2003). Indeed, neutrophil infiltration into inflamed

tissues occurs in a prodigious manner and has been referred to
as “swarming” based on in vivo imaging (Lämmermann, 2016).

Neutrophils attached to the vascular endothelium transition
from rolling to firm adhesion upon their stimulation by
chemokines, which induce a high affinity state by integrin
adhesion proteins, such as LFA-1 and Mac-1. These integrins
bind to the immunoglobulin superfamily members ICAM1
and ICAM2 that are upregulated in expression by activated
endothelial cells. Neutrophil transmigration across the vascular
wall also involves VCAM1, PECAM1, and JAMA. Upon entering
the underlying tissue, neutrophils move in a directed manner,
guided by a hierarchy of chemotactic factors, to the origin
of pathogen and damaged cell-associated molecular patterns
(PAMPs and DAMPs). The primary chemokine receptors
expressed by human neutrophils involved in promoting their
firm adhesion to the vascular wall and chemotaxis are CXCR1
(binds to CXCL6 and CXCL8) and CXCR2 (binds to CXCL1-3
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and CXCL5-8) (Sadik et al., 2011). CXCR2 has been extensively
examined in animal models as well (Stadtmann and Zarbock,
2012), and on mouse neutrophils this receptor binds to KC, MIP-
2, and LIX (Cacalano et al., 1994; Goncalves and Appelberg, 2002;
Sadik et al., 2011).

NEUTROPHIL DYSFUNCTION DURING
SEPSIS

Sepsis is a severe systemic inflammatory response to microbial
pathogens (primarily bacterial and to a lesser degree fungal or
viral), and is the primary cause of death from infection (Cohen
et al., 2015). Since the early 1990s, this disorder was defined by
using four categories; systemic inflammatory response syndrome,
sepsis, severe sepsis, and septic shock. Due to increased scientific
understanding of sepsis pathophysiology, the definition of the
sepsis syndrome has been recently updated to just sepsis, defined
as “life-threatening organ dysfunction due to a dysregulated host
response to infection,” and septic shock; “a subset of sepsis where
underlying circulatory and cellular/metabolic abnormalities are
profound enough to substantially increase mortality” (Singer
et al., 2016).

The Surviving Sepsis Campaign (www.survivingsepsis.org)
established standards for the diagnosis and management of
sepsis, and this has led to decreases in early mortality (Dellinger
and Vincent, 2005; Kumar et al., 2011). However, epidemiologic
studies reveal that the incidence of sepsis is still on the rise,
and this will likely continue as the general population ages, as
immune compromising therapies for cancer and autoimmune
disease become more prevalent, and as microbial antibiotic
resistance increases. Remarkably, current estimates indicate that
1 million people with sepsis are hospitalized per year in the US
and >30 million globally (Liu et al., 2014; Cohen et al., 2015).
According to the Healthcare Cost and Utilization Project by
the U.S. Department of Health & Human Services, Agency for
Healthcare Research and Quality, sepsis is the most expensive
condition treated in US hospitals (www.hcup-us.ahrq.gov).

Sepsis is initiated by the innate immune system’s recognition
and response to PAMPs and DAMPs. This response greatly
affects immune homeostasis, with an acute phase that is both
pro- and anti-inflammatory and a secondary phase in which
the adaptive immune system is suppressed. The intensity
and duration of these responses are associated with increased
secondary infections and mortality (Gotts and Matthay, 2016).
It is well–established in animal models subjected to sepsis and by
clinical evidence in humans that circulating neutrophils become
activated, which impairs their migration to sites of infection
and causes them to sequester in the vascular beds of organs
where they promote vascular occlusions and leakage, and tissue
destruction (Alves-Filho et al., 2010b; Sônego et al., 2014; Lerman
and Kim, 2015). These are key events that promote multiple
organ failure and septic shock.

The multistep adhesion cascade by which circulating
leukocytes infiltrate sites of inflammation requires rapid
orchestration of adhesion and de-adhesion events. A critical
mechanism that underpins this process is ectodomain shedding,

which is the focus of this review. There is increasing evidence
for aberrant regulation of ectodomain shedding during
inflammatory disorders and its association with vascular
dysfunction during sepsis (Gearing and Newman, 1993; Cowley
et al., 1994; Muller Kobold et al., 1998; Zonneveld et al., 2014;
Lerman and Kim, 2015).

