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Parasitic nematode infections are widespread in nature, affecting humans as well as

wild, companion, and livestock animals. Most parasitic nematodes inhabit the intestines

of their hosts living in close contact with the intestinal microbiota. Many species also

have tissue migratory life stages in the absence of severe systemic inflammation of the

host. Despite the close coexistence of helminths with numerous microbes, little is known

concerning these interactions. While the environmental niche is considerably different,

the free-living nematode Caenorhabditis elegans (C. elegans) is also found amongst

a diverse microbiota, albeit on decaying organic matter. As a very well characterized

model organism that has been intensively studied for several decades, C. elegans

interactions with bacteria are much more deeply understood than those of their parasitic

counterparts. The enormous breadth of understanding achieved by the C. elegans

research community continues to inform many aspects of nematode parasitology. Here,

we summarize what is known regarding parasitic nematode-bacterial interactions while

comparing and contrasting this with information from work in C. elegans. This review

highlights findings concerning responses to bacterial stimuli, antimicrobial peptides,

and the reciprocal influences between nematodes and their environmental bacteria.

Furthermore, the microbiota of nematodes as well as alterations in the intestinal

microbiota of mammalian hosts by helminth infections are discussed.

Keywords: nematode, helminth, microbiota, antimicrobial peptides, antibiotic resistance

INTRODUCTION

Parasitic nematodes are responsible for widespread morbidity in humans and animals. It is
estimated that approximately 1.5 billion people are infected with one or more of these organisms
(Hotez et al., 2008; World Health Organization, 2017) which also pose a considerable burden for
animal production (Eijck and Borgsteede, 2005; Nganga et al., 2008). The extraordinary success
of these parasites speaks to their ability to withstand a multitude of stresses such as host immune
pressures and infectious challenges frommicrobes. Most parasitic nematodes inhabit the intestines
of their hosts, co-existing with numerousmicrobial species. In studying these dynamics, researchers
have focused extensively on the host-parasite relationship; more recently, the role of the microbiota
as a major third party in the relationship is better appreciated due to diverse and far-reaching
influences in health and disease (Donaldson et al., 2016). Much attention in these studies is
given to host immune mechanisms while the interactions between nematodes and their microbial
environments are largely overlooked. Due to many technical and biological challenges associated
with studying parasites, these questions can be very difficult to address. The free-living nematode
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Caenorhabditis elegans (C. elegans) is frequently found in nature
amongst a diverse microbiota on decaying organic matter (Frézal
and Félix, 2015). C. elegans has been very well characterized and
its interactions with bacteria studied in considerable detail. As
such, these findings might be conveyed to parasitic nematodes
and greatly inform our understanding of how parasites interact
with the host-microbiota, as many immune-related pathways
and responses may be conserved (Tarr, 2012; Rosso et al.,
2013). This review will summarize current knowledge regarding
how parasitic nematodes and their microbial environments may
influence each other, supplemented with insights from work in
C. elegans.

TABLE 1 | Effects of helminth infection on host microbiota and metabolism in humans, macaques, and pigs.

Host and

helminth(s)

species

Microbiota

diversity

Microbiota

composition

Changes in host

metabolism

Sample

site(s)

Population details References

HUMAN

T. trichiura → n.r. n.r. Feces Rural Ecuadorians Cooper et al., 2013

↓ Prevotella ↑ n.r. Feces Rural Malaysians Ramanan et al., 2016

A. lumbricoides, T.

trichiura and

hookworm (mixed

infections)

↓ Streptococcus ↑ n.r. Feces Rural Ecuadorians A. lumbricoides

and T. trichiura

Cooper et al., 2013

↑ Prevotellaceae,

Mollicutes,

Bacteroidales

Alphaproteobacteria

↑

Carbohydrate

metabolism ↓

Feces Rural Malaysians

A. lumbricoides,

T. trichiura, and hookworm

Lee et al., 2014

N. americanus → n.r. n.r. Feces Healthy volunteers

(gluten-free diet; 8 wpi)

Cantacessi et al., 2014

↑ Bacteroidetes and

Bacteroidia ↑;

Lachnospira,

Ruminococcus,

Firmicutes,

Tenericutes ↓

Gluten tolerance ↑ Feces Volunteers with celiac disease

(8 wpi), gluten administration in

parallel

Giacomin et al., 2015

n.r. n.r. SCFA ↑ Feces Healthy volunteers (8 wpi) Zaiss et al., 2015

MACAQUE

T. trichiura ↑ Cyanobacteria ↓;

Tenericutes and

Bacteroidetes ↑;

bacterial

attachment to

mucosa ↓

n.r. Colon Chronic helminth infection in a colitis

model

Broadhurst et al., 2012

PIG

T. suis → Ruminococcus,

Oscillibacter and

Succinivibrio↓;

Mucispirillum and

Paraprevotella ↑

Altered fatty acid

metabolism and

carbohydrate

metabolism, amino

acid availability↓

Colon Larval stage infection (21 dpi) Li et al., 2012

n.r. Ruminococcus

Oscillibacter and

Succinivibrio ↓;

Campylobacter ↑

n.r. Colon Chronic infection (53 dpi) Wu et al., 2012

A. suum ↓ Prevotella ↑ SCFA ↑ Colon 54 dpi Paerewijck et al., 2015

→, no change; ↑, increase; ↓, decrease; n.r., not reported; SCFA, short chain fatty acids; dpi, days post-infection; wpi, weeks post-infection; Nod2, nucleotide-binding oligomerization

domain-containing protein 2; WT, wild type.

NEMATODES AND THEIR MICROBIAL
ENVIRONMENTS

Studies on intestinal nematodes report a range of alterations to
the composition of the microbiota, ranging from increased or
decreased diversity, dysbiosis, or in some cases no identifiably
significant changes (summarized in Tables 1, 2). Responses
by C. elegans to numerous microbes have also been studied.
Accordingly, parasitic helminths illuminate our understanding
of how microbial communities can be altered by the presence
of nematodes whereas studies of C. elegans can explain
how microbial populations impact nematode physiology,
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TABLE 2 | Effects of helminth infection on host microbiota and metabolism in mice.

Host and

helminth(s) species

Microbiota

diversity

Microbiota composition Changes in host

metabolism

Sample

site(s)

Infection phase References

MUS MUSCULUS

T. muris ↓ Bacteroidetes ↓;

Mucispirillum,

Bifidobacterium,

Lactobacillaceae,

Proteobacteria and

Firmicutes ↑

n.r. Cecum

Colon

Feces

Chronic infection Holm et al., 2015

↓ Parabaceroides, Prevotella

and Bacteroidetes ↓;

Mucispirillum and

Rikenellaceae ↑

weight gain and

carbohydrate

metabolism ↓

Feces Chronic infection Houlden et al., 2015

↑ Nod2

deficient

mice; ↓

in WT mice

B. vulgatus, Prevotella and

Bacteroides ↓;

Lachnospiraceae,

Lactobacillales and

Clostridiales ↑

n.r. Feces Acute infection (21 dpi) Ramanan et al., 2016

H. p. bakeri n.r. Lactobacillaceae,

Clostridiaceae,

Ruminococcaceae and

Lachnospiraceae ↑

n.r. Ileum

Cecum

Acute infection (14 dpi) Walk et al., 2010

n.r. Baceroides, Clostridium,

Lactobacillus and

Enterobacteriaceae ↑

n.r. Ileum

Cecum

Colon

Acute infection (14 dpi) Rausch et al., 2013

n.r. Enterobacteriaceae and

Lactobacillaceae ↑

n.r. Duodenum

Feces

28 dpi Reynolds et al., 2014

n.r. Clostridiales ↑ SCFA ↑ Cecum 28 - 42 dpi Zaiss et al., 2015

N. brasiliensis → Firmicutes and SFB ↓;

Bacteroidetes and

Actinobacteria ↑

n.r. Jejunum

Ileum

Cecum

Colon

Feces

11 dpi Fricke et al., 2015

APODEMUS FLAVICOLLIS

H. p. bakeri,

Syphacia.

Hymenolepsis and M.

muris (mixed

infections)

→ Firmicutes/Bacteroidetes

ratio ↑

(with H. p. bakeri)

carbohydrate

metabolism ↑

(with H. p. bakeri)

stomach

small

intestine

cecum

colon

Wild caught mice, likely

chronic exposure to

helminths

Kreisinger et al., 2015

→, no change; ↑, increase; ↓, decrease; n.r., not reported; SCFA, short chain fatty acids; dpi, days post-infection; wpi, weeks post-infection; Nod2, nucleotide-binding oligomerization

domain-containing protein 2; WT, wild type; SFB, segmented filamentous bacteria.

reproduction and growth; considered together, one can better
understand how these multifactorial biological systems operate.
Herein, we focus most of our discussion on selected members of
the genera Trichuris and Ascaris, as well as the rodent parasite
Heligmosomoides polygyrus bakeri and the free-living C. elegans.
These organisms have been selected due to their importance to
human and animal health along with the abundance of available
data in the literature, though additional studies from other
helminths are considered where appropriate.