ECTODOMAIN SHEDDING

Ectodomain shedding is a proteolytic process in which cell
surface proteins are cleaved at an extracellular location proximal
to the cell membrane, resulting in the release of an intact
ectodomain and the retention of a membrane-associated
fragment (Weber and Saftig, 2012). Cleaved proteins include
many type I and type II transmembrane proteins and some
glycosylphosphatidylinositol (GPI)-linked proteins. Cell surface
proteins that are shed have diverse functions and include
adhesion molecules, cytokines, chemokines, growth factors, and
their receptors (Scheller et al., 2011). The shedding process of
these substrates regulates the density of cell surface receptors, the
release of factors that serve as agonists, and the release of soluble
receptors that can function as antagonists.

Ectodomain shedding primarily occurs by a disintegrin
and metalloproteinases (ADAMs) and to a lesser degree by
matrix metalloproteinases (MMPs), members of the adamalysin
and matrixin subfamilies, respectively, of the metzincin
metalloproteinase superfamily (Khokha et al., 2013). Metzincin
derives its name from the conserved methionine amino acid
adjacent to a zinc-binding motif in the catalytic region of the
proteases. The ADAMs are type-1 transmembrane proteins
with distinct modular domains consisting of, from N- to C-
terminus, a metalloproteinase domain, disintegrin-like domain,
cysteine-rich domain, an epidermal growth factor domain (note
ADAM10 and 17 lack this domain), a transmembrane segment,
and a cytoplasmic region (Figure 2) (Takeda, 2016). Twenty
ADAMs have been identified in humans, excluding pseudogenes,
and of these only 12 are proteolytically active (ADAM8, 9, 10,
12, 15, 17, 19, 20, 21, 28, 30, and 33) (Weber and Saftig, 2012;
Hartmann et al., 2013; Takeda, 2016).

ADAM17 and ADAM10 are the most similar in terms of
amino acid sequence and structure (Rosendahl et al., 1997;
Maskos et al., 1998), and at this time they are the most widely
studied. Though ADAM17 and ADAM10 are not redundant
sheddases (Jones et al., 2016), there is some overlap in their
substrate repertoire, which may serve a compensatory role
and/or enable differential shedding of common substrates.
Indeed, ADAM10 has been reported to function primarily in
a constitutive manner, whereas ADAM17 is highly inducible,
responding to various cellular stimuli (Le Gall et al., 2009), as
described in more detail below. ADAM17’s role in neutrophil
effector functions has been broadly examined (Li et al., 2006;
Walcheck et al., 2006; Bell et al., 2007; Chalaris et al., 2007;
Horiuchi et al., 2007a; Schaff et al., 2008; Wang et al., 2009, 2010,
2011, 2013; Long et al., 2010, 2012; Arndt et al., 2011; Scheller
et al., 2011; Tang et al., 2011; Mishra et al., 2015, 2016), and is
discussed below.
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FIGURE 2 | Illustration of the domain structure of the human ADAM

family members. Each domain is indicated by a letter. Metalloproteinase (M),

disintegrin-like (D), cysteine-rich (C), and epidermal growth factor (E). Additional

regions of functional relevance discussed in the text are indicated in the key.

ADAM17

Approximately 20 years ago, Roy Black’s group and others
provided direct evidence that ADAM17 converts transmembrane
TNFα to its soluble form (Black et al., 1997; Moss et al.,
1997). Soon afterwards this group also demonstrated through
ADAM17 gene inactivation in mice that the sheddase had
a much broader role than inflammation regulation and was
essential for mammalian development due to EGFR ligand
cleavage and EGFR signaling (Peschon et al., 1998). Global
deletion of the Adam17 gene in mice is predominantly perinatal
lethal (Peschon et al., 1998; Horiuchi et al., 2007a), though
the degree of lethality depends on the background of the
mouse strain (Li et al., 2007). However, mice expressing severely
reduced levels of ADAM17, due to spontaneous or induced
mutations of its gene, demonstrate significantly increased
survival when compared to total inactivation of ADAM17 in
mice (Brandl et al., 2010; Chalaris et al., 2010; Hassemer
et al., 2010). ADAM17 deficiency has been reported in three
humans so far. These patients suffered from severe inflammatory
skin and bowel disease (Blaydon et al., 2011; Tsukerman
et al., 2015). One patient remained alive at the time of the
report and has “led a relatively normal life” (Blaydon et al.,
2011).