The Nematodes
Trichuris
The whipworms Trichuris trichiura, T. suis, and T. muris infect
humans, pigs, and mice respectively. The life cycles of these
species are comparable and infection begins with ingestion
of developed eggs (Bethony et al., 2006; Klementowicz et al.,

2012). Hatching occurs within hours of ingestion, liberating L1
larvae which invade the intestinal wall and undergo successive
molts to the L4 stage by 3 weeks post-infection (pi) and finally
develop into mature adults by 12 weeks pi (Bethony et al.,
2006). Trichurids inhabit the most dense and diverse microbial
environments of their hosts: the cecum and colon (Klementowicz
et al., 2012). They can survive here for 1–2 years with individual
females laying up to 5,000 eggs per day (Bethony et al., 2006).

Ascaris
The roundworms A. lumbricoides and the closely related A.
suum infect humans and pigs respectively. As with Trichuriasis,
Ascariasis also spreads via the fecal-oral route in humans as well
as in pigs (Dold and Holland, 2011). Within 3 h, ingested eggs
containing L3 larvae hatch and by 18 h pi the larvae begin their
tissue migratory phase, passing through the liver after invading
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the cecum and proximal colon (Murrell et al., 1997). The larvae
reach the lungs and pharynx by days six to eight pi (Roepstorff
et al., 1997), are swallowed and can then be found in the small
intestine as L4 stage larvae before further developing into mature
adults. Adult Ascarids reside in the small intestine for around 1
year with individual females producing hundreds of thousands of
eggs per day (Dold and Holland, 2011).

H. p. bakeri
The trichostrongyloid H. p. bakeri is amongst the most common
helminth parasites of rodents and a well characterized model for
chronic intestinal nematode infection (Wu et al., 2012). Infection
is initiated by ingestion of L3 larvae which migrate into the
mucosa of the small intestine. By day three pi the larvae develop
into L4 within the mucosa before returning to the lumen of the
duodenum by day nine pi where they develop into, and remain
as, egg-laying adults for approximately 12 weeks in the wood
mouse (Apodemus sylvaticus) and more than twice as long in
BALB/c laboratory mice (Robinson et al., 1989; Gregory et al.,
1990; Behnke et al., 2009).

C. elegans
C. elegans is a free-living, bacterivorous nematode found
predominantly in humid temperate areas (Félix and Duveau,
2012; Frézal and Félix, 2015). These nematodes can be identified
in feeding and reproductive stages in rotting fruit and herbaceous
stems. The life cycle is characterized by freshly hatched L1 stage
larvae undergoing multiple molts before reaching adulthood
in as little as 3 days. Under stressful conditions including
crowding, limited food, and heat stress, L1 individuals will
pursue an alternate life cycle through a pre-dauer L2 (L2d) stage,
followed by a non-feeding, stress-resistant alternate L3 stage
called “dauer.” Dauer individuals can survive for several months
without food before reentering a relatively normal development
cycle when conditions are more favorable. In the laboratory,
the reference N2 strain is typically cultured on a diet of the
rather innocuous Escherichia coli OP50. In contrast to controlled
laboratory conditions, C. elegans shares its natural habitat with a
variety of organisms, including bacteria, phages, fungi, isopods,
arthropods, and other nematodes (Félix and Duveau, 2012).
Additionally, worms can be found in states of starvation or
constipation in their natural environments (Barrière and Félix,
2005).

Parasitic Nematodes Influence the
Host-Intestinal Microbiota
The mammalian intestine is home to approximately 3.8 × 1013

microbes from all three domains of life, archaea, bacteria, and
eukaryotes, collectively referred to as the microbiota (Sender
et al., 2016). The different regions of the intestinal tract form
divergent habitats, varying in bacterial type and density. In
humans, an estimated 103–104 microbial cells/mL intestinal
content reside in the small intestine (Sender et al., 2016).
Considerably more bacterial diversity and density is found in
the large intestine with as many as 1011 cells/mL contents
representing thousands of different species (Zoetendal et al.,
2008; Sender et al., 2016). Interestingly, microbial density

and diversity of intestinal regions are inversely correlated
with concentrations of host-derived antimicrobials; specialized
secretory Paneth cells are a key source of α-defensins, lysozymes,
and C-type lectins and are particularly prominent in the
proximal intestine, the intestinal site of lowest microbial
richness (Bevins and Salzman, 2011; Donaldson et al., 2016).
Additionally, persistence of common gut commensals is partially
mediated by resistance to host defense molecules (Cullen
et al., 2015). Whether these factors influence helminth niche
selection remains to be determined. Various conditions such
as age, diet, health status and genetic background can impact
the host microbiota composition. Maturation of the gut
microbiota is characterized by increasing diversification with
age while age-related changes are also due to exposure to a
more varied diet (David et al., 2014; Odamaki et al., 2016).
Analysis of human fecal samples can detect rapid, diet-mediated
changes in microbial composition. For example, consumption
of animal products increases the abundance of bile-tolerant
species and decreases abundance of species that metabolize
plant-derived polysaccharides (David et al., 2014). Dysbiosis,
a potentially pathogenic imbalance of microbial communities,
can be precipitated by exposure to pharmaceutical substances
such as antimicrobials as well as the presence of infectious
agents (Donaldson et al., 2016). Acute antibiotic treatment
can drastically perturb the gut microbiota, decreasing species
diversity (Dethlefsen et al., 2008). Alarmingly, while some
changes appear reversible, other alterations can be detected
in fecal samples even years after a short course of antibiotic
treatment (Jernberg et al., 2007). A major clinical implication of
a disturbed gut microbiota is elevated risk of enteric infection,
such as with Clostridium difficile, which itself is associated
with decreased microbial diversity (Milani et al., 2016). Many
studies have now shown that intestinal nematodes influence
their microbial niches as they establish themselves as part of
their wider environment within the host; therefore, the role
of helminths in dysbiosis is an area of active investigation
(Figure 1).

The gut microbiota of humans, pigs, and mice is dominated
by two of the 29 known bacterial phyla: Bacteroidetes and
Firmicutes, with lower abundance phyla differing between hosts
and including Actinobacteria, Deferribacteres, Proteobacteria,
Spirochaetes, Tenericutes, and Verrucomicrobia (Leser et al.,
2002; Eckburg et al., 2005; Consortium, 2012; Nguyen et al., 2015;
Weldon et al., 2015). The diversity of the microbiota is thought to
reflect the health of the intestine, with far reaching implications
for the overall health of the host; greater species diversity
contributes to healthy metabolic and immune functioning.
Dysbiosis is associated with a reduction in intestinal biodiversity,
predisposing to the outgrowth of particularly harmful bacterial
species (Carding et al., 2015). The literature is mixed with
respect to whether or not helminths cause dysbiosis, and some
reports have indicated beneficial effects in therapeutic settings.
The few studies assessing the influence of helminths on intestinal
microbial communities are a mix of clinical observations and
animal experiments, employing different analytical tools and
acquiring microbiota samples from different sources. Hence, it is
difficult to draw meaningful and generalizable conclusions from
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FIGURE 1 | Diverse influences of nematodes on the gut microbiota of their hosts.

the available evidence. Still, through a careful reading of the
literature, some common threads emerge.

Analysis of fecal samples from children in rural Ecuador
revealed widespread helminth infection (Cooper et al., 2013).
Children co-infected with both T. trichiura and A. lumbricoides
appeared to have a decreased microbial diversity compared
to uninfected children and children with T. trichiura single
infections who did not differ from uninfected individuals.
Interestingly, in a subset of children with mixed infections
the authors also reported a higher abundance of Streptococcus
spp., not usually dominant in healthy individuals. Taken
together, these data suggest dysbiosis in the presence of A.
lumbricoides, while T. trichiura single infections did not result
in drastic alterations to the fecal microbiota. Another indication
of dysbiosis associated with Ascaris infection comes from a
study of A. suum-infected pigs which showed worm burden-
dependent decreased bacterial diversity compared to control
animals (Paerewijck et al., 2015). One study in humans found
no difference in community structure of fecal samples in healthy
volunteers infected with Necator americanus (Cantacessi et al.,
2014). In contrast, a study of fecal samples from helminth-
infected (T. trichiura, A. lumbricoides, hookworm) individuals
in rural Malaysia found a positive association between helminth-
colonization andmicrobiota diversity (Lee et al., 2014). Burrowed
in the epithelia, T. trichiura likely interacts with the mucosal
microbiota, the composition of which is known to differ
considerably from fecal communities (Eckburg et al., 2005).
Combined with the obstacles to sampling the small intestine,
the site of A. lumbricoides and N. americanus infections, it is

difficult to draw firm conclusions from these human studies
regarding beneficial or harmful effects of helminth infections
with respect to intestinal microbial composition. Though in the
case of Ascaris, the local effects seen in the porcine small intestine
(Paerewijck et al., 2015) correspond with the distal effects seen in
human feces (Cooper et al., 2013).