A review by Scheller et al. in 2011 reported 76 putative
substrates of ADAM17 (Scheller et al., 2011), which continues
to increase, though only a handful of these substrates have
been further verified in vivo. ADAM17 typically cleaves its
substrates in a cis manner and an examination of the cleavage
site of various ADAM17 substrates reveals no strict consensus
sequence, consistent with the sheddase’s promiscuous activity.
Proteomic studies of ADAM17 cleavage site specificities have,
however, revealed a high preference for alanine, leucine, and

valine residues, and a low preference for a proline residue (Caescu
et al., 2009; Thorp et al., 2011; Tucher et al., 2014). Indeed, a
proline residue engineered into the cleavage site of the ADAM17
substrates CD16a, CD16b, and L-selectin completely abrogate
their shedding (Zhao et al., 2001; Jing et al., 2015). Despite
ADAM17’s relaxed sequence specificity, the sheddase tends to
require a cleavage region with an α-helical conformation and
appropriate physical length (Kishimoto et al., 1995; Mezyk et al.,
2003; Stawikowska et al., 2013). The specific site of cleavage may
also depend on the type of membrane linkage by the substrate.
For instance, the human IgG Fc receptor CD16a (FcγRIIIa) is a
transmembrane protein and CD16b (FcγRIIIb) is GPI-linked to
the plasma membrane. These substrates have identical cleavage
regions, yet CD16a is cleaved at a single location (Lajoie et al.,
2014; Jing et al., 2015), whereas CD16b is cleaved at three
locations in close proximity (Galon et al., 1998; Jing et al.,
2015).

Ectodomain shedding by ADAM17 is regulated in various
manners, including gene expression, spatial redistribution of
the sheddase and its substrates within the plasma membrane,
proenzyme conversion, enzyme inhibition, and by allosteric
control. The influences of these regulatory events differ per
cell type, stimulus, and substrate. An interesting feature of
ADAM17 compared to other ADAM family members is that
its sheddase activity is greatly increased upon cell activation
(Edwards et al., 2008; Gooz, 2010; Matthews et al., 2016). An
example of the rate and efficiency of this process is demonstrated
by L-selectin shedding. Resting neutrophils express from 50,000
to 100,000 L-selectin molecules on their surface and essentially all
are cleaved within minutes of neutrophil activation (Kishimoto
et al., 1989; Walcheck et al., 1996a). Heterogeneous stimuli
induce ectodomain shedding in diverse cell types, and this is
primarily mediated by serine and threonine kinase-dependent
intracellular signaling pathways (Gechtman et al., 1999; Díaz-
Rodríguez et al., 2002; Soond et al., 2005; Schwarz et al., 2014),
including PKC and MAPKs in neutrophils (Fan and Derynck,
1999; Rizoli et al., 1999; Alexander et al., 2000; Wang et al.,
2011). ADAM17 sheddase activity is also increased during
neutrophil apoptosis (Walcheck et al., 2006; Chalaris et al.,
2007; Wang et al., 2010, 2013), and this process required
caspases and mitochondrial reactive oxygen species (Wang et al.,
2011). An area of active debate is the proximal target(s) of the
intracellular signals and how they affect ectodomain shedding by
ADAM17.