Animal studies of helminthiases can offer more depth
compared to human studies, accounting for the limitations
associated with sampling only the fecal microbiota. During
the larval stage, T. suis appears not to disrupt the porcine
colonic microbiota (Li et al., 2012); however, chronic infections
in pigs demonstrate worm burden-dependent disruption (Wu
et al., 2012). T. suis also appears to promote Campylobacter
infection in pigs, intensifying colitis disease severity (Mansfield
and Urban, 1996; Mansfield et al., 2003; Wu et al., 2012).
Chronic T. muris infections in mice considerably decrease
overall microbial diversity, an effect that appears reversible
upon worm clearance (Holm et al., 2015; Houlden et al.,
2015). In these studies, the murine microbiota also showed a
shift away from Bacteroidetes in favor of Firmicutes (Holm
et al., 2015; Houlden et al., 2015). A study of wild mice has
also observed an increased Firmicutes/Bacteroidetes ratio in
helminth-infected individuals (Kreisinger et al., 2015) whereas
mice experimentally infected with the small intestinal nematode
Nippostrongylus brasiliensis showed a decrease of Firmicutes
while increasing Bacteroidetes (Fricke et al., 2015). Though
N. brasiliensis decreases the Firmicutes/Bacteroidetes ratio, it
also promotes the reduction of segmented filamentous bacteria
(SFB) which are thought to prevent colonization by bacterial
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pathogens, as it was shown in SFB-colonized mice with enhanced
resistance to the pathogenic Citrobacter rodentium (Ivanov et al.,
2009; Fricke et al., 2015). Mice with chronic T. muris infections
(Holm et al., 2015; Houlden et al., 2015) as well as those
with acute H. p. bakeri infections (Rausch et al., 2013) have
higher abundance of Enterobacteriaceae, a family shown to
overgrow during intestinal inflammation (Lupp et al., 2007) and
strongly correlated with Crohn’s disease (Gevers et al., 2014)
and C. difficile infection (Milani et al., 2016) in humans. These
data indicate a propensity for helminths to associate with a
simplified microbiota; however, whether these observations are
generalizable across helminth infections in diverse mammalian
hosts remains to be determined; nonetheless, these animal
experiments are suggestive of helminths promoting dysbiosis in
their hosts.

Despite the evidence for dysbiosis, a fairly consistent finding
across various helminth infections is an increased abundance
of Lactobacillaceae (Walk et al., 2010; Rausch et al., 2013;
Reynolds et al., 2014; Fricke et al., 2015; Holm et al.,
2015; Houlden et al., 2015; Ramanan et al., 2016), a family
composed primarily of Lactobacillus spp., currently under intense
investigation for use as probiotics (Walter, 2008; Salvetti et al.,
2012). Additionally, studies employing intestinal nematodes
as therapeutic interventions to treat intestinal inflammatory
conditions have shown beneficial outcomes (Broadhurst et al.,
2012; Giacomin et al., 2015; Ramanan et al., 2016). Macaques
with idiopathic chronic diarrhea show signs characteristic
of dysbiosis such as decreased diversity, increased bacterial
attachment to the intestinal mucosa, and increased abundance
of Enterobacteriaceae (Broadhurst et al., 2012). Bacterial
attachment and abundance of Enterobacteriaceae were effectively
decreased by T. trichiura infection, while bacterial diversity was
restored, indicating a protective effect of helminth infection in
this setting. Similarly, mice deficient in Nod2 are susceptible
to Crohn’s disease and can be colonized by inflammatory
Bacteroides spp., while T. muris infection protects against
pathogenic colonization (Ramanan et al., 2016). In patients with
celiac disease, low-level infection with N. americanus increases
gluten tolerance (Croese et al., 2015), while also increasing
microbial richness when combined with gluten consumption
(Giacomin et al., 2015). Taken together, these findings indicate
that intestinal nematodes possess great therapeutic potential and
may promote microbial restoration in conditions of pre-existing
dysbiosis.

From taxonomic data referring to the microbiota composition
alone it is challenging to conclude whether intestinal nematodes
contribute to or ameliorate dysbiosis. As such, the influence
of helminths on gut metabolic profiles may offer more clues.
Methodological and technological advances allow for metabolic
profiling of gut microbiota, along with identification and
quantification of metabolites of interest (Vernocchi et al., 2016).
Such experiments can be quite informative, though they are
currently far less abundant than those reporting taxonomic
changes. Metabolomic analysis of the colonic microbiota of
pigs infected with T. suis demonstrated reduced capacity to
metabolize and utilize carbohydrates relative to control animals,
an effect seen in acute and chronic infections (Li et al., 2012;

Wu et al., 2012). Interestingly, T. suis-infected pigs also showed
signs of altered fatty acid metabolism, including higher levels
of oleic acid relative to control pigs (Li et al., 2012). Notably,
oleic acid possesses antibacterial activity (Dilika et al., 2000)
and may therefore influence microbial composition during
Trichuris infection. Mice chronically infected with T. muris
also showed signs of reduced carbohydrate and amino acid
metabolism and nutrient uptake compared to naïve animals,
features which likely contribute to decreased weight gain
during helminth infection (Houlden et al., 2015). Observational
analysis of helminth-infected humans has attributed decreased
carbohydrate metabolism to Ascaris infection (Lee et al., 2014).
In contrast, wild mice infected with helminths showed mixed
effects with respect to metabolomic shifts (Kreisinger et al.,
2015). Notably, wild mice with H. p. bakeri appeared to have
an increased capacity to metabolize carbohydrates; however,
metabolites were not measured and mouse weights were
not reported. Together, these observations suggest helminth-
mediated microbiota changes tend to reduce metabolic capability
in the gut, ultimately manifesting as nutritional deficiencies.

While dietary carbohydrate utilization may be impaired by
intestinal nematodes, other experiments demonstrate potential
benefits of helminth infection such as increased abundance of
intestinal short-chain fatty acids (SCFAs), typically produced
from microbial processing of indigestible oligosaccharides
(Paerewijck et al., 2015; Zaiss et al., 2015; Vernocchi et al.,
2016). SCFAs can serve as energy sources and anti-inflammatory
compounds and are therefore under investigation for their
therapeutic potential (Vernocchi et al., 2016). Increased SCFAs
have been detected during infection with H. p. bakeri in mice, A.
suum in pigs, and N. americanus in humans (Paerewijck et al.,
2015; Zaiss et al., 2015). Furthermore, H. p. bakeri and A. suum
can produce SCFAs directly (Tielens et al., 2010; Zaiss et al.,
2015). Reduced weight gain associated with helminth infection
may also prove to be therapeutic in different circumstances, as
illustrated by Yang et al. in a study of obese mice and mice
fed obesity-inducing diets (Yang et al., 2013). In agreement with
other observations, N. brasiliensis infection attenuated weight
gain. Importantly, helminth infection decreased adiposity and
hepatic lipid storage while improving glycemic control, implying
a reversal of metabolic disease. These studies indicate that
microbiota alterations and metabolomic changes associated with
intestinal nematodes may offer certain benefits.

The mixed observations described herein highlight the
difficulties of generalizing findings from these studies,
simultaneously hinting at the massive potential to apply
these insights in diverse therapeutic settings. Animal studies
designed to induce strong immune responses are typically a
result of a high infection dose and thus high worm burdens and
may not reflect average worm burdens seen in nature. Indeed,
some of the aforementioned animal experiments demonstrate
microbiota changes suggestive of dysbiosis (Li et al., 2012; Wu
et al., 2012; Holm et al., 2015; Houlden et al., 2015). In contrast,
observations from natural settings or studies inducing low-level
helminth infections suggest less dramatic changes (Cantacessi
et al., 2014; Kreisinger et al., 2015). Additionally, when intestinal
nematodes are introduced into individuals with intestinal
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inflammation or metabolic abnormalities, they appear beneficial
(Broadhurst et al., 2012; Yang et al., 2013; Giacomin et al., 2015).
Taken together, these data emphasize co-evolution of helminths,
gut microbiota, and mammalian hosts, such that helminths can
be considered less strictly as intruders but rather members of the
gut macrobiota (Gause and Maizels, 2016). In order to establish
themselves in the mammalian intestine, rather than being solely
beneficial or causing outright harm, nematodes must shape the
niche such that a new ecological balance is found. This task
is aided by some microbes and challenged by others, and the
insights gained from understanding these dynamics can provide
opportunities to better understand and perhaps manipulate
incredibly complex biological systems. It should be noted that
many potential mechanisms have been identified which act in
concert to shape the intestinal microbiota. Immune mechanisms
such as modifying the balance between Th1/Th17 vs. Th2
responses as well as the induction of regulatory T cells have been
characterized and discussed elsewhere (Reynolds et al., 2015;
Gause and Maizels, 2016; Zaiss and Harris, 2016). Furthermore,
the bulk of work done thus far has focused primarily on bacteria
and far less is known about the archaeal and fungal components
of intestinal microbial communities. In addition to metabolomic
factors touched upon here, important considerations which are
relatively under-studied and not frequently discussed are the
direct signals between helminths and microbes. These reciprocal
interactions are considered below.

Environmental Microbes Impact C. elegans
Physiology
The study of intestinal parasites is particularly amenable to
understanding alterations to microbial communities of the
gut, though the microbial influence on helminths is relatively
difficult to assess in these systems. As a model organism with
many available genetic tools, C. elegans can bridge some of
the knowledge gaps encountered when studying parasitic
nematodes. When recovered from compost or isopods, which
worms may use as vectors to shuttle between food sources, C.
elegans is frequently found in the dauer stage (Félix and Duveau,
2012). In contrast, proliferating populations of nematodes can
be found in microbe-dense environments, particularly rotting
fruits or vegetation. A study by Samuel et al. characterized
the natural bacterial microenvironment of C. elegans
(Samuel et al., 2016). The most prevalent bacterial phyla in
decaying apples were Proteobacteria, Bacteroidetes, Firmicutes,
and Actinobacteria. The Enterobacteriaceae family within
Proteobacteria encompassed the most abundant genera detected,
while Lactococcus, Lactobacillus, Acetobacter, Gluconobacter, and
Gluconoacetobacter were also quite prevalent. In some samples,
Escherichia spp. were also identified, though they were not
particularly abundant. Considering the immensity of bacterial
diversity coming from 29 extant phyla (Yarza et al., 2014),
there is considerable overlap in the microbial environments
of parasitic and free-living nematodes. Experiments assessing
the effect of C. elegans on an experimental microbiota could be
designed, whereby the nematodes are introduced into a defined
microbial environment and followed over time to assess changes

to bacterial constituents. Such studies would be analogous, albeit
profoundly simplified, to studies assessing gut microbial changes
in helminth infections and could shed light on the underlying
mechanisms contributing to compositional alterations. Akin to
some reports of parasitic nematodes, observations from rotting
fruit suggest that growth of C. elegans is enhanced amongst a
simpler microbiota (Samuel et al., 2016).

Many studies have demonstrated the susceptibility of the
C. elegans intestine to a multitude of pathogens (Couillault
and Ewbank, 2002), including Salmonella enterica serovar
Typhimurium (S. typhimurium) (Lee et al., 2015), Enterococcus
faecalis (Sim and Hibberd, 2016), Burkholderia spp. (Lee et al.,
2013), Staphylococcus aureus (JebaMercy and Balamurugan,
2012), Proteus mirabilis (JebaMercy and Balamurugan, 2012),
and Pseudomonas aeruginosa (Dai et al., 2015). Beyond posing a
threat to the nematode intestine, bacteria may also damage and
infect the nematode surface. In experimental settings, Yersinia
spp. can form biofilms that block the oral cavity of the worms,
resulting in starvation and death (Tan and Darby, 2004). Wild
nematodes are subject to cuticular infection by Microbacterium
nematophilum (O’Rourke et al., 2006) and the fungal pathogen
Drechmeria coniospora (Engelmann et al., 2011). Additionally,
Elizabethkingia are capable of digesting the nematode cuticle
components keratin and collagen (Riffel et al., 2003; Félix
and Duveau, 2012). C. elegans is also infected by intracellular
pathogens such as the microsporidian parasite Nematocida
parisii (Troemel et al., 2008) and the Orsay virus (Félix et al.,
2011). Though studies have demonstrated the ability of bacteria
to colonize parasitic nematodes, no information is available
concerning which microbes might be beneficial or harmful
for them. In contrast, numerous studies in C. elegans have
shown beneficial and harmful effects of specific bacterial strains.
Alphaproteobacteria and Lactococcus spp. tend to be beneficial
and promote C. elegans proliferation while Bacteroidetes and
Gammaproteobacteria seem to impair nematode physiology
and induce stress/immune responses (Samuel et al., 2016).
It stands to reason that similar interactions exist between
bacteria and parasitic nematodes and that the composition
of the host microbiota would then influence the health of
parasitic nematodes in the gut. Interestingly, nematode fecundity
is subject to various stresses; the host immune response
can decrease helminth fecundity, exemplified by reduced egg
production by H. p. bakeri during a type 2 helper T cell-
mediated immune response (Strandmark et al., 2016). As
bacteria influence C. elegans fecundity (Szewczyk et al., 2006),
it is possible that communities within the microbiota may
also influence the reproductive capacity of parasites. Larger
populations of proliferating C. elegans are found in more highly
degraded apples containing larger microbial populations, thereby
providing more nutritional sources for the nematodes. Also,
apples with higher populations of worms had microbiota which
were more similar to each other than apples with lower/no
worms. Apples containing proliferating populations of C. elegans
also had significantly fewer bacterial species and diversity than
apples with non-proliferating populations. Most importantly,
proliferation was associated with Alphaproteobacteria and the
absence of potential pathogens from Gammaproteobacteria
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and Bacteroidetes. Perhaps there is a general preference by
nematodes for decreased abundance of several Bacteroidetes
organisms, given the observations in parasite-host microbiota
studies discussed previously. As Lactobacillaceae are more
predictive of successful H. p. bakeri establishment in mice
(Reynolds et al., 2014), Enterobacteriaceae and Acetobacteraceae
are predictive for larger proliferating C. elegans populations
in rotting apples, while Gammaproteobacteria show an inverse
relationship (Samuel et al., 2016). It is not fully understood how
intestinal nematodes establish in specific habitats such as the
cecum and colon in the case of Trichurids, or the small intestine
in the case of Ascarids and H. p. bakeri; however, some speculate
the choice is based on the abundance of nutrients or the relative
lack of harmful stimuli (Davey, 1964; Bansemir and Sukhdeo,
1994, 2001). While determining the nature of habitat selection
in these settings may prove experimentally elusive, the available
data suggest that parasitic nematodes, as with their free-living
counterparts such as C. elegans, have advantageous associations
with some microbial species and detrimental interactions with
others.

Colonization of Nematodes by Microbes
All animals, including nematodes, live in association with a
multitude of other species. The host-microbe relationship has
gained a lot of attention in recent studies, with various reciprocal
interactions ranging from parasitism, to commensalism and
mutualism, seen as potent forces guiding the co-evolution of
species. In addition to influencing the rich and diverse microbial
environments that they inhabit, nematodes inevitably also
harbor their own microbiota that is likely essential for normal
development and physiology, as is the case for other organisms.
Though the data are limited, studies have documented the ability
of bacteria to colonize Ascaris, H. p. bakeri, as well as C. elegans.

Earlier studies demonstrated nematode-associated bacterial
communities in A. suum (Hsu et al., 1986; Shahkolahi and
Donahue, 1993). One study aimed at identifying the source
of serotonin present in nematodes, which generally lack the
enzymes necessary for de novo synthesis of serotonin from
tryptophan, revealed 4 × 109 bacteria per gram of nematode
intestine (Hsu et al., 1986). In addition to E. coli, Enterobacter,
Klebsiella, Acinetobacter, Citrobacter, Pseudomonas, Aeromonas,
and Shigella were identified among gram-negatives while
Staphylococcus, Streptococcus, Corynebacterium, and Bacillus
were identified amongst gram-positive organisms. The species
identified suggest that the nematode’s intestinal microbiota
may have been derived from that of the host. Another study
demonstrated that antibiotic treatment of ex vivo cultured A.
suum reduced, but did not eliminate, the bacterial load carried
by the worms and determined that the posterior portion of the
intestine harbored the highest number of culturable bacteria
(Shahkolahi and Donahue, 1993). Studies that employ more
modern methods while sampling site-specific host- and parasite-
associated microbial communities could greatly enhance our
understanding of the selectivity and development of an Ascaris-
specific microbiota.

Another study showed that A. lumbricoides nematodes
isolated from cholera patients were colonized by Vibrio cholerae

(Nalin and McLaughlin, 1976). Worms were retrieved from
patients after being spontaneously passed or after de-worming
and a majority of worms were colonized by V. cholerae of
the same serotypes found in stool samples of cholera patients.
Serial sectioning of the worms revealed colonization along the
entire length of the intestine, from oral cavity to anus. The
bacteria were recovered and viable even after worms were in
culture in saline for 6 days. The authors reported retrieval of
one hookworm which also revealed two colonies of bacteria
whichwere notV. cholerae.The authors reasoned that pathogenic
bacteria may survive inside parasites when parasites are passed
in the stool, as happens commonly during a cholera infection,
thereby contributing to environmental spread of microbial
pathogens. Further, the authors discussed the possibility of
pathogenic microbes reaching the reproductive tract of female
nematodes during copulation and adhering to egg shells which
may also serve as a vehicle for transmission. There was no
indication in this study that V. cholerae are pathogenic to
Ascarids and further study in this area could reveal interesting
associations between different enteric infections. Taken together,
these findings highlight the clinical relevance of understanding
interactions between intestinal nematodes and environmental
microbes.

Walk et al. provided evidence for a H. p. bakeri-associated
microbiota when they sampled L3 and adult nematodes (Walk
et al., 2010), finding only 28 16S sequences obtained from
larvae, concluding that they are associated with few bacteria;
however, the L3-associated microbiota was completely unique
and consisted of 6 bacterial families, unlike the adult-associated
microbiota which was very similar to the ileum of the murine
host. As H. p. bakeri hatch outside of the host, they likely enter
their hosts with a distinct microbiota which changes over time in
the new environment. This L3-specific microbiota may also serve
as a source of non-indigenous microbes for the mammalian host.

A special microbe-helminth relationship is also well
documented for filarial nematodes in which the gram-negative
intracellular bacterium Wolbachia is obligatory for normal
larval growth and development, embryogenesis, and survival
of adult worms (Taylor et al., 2005). Such endosymbiotic
relationships probably emerged from ancestral infections
of the host nematode by free-living bacteria, concomitant
with gene losses and genome rearrangements on both sides
during coevolution (Masson et al., 2016). So far, such an
endosymbiotic relationship has not been detected in other
parasitic nematode species, but parallels to other microbe-
nematode partnerships may be drawn. For example, Ascaris
requires and absorbs Vitamin B12 from microbial sources
(Zam and Martin, 1969). Wolbachia displays cell tropism and
is restricted to somatic tissues in adult male worms, whereas
females also harbor bacteria in the germline (Kozek, 1977;
Taylor et al., 1999). The level of infection varies substantially
during filarial development, where shortly after transmission
to the mammalian host a dramatic increase in the bacterial
population occurs (McGarry et al., 2004). As bacterial loads
within individual worms differ, Taylor et al. hypothesized
that higher levels of Wolbachia infection within a worm may
potentially confer selective advantages in terms of filarial
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development or fecundity (Taylor et al., 2013). Transcriptomic
analysis of the Wolbachia genome of Onchocerca ochengi
indicated that Wolbachia may have a mitochondrion-like
function in the soma, generating ATP for the nematode host
(Darby et al., 2012). Hence, recent trials aim at utilizing
antibiotics such as tetracycline (Hoerauf et al., 1999), and other
chemotherapeutics targeting Wolbachia as a novel tool for the
treatment of filarial infection and disease, reviewed in Taylor
et al. (2014).