Though numerous mechanisms by which ADAM17 sheddase
activity is increased upon cell activation have been described,
a predominant theme is that intracellular signaling induces
changes in the intrinsic activity of ADAM17. Conformational
changes in ADAM17 upon cell activation are apparent by the
exposure of binding sites for small molecule inhibitors and
antibodies (Le Gall et al., 2010; Willems et al., 2010). This
may involve phosphorylation of ADAM17’s cytoplasmic region,
which occurs following cell activation by various stimuli (Díaz-
Rodríguez et al., 2002; Soond et al., 2005; Schwarz et al.,
2014). Such a means of induction, however, is confounded by
several studies showing that the cytoplasmic region of ADAM17
is not required for its sheddase activity (Reddy et al., 2000;
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Wang et al., 2009; Le Gall et al., 2010; Schwarz et al., 2013).
However, the cytoplasmic region of ADAM17 may participate in
a negative regulatory process. Xu et al. reported that ADAM17
in resting cells forms dimers in the cell membrane that associate
with tissue inhibitor of metalloproteinase 3 (TIMP3) (Xu
et al., 2012), which forms a non-covalent complex with the
catalytic region of ADAM17 and blocks its activity (Amour
et al., 1998; Smookler et al., 2006; Wisniewska et al., 2008).
The cytoplasmic region of ADAM17 has been shown to be
critical for dimer formation, and cell activation and MAPK
activity were associated with ADAM17 dimer conversion to
monomers and TIMP3 dissociation (Xu et al., 2012). Other
protein partners with ADAM17 include two inactive members of
the Rhomboid family, iRhom 1 and 2, which control ADAM17
maturation and trafficking to the cell surface (Adrain et al.,
2012; Mcilwain et al., 2012; Li et al., 2015). Interesting is that
iRhom2 expression is restricted to hematopoietic cells, whereas
iRhom1 is more widely expressed (Christova et al., 2013), but
not in leukocytes (Issuree et al., 2013). The iRhoms have been
proposed to also play a role in the induction of ADAM17
sheddase activity upon cell activation (Maretzky et al., 2013;
Lorenzen et al., 2016). Intracellular stores of ADAM17 occur
in certain cells (Doedens and Black, 2000; Schlöndorff et al.,
2000), and through a process facilitated by the iRhoms, Lorenzen
et al. reported that ADAM17 surface expression can rapidly
increase upon overt cell activation with a phorbol ester (Lorenzen
et al., 2016). However, the importance of rapid ADAM17
upregulation as a general inducer mechanism of ectodomain
shedding is an area of debate since this was not observed
with physiological stimuli (Walcheck et al., 2006; Lorenzen
et al., 2016), or in various cells activated with phorbol esters
(Doedens and Black, 2000; Doedens et al., 2003; Horiuchi et al.,
2007b).

The disintegrin-like and cysteine-rich domains of ADAM17
also modulate its sheddase activity (Reddy et al., 2000; Gonzales
et al., 2004; Wang et al., 2009; Willems et al., 2010; Düsterhöft
et al., 2013; Sommer et al., 2016). These domains contain
cysteine residues that provide strictly conserved disulfide bonds
(Takeda, 2016). ADAM17 has two highly conserved cysteine-X-
X-cysteine sequences (CXXC, where XX represents two other
amino acids), one located in the disintegrin-like domain and
the other in the cysteine-rich domain (Figure 2) (Wang et al.,
2009). Site-directed mutagenesis revealed that these regions are
critical for ADAM17 activity (Wang et al., 2009). Similarly,
within the β-subunit of integrin adhesion proteins are cysteine-
rich regions that contain CXXC sequences, and this motif has
been reported to be an active site for the modification of
allosteric disulfide bonds and rapid conformational switches
(O’neill et al., 2000;Walsh et al., 2004; Xu et al., 2016). Interesting
is that sulfhydryl-modifying agents are known to alter L-selectin
shedding by human neutrophils. For instance, the reducing
agent DTT inhibited L-selectin shedding, whereas the oxidizing
agent H2O2 induced its shedding (Lynam et al., 1996; Bennett
et al., 2000; Wang et al., 2009). ADAM17 sheddase activity
can also be directly modified by redox agents in a cell free
assay (Wang et al., 2009). These findings suggest that ADAM17
is an allosterically regulatable enzyme, which perhaps occurs

by thiol isomerases (Wang et al., 2009; Willems et al., 2010;
Düsterhöft et al., 2013). Another motif in ADAM17 that may
regulate its conformation and enzymatic activity is a cluster of
cationic amino acids located in the membrane proximal region
of the cysteine-rich domain of the sheddase (Figure 2). Upon
cell activation and apoptosis, cell surface exposure of negatively
charged, membrane phosphatidylserine may interact with the
cationic amino acids and in turn increase the proximity of
ADAM17’s catalytic region with certain substrates (Sommer
et al., 2016).