C. elegans nematodes isolated from the wild are observed
to harbor live bacteria in their intestine which may exist as
commensals or which may proliferate and cause obstruction
and pathology of the worm gut (Félix and Duveau, 2012).
Worms isolated from the wild also carry a distinct and diverse
microbiota when compared to other nematode species in
the same environment (Dirksen et al., 2016). Dirksen et al.
reported a microbiota rich in unclassified Proteobacteria from
the family Enterobacteriaceae, as well as members of the
genera Pseudomonas, Stenotrophomonas, Ochrobactrum, and
Sphingomonas. When isolated worms were enriched on plates of
E. coliOP50, their microbiota maintained considerable similarity
to freshly isolated samples despite 3 weeks in culture on E.
coli plates, suggestive of a C. elegans-specific microbiota and
closely developed microbial-host community. This study did
not mention any changes in overall microbial population sizes
over time. In the same study, a subset of 14 bacterial isolates
were chosen in order to cultivate nematodes on an experimental
microbiota with bacterial frequencies mirroring the nematode-
associated microbiota of worms isolated from the wild. Three
genotypes of C. elegans, including two natural isolates (MY316
and MY379) and the laboratory N2 strain, were cultured from
hatched sterilized eggs through to adulthood. The investigators
found significant influences of genotype and life stage on the
microbial composition of the nematodes. Interestingly, certain
bacteria including OchrobactrumMYb71 and Stenotrophomonas
MYb57 were enriched in the nematode samples relative to the
agar plates. The effect was quite pronounced in the case of
Ochrobactrum which was present in only trace amounts in the
agar plates but represented as much as 20% of the nematode-
associated bacterial community. Ochrobactrum was also able to
persist in the intestine even under starvation conditions without
being used as a food source or eliminated during the ensuing
stress response, which can include upregulation of antimicrobial
effectors such as lysozymes (Uno et al., 2013). This bacterial
strain may be a prominent symbiont for C. elegans as it seems
to use the nematode as an environmental niche in the absence of
apparent fitness costs to the worm. The experimental microbiota
was also shown to enhance growth and nematode population
size relative to worms cultured on E. coli.While detailed analysis
of this sort is absent for parasitic nematodes, the ability of
microbes to colonize these worms supports the idea of worm-
associated microbial communities, providing benefits similar to
those seen in C. elegans and other organisms, such as supplying
nutrients and providing protection from pathogens (Cabreiro
and Gems, 2013; Watson et al., 2014; Lee et al., 2015; Dirksen
et al., 2016).

THE INFLUENCE OF BACTERIA ON
PARASITIC NEMATODES

Living in intimate association with microbes, nematodes are
subject to diverse microbial influences. Beneficial effects of
microbes on nematodes may include nutrition, promotion
of longevity, protection from infection by other microbes,
and contributions to a hospitable environment (Cabreiro
and Gems, 2013; MacNeil and Walhout, 2013). From the
perspective of mammalian hosts, the question arises whether
a specific microbial environment might significantly influence
susceptibility to helminth infection. Further, microbes might also
be a source of competition, stress, and disease for nematodes.

The microbial environment can profoundly impact
establishment and propagation of parasitic nematode infections
by influencing egg hatching and reproductive success. T. muris
eggs may require the presence of selected bacterial species to
induce hatching, as demonstrated using murine cecal explants
as well as E. coli, S. typhimurium, S. aureus, and P. aeruginosa
(Hayes et al., 2010). Live bacteria appear to be necessary for
these effects as heat inactivation prevented hatching, while
bacteriostatic gentamycin treatment did not. It was proposed
that physical contact between the bacteria and eggs is required
as Type 1 fimbriae facilitate E. coli-induced hatching, though
additional mechanisms likely exist. The authors also reported
that mice pre-treated with antibiotics had significantly lower
worm burdens at day 21 pi compared to untreated animals,
indicating a significant role for bacterial communities in
parasitic nematode establishment. Interestingly, bacteria-
induced T. muris egg hatching seems to occur efficiently with
members of Proteobacteria (E. coli) and Firmicutes (Enterococcus
caccae, Streptococcus hyointestinalis, Lactobacillus reuteri, and
Lactobacillus amylovorus). It is possible that many different
bacterial species contribute via different mechanisms for optimal
T. muris egg hatching (Vejzagić et al., 2015).

Lactobacillaceae abundance in the duodenum positively
correlates with susceptibility to H. p. bakeri infection (Reynolds
et al., 2014). Low-level vancomycin treatment prior to nematode
infection did not significantly reduce total bacteria but
elevated abundance of Lactobacillaceae and Enterobacteriaceae
while reducing Eubacterium/Clostridium species in the fecal
microbiota. This was associated with H. p. bakeri persistence
in the host. H. p. bakeri infection also elevated duodenal
Lactobacillaceae and Enterobacteriaceae. Administration of
Lactobacillus taiwanensis enhanced susceptibility to H. p. bakeri
infection and worm fecundity, thought to be due to the
induction of immunosuppressive regulatory T cells. This study
demonstrated a reciprocal interaction whereby Lactobacillus
spp. promote nematode establishment which then promote
growth of Lactobacilli. Similar to T. muris infections discussed
above, studies in germfree mice revealed higher H. p. bakeri
worm burdens in conventionally raised mice, implicating the
host microbiota as a key part of the parasite’s environmental
niche (Wescott, 1968). Bacterial populations also influence the
host’s immune status which can have a profound influence on
the intestinal environment for parasite establishment, though
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specific immune variables and bacterial species are still being
identified (Cattadori et al., 2016). These data suggest not only that
the microbiota is essential for parasite development, but also that
particular bacteria facilitate helminth establishment.

While C. elegans and other free-living nematodes are known
to subsist on microbes, the food sources of intestinal nematodes
are less well established. The digested remains of yeasts can
be found in the intestines of C. elegans isolated from the
wild, demonstrating the capability of these nematodes to use
eukaryotic cells as a food source in addition to bacteria (Félix and
Duveau, 2012). There is corresponding evidence suggestive of
consumption of intestinal epithelia by A. suum in pigs as well as
H. p. bakeri in mice (Davey, 1964; Bansemir and Sukhdeo, 1994).
Freshly isolated Ascaris nematodes were found to accumulate
eukaryotic cellular material in their buccal cavities, thought
to be of host origin (Davey, 1964). Labeling studies sought
to determine whether H. p. bakeri accumulates ingesta, host
blood, or host tissue material and found an accumulation of
host tissue components rather than blood or ingesta (Bansemir
and Sukhdeo, 1994). These studies did not assess the intestinal
contents of the worms and these data do not preclude the
ability of intestinal nematodes to digest bacterial cells, especially
considering bacteria are counted amongst the intestinal contents
of A. suum and A. lumbricoides as discussed previously. Further
insights using modern methods could be provided by studies
designed to specifically assess uptake and digestion of microbes
by intestinal nematodes.

Bacteria can promote or hinder nematode proliferation
by various means. From serving as direct food sources or
by producing essential nutrients, microbes are required
for nematode growth. Furthermore, specific species are
well documented to promote helminth establishment while
themselves being reinforced by nematodes, as discussed. One
could imagine that intentional manipulation of microbial
variables could influence parasite establishment and might
possibly impact how parasitic diseases are treated in the future.
In the case of C. elegans, characterizing its interactions with
microbes beyond E. coli OP50 serves to improve this powerful
model and enhances its utility to investigators with diverse
objectives. Together, these diverse systems complement each
other in elucidating the varied interactions between nematodes
and microbes, thereby setting a stable foundation upon which
future research can build.

SENSING THE MICROBIAL ENVIRONMENT

Nematodes are confronted with a tremendous and highly diverse
microbial environment, presenting many infectious challenges.
Alterations in the intestinal microbiota during helminth
infection, coupled with studies demonstrating distinctly
beneficial or harmful outcomes to C. elegans physiology in
response to various bacteria, illustrate the ability of nematodes
to sense their microbial environments and possibly discriminate
between microbial species. Parasitic nematodes must have
evolved particular strategies to overcome colonization by
microbes, likely employing selected antibacterial defense

mechanisms to coexist with the host microbiota. C. elegans has
become an important model organism for the study of innate
immune defense against pathogenic bacteria (Schulenburg et al.,
2004; Irazoqui et al., 2010). The C. elegans immune system
is seemingly of ancient origin, and there exist homologs of
nearly all of its components in other organisms, including
humans (Schulenburg et al., 2008). Consequently, sensing of the
microbial environment might follow conserved or comparable
mechanisms in parasitic nematodes as well.

C. elegans uses different protective mechanisms when
confronted with potential pathogens, such as avoidance behavior
(Meisel and Kim, 2014) and activation of stress and immune
responses (Samuel et al., 2016) leading to the production and
release of defense molecules with antimicrobial activities (Mallo
et al., 2002). Identification of microbe-associated molecular
patterns is followed by signal transduction via several signaling
cascades, culminating in transcriptional alterations, reviewed
in Rosso et al. (2013) and Kim and Ewbank (2015). While
the pathogen-recognition receptors responsible for initiating
immune responses are not entirely known, candidates include
F-box proteins, lectins, follicle stimulating hormone receptor
homolog-1, scavenger receptors, and the Toll-like receptor TOL-
1 (Kim and Ewbank, 2015). Stress and immune responses
illustrate an overlap between microbial and abiotic stresses;
the main responses involved include: autophagy, insulin-like
receptor (DAF-2), mitogen-activated protein kinases (MAPK),
transforming growth factor-β-like (DBL-1), programmed cell
death pathways, and unfolded protein responses (UPR) (Kim
and Ewbank, 2015). Perhaps surprisingly, C. elegans lacks a
homolog of NF-κB, an essential transcription factor in the innate
immune response of many invertebrate and vertebrate species
(Vallabhapurapu and Karin, 2009). Other proteins regulating
transcription of infection and stress-modulated genes have been
identified, including cyclic AMP-dependent transcription factor-
7 (ATF-7), forkhead box O (FOXO) ortholog DAF-16, GATA
transcription factors (ELT-2, ELT-3), helix loop helix-30 (HLH-
30), heat-shock factor-1 (HSF-1), NF-E2-related factor SKN-1,
signal transducer and activator of transcription STA-2, X-box
binding protein-1 (XBP-1), and basic leucine zipper domain
transcription factor ZIP-2 (Kim and Ewbank, 2015). As indicated,
the intricacies of these responses have been reviewed elsewhere;
as such, only examples of particular interest are highlighted
here.

Pathogen Recognition
Infectious risks could be mitigated and resources preserved if
pathogens were simply not encountered. Avoidance behavior
is facilitated by the sole C. elegans toll-like receptor, TOL-1
(Pujol et al., 2001), and is characterized by the detection of
specific microbial products, such as serrawettin W2 produced
by Serratia marcescens, resulting in worms migrating away
from the offending agents (Pradel et al., 2007). Unlike other
organisms, C. elegans may not rely heavily on toll-like signaling
for immune defense, though reports on this are conflicting
(Pujol et al., 2001; Couillault et al., 2004; Tenor and Aballay,
2008). Other mechanisms such as aerotaxis also contribute to
pathogen avoidance, as demonstrated by C. elegans avoidance
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of P. aeruginosa (Reddy et al., 2009). Lectins, carbohydrate-
binding proteins implicated in multiple facets of immunity in
a diverse range of species, may sense or neutralize microbes
(Zelensky and Gready, 2005). Finally, there is evidence for
an important role for scavenger receptors such as cell death
abnormal-1 (CED-1) and scavenger (SCAV) proteins in pathogen
recognition and resistance (Nicholas and Hodgkin, 2004; Means
et al., 2009). Comparable studies of differential activation of
recognition receptors in parasites by microbial communities
from different intestinal regions might provide insights into
how parasitic nematodes recognize threats and whether or not
activation of such pathways impacts their niche selection.

Surveillance Immunity
In addition to sensing microbes and their toxins, organisms
induce immunity-related genes due to disruptions of core
physiologic processes by pathogens. C. elegans employs this
surveillance immunity in response to inhibited translation,
cellular damage, and mitochondrial stress, all of which can
result from infection and exposure to microbial toxins (Pukkila-
Worley, 2016). Transcriptional responses to these stresses
include activation of immune signaling and xenobiotic metabolic
pathways (Pukkila-Worley, 2016).

Toxins produced by several microbes, including diphtheria
toxin from Corynebacterium diphtheria (Collier, 2001), cholix
toxin from Vibrio cholerae (Jørgensen et al., 2008), and
exotoxin A (ToxA) from P. aeruginosa (Dunbar et al., 2012),
interfere with protein translation. When non-pathogenic E. coli
engineered to express ToxA are fed to C. elegans, immune
pathways required for resistance to the toxin, especially MAPK
pathways, are upregulated by the worms (McEwan et al.,
2012). Also, the aminoglycoside antibiotic hygromycin B blocks
elongation of the amino acid chain during protein translation
like ToxA (McEwan et al., 2012). Taken together, C. elegans
likely responds to translation inhibition by ToxA rather than
to the protein itself. An RNAi screen showed that disrupting
core processes, including translation, activatesbasic leucine
zipper domain transcription factor ZIP-2-dependent immune
signaling, similar to responses seen during P. aeruginosa
infection of C. elegans and following exposure to ToxA
(Dunbar et al., 2012). More recently, another transcription
factor called CCAAT-enhancer-binding-protein-2 (CEBP-2) was
identified to act in concert with ZIP-2 to promote defense by
C. elegans against P. aeruginosa, ToxA, and in response to
inhibition of translation and other core processes (Reddy et al.,
2016).

In addition to surveillance of disrupted physiologic processes,
C. elegans also induces immune responses after injury of
its epidermis by microbial infection and sterile wounding
(Pujol et al., 2008a). During infection with D. coniospora,
a fungal pathogen which damages the nematode cuticle, 4-
hydoxyphenyllactic acid (HPLA) acts as a damage-associated
molecular pattern recognized by the G protein-coupled receptor
DCAR-1 which is required for AMP expression during fungal
infection (Zugasti et al., 2014). Another study showed that
epidermal damage liberates the STAT-like transcription factor
STA-2, triggering AMP production (Zhang et al., 2015). These
findings exemplify the ability of epithelial barriers to surveil

physical damage and respond by activating innate immune
pathways.

Microbial infection can often lead to mitochondrial stress;
a survey of C. elegans responses to bacteria isolated from
the nematode’s natural environment found that 101 strains
of the >550 isolates tested induced the mitochondrial stress
reporter promoter hsp-6::GFP (Samuel et al., 2016). Interestingly,
mitochondrial disruption also induces drug-detoxification
enzymes belonging to the cytochrome P450 superfamily (CYPs)
and enzymes involved in glucuronidation (Liu et al., 2014)
as well as infection response gene-1 (irg-1) which is also
induced during P. aerugionsa infection in a ZIP-2-dependent
manner (Estes et al., 2010; Dunbar et al., 2012). Another toxin
of P. aeruginosa, pyoverdin, disrupts the mitochondria of
C. elegans. The nematodes respond by a specialized form of
autophagy called mitophagy, whereby damaged mitochondria
are degraded to resist P. aeruginosa-mediated killing (Kirienko
et al., 2015).

By sensing various forms of cellular stress and damage,
C. elegans is able to launch an integrated response which
promotes survival and longevity (Pukkila-Worley, 2016). These
responses can be induced by microbes and xenobiotics,
activating immune and detoxification pathways (Melo and
Ruvkun, 2012; Pukkila-Worley et al., 2014; Pukkila-Worley,
2016). As helminths may employ similar strategies to deal
with microbial and xenobiotic stresses, the overlap between
immune and drug detoxification responses is of particular
interest. Various contributing factors have been identified
for the development of anthelmintic resistance, including
resistance alleles in detoxification genes, parasites not exposed
to treatments, and underdosing (Vercruysse et al., 2011). The
concept of surveillance immunity raises the notion that elements
within the hostmicrobiota prime helminths to resist anthelmintic
treatments. Whether certain microbial species of the host
intestine can promote drug resistance by activating xenobiotic
detoxification within intestinal nematodes has not yet been
studied.

Signal Transduction Pathways and
Transcriptional Responses
As illustrated by many studies, MAPK pathways have a
fundamental function in C. elegans stress and immune responses,
including the p38 PMK-1 and extracellular signal-regulated
kinase (ERK) pathways. Mutations at multiple levels of the NSY-
1-SEK-1-PMK-1 pathway increase susceptibility to P. aeruginosa
without impacting growth on E. coli OP50 (Kim et al., 2002).
PMK-1 is activated by the toll-interleukin-1 receptor domain
adaptor protein TIR-1 which is required for resisting killing
by numerous microbial pathogens (Couillault et al., 2004).
Phosphorylation of the ATF-7 transcription factor by PMK-
1 activates transcription of lectins and candidate antimicrobial
peptides (AMPs), conferring intestinal resistance to various
species, including P. aeruginosa, S. marcescens, and E. faecalis
(Shivers et al., 2010). Small molecule-mediated stimulation of the
PMK-1 pathway and subsequent activation of ATF-7 can also
increase lifespan in the presence of E. faecalis (Pukkila-Worley
et al., 2012). Growth ofC. elegans on soil-derived non-pathogenic
bacteria, Bacillus megaterium and Pseudomonas mendocina also
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enhanced resistance to P. aeruginosa in a PMK-1 dependent
fashion (Montalvo-Katz et al., 2013). Additionally, the PMK-1
pathway is active in epidermal infections as shown by induced
expression of AMPs in response to D. coniospora as well in
response to epidermal injury (Pujol et al., 2008a,b). Another
MAPK pathway involving ERK signaling has been shown to be
protective against rectal infection byM. nematophilum, (Gravato-
Nobre et al., 2005). Based on these observations, one could
speculate that MAPK pathways are also essential for helminth
survival amongst numerous microbes.