REGULATION OF NEUTROPHIL
RECRUITMENT BY ADAM17

Neutrophils and endothelial cells constitutively express ADAM17
on their cell surface (Walcheck et al., 2006; Koenen et al.,
2009; Weskamp et al., 2010). In contrast to global ADAM17
inactivation, conditional ADAM17 knockout mice that lack
ADAM17 in myeloid cells, all leukocytes, or endothelial cells
are viable and lack any obvious developmental abnormalities
(Horiuchi et al., 2007a; Long et al., 2010, 2012; Weskamp
et al., 2010; Arndt et al., 2011; Dreymueller et al., 2012; Mishra
et al., 2016). Interesting is that either conditional ADAM17
knockout mice or hematopoietic chimeric mice that lacked
ADAM17 in leukocytes demonstrated accelerated neutrophil
recruitment at sites of sterile inflammation as well as infection
(Long et al., 2010, 2012; Arndt et al., 2011; Tang et al., 2011;
Mishra et al., 2015, 2016). This was also observed in mice
receiving short-term treatment with an ADAM17 inhibitor
(Tang et al., 2011; Mishra et al., 2015), demonstrating that the
neutrophil recruitment pattern was not a developmental effect.
One mechanism accounting for the accelerated recruitment of
neutrophils is the disruption of L-selectin shedding (Tang et al.,
2011; Long et al., 2012), which enhanced neutrophil tethering to
L-selectin ligands on the vascular endothelium (Tang et al., 2011).
CXCR2 surface levels on mouse and human neutrophils are also
regulated by ADAM17 (Mishra et al., 2015). It is well-described
that this chemokine receptor undergoes a rapid downregulation
in expression by internalization upon binding its chemokine
ligands, which is a reversible process since the receptor can
be recycled back to the cell surface to bind additional ligands
(Stillie et al., 2009). CXCR2 is also downregulated following
overt neutrophil activation by non-ligand stimuli, including
various PAMPs (Khandaker et al., 1998, 1999; Doroshenko et al.,
2002; Mishra et al., 2015). This process involves ADAM17
and does not result in a recycling pool of CXCR2 (Mishra
et al., 2015). Relevant to human neutrophils is that CD16b, an
ADAM17 substrate described above (Wang et al., 2013; Jing
et al., 2015), is also known to facilitate neutrophil attachment
and migration through the vascular wall at sites of inflammation
(Tsuboi et al., 2008). Various adhesion molecules expressed by
endothelial cells and platelets that regulate hemostasis, barrier
function, and leukocyte transmigration are also substrates of
ADAM17, including GPIbα, GPV, JAMA, ICAM1, PECAM1,
and VCAM1 (Garton et al., 2003; Bergmeier et al., 2004; Brill
et al., 2009; Koenen et al., 2009; Weskamp et al., 2010). Taken
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together, ADAM17 can regulate different aspects of the multi-
step process by which circulating neutrophils infiltrate inflamed
tissue sites.

ADAM17 ACTIVITY DURING SEPSIS

Several lines of evidence from animal models and patients
indicate aberrant ADAM17 activity during sepsis. Indeed,
ADAM17 upregulation on the surface of circulating neutrophils
was found to correlate with sepsis severity and patient outcome
(Kermarrec et al., 2005). A recent study has also provided
evidence that ADAM17 promoter polymorphism rs12692386 is
a functional variant associated with the progression of sepsis
severity (Shao et al., 2016). Patients with this polymorphism
demonstrated an upregulation in ADAM17 expression and
serum levels of several of its proinflammatory substrates (Shao
et al., 2016). It has been reported that the plasma levels of several
leukocyte- and endothelial cell-expressed, ADAM17 substrates
are significantly elevated during sepsis, including L-selectin,
ICAM-1, VCAM-1, CD16b, TNFα, IL-6R, TNFRI, and TNFRII,
and some of these substrates demonstrated a positive correlation
with disease severity (Ertel et al., 1994; Muller Kobold et al.,
1998; Schulte et al., 2013; Zonneveld et al., 2014; Lerman
and Kim, 2015). These adhesion proteins, receptors, and cell
activating factors have a direct or indirect role in regulating
neutrophil recruitment at sites of bacterial infection. Moreover,
CXCR2 on the surface of circulating neutrophils is significantly
downregulated during experimental sepsis and in human patients
(Alves-Filho et al., 2009, 2010a).