Insulin-like signaling via DAF-2 highlights the intersection
between immunity and metabolism. DAF-2 signaling inhibits
DAF-16 activation by preventing its localization to the nucleus.
Loss of function mutations of daf-2 confer pathogen resistance
and longevity by allowing activation of the DAF-16 transcription
factor (Kenyon et al., 1993; Garsin et al., 2003). DAF-16 activation
also increases resistance to non-microbial insults, such as heat
stress and oxidative stress (Barsyte et al., 2001). Intriguingly, C.
elegans can be primed to withstand pathogens and heat stress
when exposed to pathogens during development, increasing the
worm’s lifespan (Leroy et al., 2012). DAF-16 activation appears
to increase antimicrobial gene transcription as well as stress
and detoxification genes, placing this transcription factor at the
nexus of stress and immune signaling (McElwee et al., 2003).
Autophagy, a lysosomal degradation pathway, is also implicated
in longevity and its inhibition increases intracellular replication
of S. typhimurium in C. elegans intestinal epithelia (Jia et al.,
2009).

As intestinal nematodes are typically much larger than C.
elegans, with female Ascaris worms growing up to 35 cm in
length (Dold and Holland, 2011), the surface area available for
attachment and infection by microbes is extensive. Furthermore,
these nematodes are much longer-lived than C. elegans.
Stress responses, especially autophagy, may be of particular
importance in these organisms, though this area remains virtually
unexplored. An intriguing study by Voronin et al. identified
autophagy as a bactericidal mode of action in filarial worms
targeting the bacterium Wolbachia (Voronin et al., 2012). The

activation of autophagy coincided with the onset of rapid
bacterial growth and expansion, showing that in spite of their
mutualistic association, the nematode may recognize Wolbachia
as a stressor and respond to regulate bacterial abundance
(Taylor et al., 2013). Further studies assessing antibacterial
responses by intestinal nematodes are largely lacking; however,
two reports have shed some light on the issue. Adult female
A. suum nematodes challenged with heat-inactivated E. coli
respond by increasing transcription of two AMP families,
the Ascaris suum antibacterial factors (ASABF) and the
Cecropins (Pillai et al., 2003, 2005). Worms were challenged
by injection of heat-killed bacteria into the pseudocoelom
and appeared to demonstrate tissue-specific responses. While
these data suggest an inducible defense system in A. suum,
it would be relevant to study tissue-specific AMP expression
using live bacterial cultures introduced externally, without
wounding the worms, coupled with modern transcriptomic
methods. Such an experiment would preserve pathogen-
associated molecular patterns without invoking pathogen-
independent, epithelial-damage responses, thereby allowing
identification of transcriptional changes induced specifically by
infection.

EFFECTORS OF INNATE IMMUNE
SIGNALING IN NEMATODES

After sensing microbes, typical responses by nematodes include
the production and release of factors possessing antimicrobial
activity (Table 3). Among the different effectors of innate
immunity, AMPs constitute the most ancient gene-encoded
antimicrobial tools of eukaryotes (Zasloff, 2002). Nematodes
produce different families of AMPs, many of which have been
well characterized in C. elegans, while some have also been
identified in parasitic nematodes. Antimicrobial activity has
been experimentally demonstrated for many of these factors.
AMPs can be classified based on their amino acid constituents
and structural characteristics: α-helices, β–sheets, extended, and

TABLE 3 | Selected antimicrobial molecules of nematodes.

Parasites Free-living

Ascaris spp. Trichuris spp. H. p. bakeri C. elegans References

Antibacterial factors Yes – – Yes Kato et al., 2002; Andersson et al., 2003; Pillai et al., 2003

Cecropins Yes – – – Andersson et al., 2003; Pillai et al., 2005

Lectins Yes* – Yes Yes* Cuperlović et al., 1987; Mallo et al., 2002; Harcus et al.,

2009; Engelmann et al., 2011; Wang et al., 2013; Miltsch

et al., 2014

Lysozymes Yes – Yes Yes Mallo et al., 2002; O’Rourke et al., 2006; Schulenburg and

Boehnisch, 2008; Hewitson et al., 2011; Tarr, 2012; Wang

et al., 2013; Gravato-Nobre et al., 2016

Nemapores Yes Yes – Yes Bányai and Patthy, 1998; Coolon et al., 2009; Roeder et al.,

2010; Tarr, 2012

Nematode products Tissue extracts,

pseudocoelomic fluid

ESP – – Wardlaw et al., 1994; Kato, 1995; Abner et al., 2001

Yes, detected; -, not detected; *, lectin-like activity detected; gray shading, demonstrated bactericidal activity.
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looped (Melo et al., 2009). Many of the best-characterized AMPs
tend to be small, cationic, amphipathic molecules thought to
act by membrane disruption. While many candidate immune
effectors have been proposed in the literature for C. elegans,
reviewed in Kim and Ewbank (2015), here we focus on effectors
with corresponding data from parasitic nematodes. AMPs such as
antibacterial factors and cecropins are discussed along with larger
proteins involved in the immune response including lectins,
nemapores, and lysozymes. We will then conclude this section by
discussing antimicrobial activities of helminth-derived products.

Antibacterial Factors
First identified in A. suum, ABFs are present in at least 25
nematode species, including seven ASABFs produced by Ascaris
and six ABFs produced by C. elegans (Tarr, 2012). Sequence
analysis reported by Tarr shows that other parasitic nematode
species expressing ABFs include the human hookworm N.
americanus, the ruminant nematode Haemonchus contortus, and
the rodent model parasite N. brasiliensis (Tarr, 2012). Body
fluid isolated from the pseudocoelem of A. suum demonstrated
bactericidal activity, particularly against gram positive organisms
(Wardlaw et al., 1994; Kato, 1995). Kato et al. isolated ASABF-
α (Kato and Komatsu, 1996) and subsequently demonstrated
broad-spectrum antibacterial and weak antifungal activity of
a recombinant form of the peptide (Zhang et al., 2000). The
observed activity was rapid, killing S. aureus in under 1 min,
and could be inhibited by increasing salt concentrations (Zhang
et al., 2000). Andersson et al. isolated ASABF-β and γ from A.
lumbricoides which also showed antimicrobial activity, especially
against gram positives (Andersson et al., 2003). ABFs were
the first AMPs described in C. elegans, based on sequence
similarity to their Ascarid counterparts and also demonstrated
antimicrobial activity (Kato et al., 2002). ABFs belong to the
cysteine-stabilized-αβ (CS-αβ) group of AMPs, are cationic, and
contain a cysteine-stabilized α-helix and two β-sheets (Kato
and Komatsu, 1996; Tarr, 2012). Transcripts for ASABFs have
been detected in all tissues of A. suum, with some members
upregulated in the body wall, intestine, and ovaries after bacterial
challenge (Pillai et al., 2003). Expression patterns and anatomical
localization of ABFs inC. elegans are indicative of roles in defense
and digestion (Kato et al., 2002). For example, ABF-1 and 2 are
detected in the pharynx, and ABF-1 and 3 in the intestine of C.
elegans. The expression of some ABFs is inducible by different
pathogens: ABF-2 by S. typhimurium (Alegado and Tan, 2008),
ABF-1 and 2 byCryptococcus neoformans, and ABF-3 by S. aureus
(Alper et al., 2007).

Cecropins
In contrast to ABFs which seem to be widely distributed amongst
nematodes, the cecropin family of AMPs has only been found
in three Ascarids: A. suum, A. lumbricoides, and Toxocara canis
(Pillai et al., 2005; Tarr, 2012). The first described nematode
cecropin, Cecropin P1, was originally thought to be of porcine
origin due to its isolation from pig intestine (Lee et al., 1989).
Subsequently, its production was correctly attributed to A. suum
(Andersson et al., 2003). Andersson et al. also isolated Cecropin
P1 from A. lumbricoides and demonstrated antibacterial activity
against gram negative organisms (Andersson et al., 2003). Pillai

et al. demonstrated broad-spectrum antimicrobial activity of
all four Ascaris cecropins as well as bacterial inducibility as
detected for ASABFs (Pillai et al., 2005). Cecropins are typically
31–39 amino acids in length, strongly basic, cationic, α-helical
peptides which are thought to disrupt microbial membranes by
first laying on the membrane surface before reorientation and
insertion into the membrane leading to disrupted lipid packing
and subsequent membrane disintegration (Sipos et al., 1992;
Gazit et al., 1995).

Lectins
Proteins containing lectin domains are conserved across
Metazoans, including nematodes (Zelensky and Gready, 2005).
Harcus et al. isolated one C-type lectin (CTL) from H. p. bakeri
and two from N. brasiliensis (Harcus et al., 2009). Moreover,
lectin-like carbohydrate-binding activity has previously been
reported in the intestine of A. suum (Cuperlović et al., 1987) and
lectins have been identified in excreted and secreted products
(ESPs) of A. suum larvae (Wang et al., 2013). In general, CTLs
are capable of binding carbohydrates and function in pathogen
recognition and neutralization (Zelensky and Gready, 2005).
CTLs from H. p. bakeri and N. brasiliensis are predominantly
expressed by gut-dwelling adults rather than larvae; while Harcus
et al. made a compelling case for host-immunomodulation by
their reported CTLs, a dual role in pathogen neutralization or
recognition is worth testing for parasite-derived lectins (Harcus
et al., 2009). Parasite-derived CTL molecules localize in the
nematode cuticle but could also be found in ESPs (Page et al.,
1992). The CTLs detected in parasitic nematodes were most
similar to the C. elegans-CTLs clec-48, -49, and -50. Clec-50
is expressed in the C. elegans intestine and upregulated in
response to the bacterium S. marcescens (Mallo et al., 2002).
Though Harcus et al. did not report antimicrobial activity for
the parasite-derived molecules, studies in C. elegans suggest they
may have a role in defense. In addition to clec-50, clec-49 is also
upregulated in response to S. marcescens (Engelmann et al., 2011)
and mutants deficient in this protein and another CTL, clec-
39, have increased susceptibility to, and reduced survival and
fecundity during, S. marcescens infection compared to wild-type
worms (Miltsch et al., 2014). Furthermore, recombinant clec-
39 and clec-49 bind S. marcescens in the absence of bactericidal
activity (Miltsch et al., 2014). Additionally, in response to
M. nematophilum, CTLs were found to be the most up-
regulated protein class in C. elegans (O’Rourke et al., 2006).
While nematode-derived lectins have not yet been shown to
possess bactericidal activity, the mammalian lectin RegIIIγ
is antibacterial and promotes commensalism by maintaining
segregation between the microbiota and the host epithelium in
mice (Vaishnava et al., 2011). Though many questions remain,
the limited evidence available is suggestive of a role for lectins
during infectious challenges and it is possible that parasite-
derived lectins may confer resistance to different bacteria as has
been demonstrated for C. elegans.

Lysozymes
Lysozymes are polysaccharide hydrolases, targeting bacterial
peptidoglycan leading to cell lysis (Ellison and Giehl, 1991;
Monzingo et al., 1996), and have been widely found in different
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nematode species. Lysozymes are encoded in the genomes of
Ascarids, N. americanus, H. contortus, N. brasiliensis, Brugia
malayi, and Wuchereria bancrofti, though missing from the
Trichurids included in the sequence analysis by Tarr (2012).
Lysozymes were also detected in the ESPs ofA. suum (Wang et al.,
2013) and H. p. bakeri (Hewitson et al., 2011), though further
study is required to determine antibacterial activities of these
helminth-lysozymes. 15 lysozymes were detected in C. elegans,

divided into 10 protist-type (lys-1–lys-10) and five invertebrate-
type (ilys-1–ilys-5), so named for sequence similarities to other
organisms (Schulenburg and Boehnisch, 2008). Some lysozymes
are markedly upregulated by C. elegans in response to bacterial
infection (Mallo et al., 2002; O’Rourke et al., 2006; Gravato-
Nobre et al., 2016). Lysozymes expressed in the C. elegans
intestine (Schulenburg and Boehnisch, 2008) have been proposed
to act in concert with caenopores (discussed in the next section)

FIGURE 2 | Mutual influences of intestinal nematodes and host-gut bacteria. Establishment and persistence of intestinal nematodes in the host’s gut are

affected by bacterial communities and lead to substantial changes of the gut microbiota. Here, nematode-microbiota interactions and their impact on the host immune

response and physiology are exemplified. (1) Egg hatching: Interaction of eggs with the intestinal microbiota is needed for some species, enabling larvae to hatch. (2)

Mucosal immune response: Attachment to the epithelium and tissue migratory phase might lead to bacterial translocation and manipulation of immune responses.

The anti-helminth immune response is predominantly a T helper type 2 response. (3) Gut physiology: Immune responses induce changes in gut physiology via

induction of goblet cell hyperplasia, mucus production, and epithelial turnover, leading to changes in the host microbiota and its metabolome. Specific subsets of

bacteria directly influence host physiology through their metabolic activities (e.g., short chain fatty acids-producing bacteria). (4) Microbiota composition: Intestinal

nematodes modify intestinal microbial communities via different mechanisms: a) directly via secretion of antibacterial molecules and/or excretory/secretory products,

b) indirectly by metabolic and physiologic shifts influencing the gut milieu. Chronic infections often lead to reduction in bacterial diversity and outgrowth of specific

bacterial species beneficial for parasite survival. (5) Host metabolism: Intestinal nematodes modify host metabolism and nutrient uptake, e.g., alter amino acid, fatty

acid, and carbohydrate metabolism, with subsequent influence on gut physiology, immune reactivity, and intestinal microbiota composition. (6) Nematode’s

microbiota: Nematode-associated bacterial communities might reflect the host microbiota and may also serve as transmission vehicles for pathogenic bacteria. Th2

cell, T helper type 2 cell; AAM, alternatively activated macrophage.
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in digestion and immunity (Bányai and Patthy, 1998). For
example, the C. elegans invertebrate lysozyme ILYS-3 is needed
for physiological pharyngeal grinder function and for defense
against bacterial pathogens (Gravato-Nobre et al., 2016). It was
also shown that ILYS-3 is induced by danger signals generated
both by bacterial pathogens and starvation (Gravato-Nobre
et al., 2016). In healthy C. elegans, intestinal ilys-3 expression
undergoes a post-developmental regulatory oscillation: levels
increase after L1 hatching, decline after the L2 transition, and
increase again after L4 transition becoming abundantly expressed
in the intestine of adult worms (Gravato-Nobre et al., 2016).
Notably, coelomocytes of C. elegans also express ilys-3 (Gravato-
Nobre et al., 2016) and are scavenger cells that endocytose
fluid from the pseudocoelom (Fares and Greenwald, 2001).
The role of coelomocytes in parasitic nematodes is not well
understood and they have not been studied in immunity. Given
the demonstrated importance of lysozymes for C. elegans and
the wide distribution of this protein family across species, it
is expected that they support helminth survival amongst the
host-microbiota.

Nemapores
Known as caenopores in C. elegans, nemapores contain a saposin
domain and share similarity with protozoan amoebapores and
mammalian NK-lysin and granulysin (Leippe, 1995; Roeder et al.,
2010). As with ABFs, nemapores are also cysteine-rich, but
contain multiple α-helices (Mysliwy et al., 2010). Nemapores
are widely distributed and in addition to C. elegans, have been
found in 46 nematode species including Ascarids, Trichurids,
and the human filarial worms B. malayi and W. bancrofti
(Tarr, 2012). Only caenopores have been studied experimentally,
with caenopore-1 and 5 demonstrating antimicrobial activity
(Bányai and Patthy, 1998; Roeder et al., 2010). Caenopore-5
is constitutively expressed in the intestine, while caenopore-
3 is induced by starvation as well as the bacterial strains
B. megaterium and Micrococcus luteus, suggesting functions
in nutrition and immune defense (Roeder et al., 2010).
Interestingly, the free-living soil bacteria B. megaterium and
M. luteus are both frequently found with Rhabditid nematodes
(Coolon et al., 2009) and may be present in the environment
of C. elegans. As with lysozymes, experimental evidence
of nemapore function in parasitic nematodes is currently
lacking.

Antimicrobial Activities of
Helminth-Derived Products
In addition to studies demonstrating antimicrobial activities
of specific helminth-derived molecules described here, activity
can also be detected from the ESPs of parasites. In one
study, ESPs from the filarial worm O. ochengi were analyzed
revealing 36 candidate AMPs (Eberle et al., 2015). Of the
36 candidates, the investigators were able to unambiguously
attribute bactericidal activity against E. coli to three peptides
while the other 33 peptides had been assessed as part of peptide
mixtures. Antibacterial activity has also been shown for ESPs
from adult T. suis worms (Abner et al., 2001). Different bacterial

strains were tested, including S. aureus, E. coli, and C. jejuni.
The observed activity was shown to be due to small (<10 kDa),
boiling-resistant molecules, indicative of AMPs. Interestingly,
pore-forming proteins have also been isolated from T. trichiura
and T. muris, indicating that antimicrobial activity of nematode
ESPs is likely due to multiple components of varying sizes
and mechanisms (Drake et al., 1994). As nematodes produce
a variety of antimicrobial factors, innate immune responses
to microbes by helminths likely offer protection using several
different strategies.

CONCLUSIONS AND PERSPECTIVES

Antibiotic resistance is a rapidly escalating problem with
devastating consequences for human and animal health. Drug
resistance mechanisms described for microbes and helminths
foreshadow the emergence of immense clinical and economic
challenges associated with previously treatable infectious
diseases. Meanwhile, inflammatory and metabolic diseases also
inflict great suffering and are a source of considerable strain
on healthcare systems; therefore, novel solutions are sought
after to combat these difficulties. As nematodes have evolved
over millions of years in a diverse microbial environment, a
better understanding of how nematodes interact with microbial
populations may offer innovative strategies for treating human
and animal diseases. Given the importance of the microbiota and
the ability of helminths to influence microbial communities in
the gut (Figure 2), helminth infections and helminth products
are being studied for their role in dysbiosis. Preliminary
data suggest potential benefits of helminths in inflammatory
diseases and in individuals with metabolic abnormalities.
An additional application of the impact of nematodes on
microbes is the development of new antimicrobials. AMPs
are under investigation for their therapeutic potential and
an understanding of how antimicrobial effectors are used
by organisms living amongst diverse microbial populations
can guide development efforts. In elucidating the impacts
of different bacteria on nematodes, one can anticipate the
discovery of novel anthelmintic targets. Moreover, these
studies also provide insights into conserved innate immune
mechanisms. The divergent environments and experimental
systems of parasitic and free-living nematodes offer unique
tools to investigators, the combination of which enhance
our comprehension of nematode biology and evolutionary
ecology.
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