Targeting leukocyte ADAM17 in animal models has been
shown to greatly reduce damaging inflammation. For instance,
ADAM17 inactivation in leukocytes significantly reduced tissue
and plasma levels of proinflammatory factors and organ damage
in localized and systemic endotoxemia models, in part, due
to a marked reduction in TNFα levels and downstream
effectors (Horiuchi et al., 2007a; Arndt et al., 2011). During
E. coli infection, conditional ADAM17 knockout mice lacking
ADAM17 in all leukocytes demonstrated a survival advantage
and a marked reduction in bacterial levels at the site
of infection (Long et al., 2010, 2012). In a model of
polymicrobial sepsis, these conditional ADAM17 knockout mice
also demonstrated enhanced survival, which corresponded with
decreased bacteremia and levels of circulating proinflammatory
cytokines, key determinants of sepsis severity (Mishra et al.,
2016). Neutrophil recruitment at the site of infection was again
found to be greatly increased in conditional ADAM17 knockout
mice compared to control mice, and this likely accounted for the
enhanced clearance of bacteria (Mishra et al., 2016).

CONCLUDING REMARKS

ADAM17 cleaves an assortment of type I and type II
transmembrane proteins and GPI-anchored proteins at an
extracellular site. Its sheddase activity is rapidly inducible and
provides a mechanism for cells to respond very quickly to
different environmental stimuli to reduce cell receptor densities.

ADAM17 substrates on neutrophils and endothelial cells include
L-selectin, CXCR2, CD16b, JAMA, ICAM1, PECAM1, and
VCAM1, and the sheddase appears to function as a pivotal
regulator of intravascular adhesion events (Figure 1A). It is
well-established in animal models and by clinical evidence in
humans that neutrophil recruitment at sites of infection is
greatly impaired during the early stages of severe sepsis (Alves-
Filho et al., 2010b; Sônego et al., 2014; Lerman and Kim,
2015). Sepsis may result in an over-induction of ADAM17
activity in neutrophils, endothelial cells, and other cells that in
turn undermines the necessary balance between intravascular
adhesion and de-adhesion events, and impairs neutrophil
recruitment at the locus of infection (Figure 1B). Moreover, the
ADAM17 substrate TNFα occurs at high levels in the blood
during sepsis promoting neutrophil rigidity and the upregulation
of integrin adhesion molecules, in turn causing occlusion of
the microvasculature, ischemia, and tissue destruction through
the release of cytotoxic factors (Brown et al., 2006; Alves-Filho
et al., 2009; Lerman and Kim, 2015). Since there is not a strict
consensus sequence at which ADAM17 cleaves, its fidelity may
decrease during prolonged or excessive inflammation, resulting
in more substrates and further cell dysfunction. In addition
to aberrant ectodomain shedding during sepsis, various other
mechanisms that underlie neutrophil dysfunction in the course
of sepsis have been reported, as described in recent review articles
(Sônego et al., 2014; Lerman and Kim, 2015; Zhang et al., 2016).

Despite years of active research, novel mechanistic insights
about sepsis have not yet translated into effective host-directed
drug treatments. Inflammation modulating research is shifting
to therapeutic strategies to optimize the host’s response to
infection during sepsis. Therefore, it will be interesting to
examine the targeting of ADAM17 as a host-directed therapeutic
approach in patients. The potential benefits of ADAM17
inhibition on increasing neutrophil infiltration at sites of
infection and reducing damaging inflammation may be exploited
in clinical settings to reduce sepsis progression as well as its
occurrence in high risk, general surgery patients. Of course,
extrapolation of mouse model findings related to the effects
of ADAM17 inactivation need to be confirmed in humans
in which sepsis is a highly complex clinical syndrome. In
addition, ADAM17-deficient mice are perinatal lethal (Peschon
et al., 1998), mice expressing greatly reduced levels of ADAM17
demonstrate increased susceptibility to inflammatory diseases
(Brandl et al., 2010; Chalaris et al., 2010), and loss-of-
function mutations in ADAM17 cause inflammatory diseases
in humans (Blaydon et al., 2011). In consideration of this,
prolonged inhibition of ADAM17 could have detrimental
consequences. However, pharmacological inhibitors of ADAM17
have advanced in specificity and progressed to clinical trials for
cancer (for example, https://clinicaltrials.gov/ct2/show/record/
NCT02141451), and have been reported to be well-tolerated
(Friedman et al., 2009; Duffy et al., 2011). Thus, temporarily
targeting ADAM17 for sepsis with highly specific inhibitors may
not result in significant adverse effects. Moreover, it may be
possible to selectively prevent the shedding of critical ADAM17
substrates that regulate leukocyte recruitment expressed by
neutrophils, platelets, or endothelial cells by targeting their
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cleavage regions, which tend to vary between ADAM17
substrates, and in turn more precisely modulate leukocyte
interactions with the vascular endothelium during sepsis.
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