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Avian infectious Department, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai,

China

Many proteins and signaling pathways participate in anti-viral host responses. Long

non-coding RNAs (lncRNAs), a subset of non-coding RNAs greater than 200 nucleotides

in length, have been recently described as critical regulators in viral infections.

Accumulating research indicates that lncRNAs are important in the development and

progression of infectious diseases. LncRNAs are not only involved in anti-viral responses,

but in many different virus-host interactions, some of which may be beneficial to the virus.

Here we review the current knowledge regarding host and viral lncRNAs and their roles

in viral infections. In addition, the potential of using lncRNAs as diagnostic biomarkers is

discussed.
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INTRODUCTION

Fewer than 2% of genes are transcribed into mRNAs. A large number of non-coding RNAs
(ncRNAs) also play important cellular functions. Based on their length, ncRNAs can be broadly
classified as either short ncRNAs (<200 nucleotides) or long ncRNAs (>200 nucleotides, i.e.,
lncRNAs). Short ncRNAs can be further classified as small interfering RNAs (siRNAs), microRNAs
(miRNAs), and Piwi-interacting RNAs (piRNAs). MiRNAs are the best characterized ncRNAs
and are well known to induce mRNA degradation or inhibit mRNA translation via the RNA
interference pathway. Compared with miRNA, much less is known about the function of lncRNAs.

LncRNAs are the transcribed and spliced products of RNA polymerase II or III transcription,
are 5′capped, and may contain a polyadenylated tail at the 3′end. The expression of lncRNAs
is much lower in comparison to mRNAs and lncRNAs are expressed in cell-, tissue-, and
developmental stage-specific manners (Djebali et al., 2012). According to their position relative
to the neighboring protein-coding gene, lncRNAs are classified as sense, antisense, bidirectional,
intronic, or intergenic. The human genome encodes thousands of lncRNAs. Previously, lncRNAs
were considered as “dark matter” or “junk” in the genome (Doolittle, 2013). However, recent
studies have illuminated the roles of lncRNAs, and they are now considered important physiological
regulators of cell homeostasis, growth, and differentiation (Wapinski and Chang, 2011; Hu et al.,
2012; Fatica and Bozzoni, 2014). Emerging data have also identified the important roles of lncRNAs
in regulating anti-viral responses. This review highlights specific lncRNAs associated with viral
infection, specifically focusing on their expression and function.

FUNCTIONS AND MECHANISMS

LncRNAs regulate numerous cellular processes such as gene imprinting, regulation of the p53
pathway, stem cell self-renewal and differentiation, and DNA damage response (Latos et al.,
2012; Liu et al., 2013; Yang et al., 2014; Sharma et al., 2015). MiRNAs (about 19–25 nt in
length) are known to take part in many of these cellular activities (Ameres and Zamore,
2013; Ha and Kim, 2014). MiRNAs modulate mRNA degradation or translation by base-
pairing to sequence motifs of mRNAs. In contrast, lncRNAs utilize a multitude of mechanisms,
mediated by their specific sequences or structural motifs that bind DNA, RNA, or protein.
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LncRNAs can function in cis to regulate expression of a
neighboring gene and in trans to impact gene expression
across chromosomes. Furthermore, lncRNAs function as signals,
decoys, guides, and scaffolds to regulate different processes,
ranging from chromatin remodeling, transcription, to post-
transcriptional regulation (Wang and Chang, 2011; Bonasio and
Shiekhattar, 2014).

Chromatin Remodeling
DNAmethylation and histone modifications can alter the state of
chromatin, resulting in transcriptional activation or silencing. In
this setting, lncRNA recruits chromatin remodeling components
to specific genomic loci, reprogramming the state of chromatin
to silence or activate transcription (Figure 1A). For example,
the Hox transcript antisense intergenic RNA (HOTAIR) is an
lncRNA expressed from the developmental HOXC locus that can
serve as a scaffold to recruit PRC2 and LSD1 in trans, leading
to H3K27 methylation and H3K4me2 demethylation. (Gupta
et al., 2010; Tsai et al., 2010). H3K27 methylation is associated
with transcription repression, while H3K4me2 demethylation is
associated with transcription activation. Furthermore, lncRNAs
can also regulate expression of neighboring genes in cis, especially
in imprinting. The lncRNA Air is imprinted and expressed only
from the paternal allele, which at the promoter of Slc22a3 recruits
G9a and leads to targeted H3K9 methylation and allelic silencing
(Nagano et al., 2008).

Transcriptional Regulation
LncRNAs also act as decoys, signals or guides to play important
roles in transcriptional regulation (Figure 1B). Recently, the
lncRNA, Lethe, was identified as a pseudogene. Lethe is
upregulated directly by NF-κB after stimulation with TNF-α or
glucocorticoid receptor dexamethasone. Furthermore, as a decoy,
Lethe can bind to RelA–RelA homodimers and block binding
to other NF-κB response elements, thus inhibiting the function
of NF-κB, and leading to decreased expression of downstream
effectors, such as IL-6, SOD2, IL-8, and NF-κB (Rapicavoli
et al., 2013). Moreover, lncRNA THRIL, and lncRNA-Cox2
regulate the transcription of TNF-α and CCL5 by binding hnRNP
(heterogeneous nuclear ribonucleoprotein) isoforms (Carpenter
et al., 2013; Li et al., 2014).

Post-transcriptional Regulation
LncRNAs also participate in post-transcriptional regulatory
networks. LncRNAs have recently been suggested to act
as miRNA “sponges” by sharing common miRNA response
elements (MREs) and inhibiting normal miRNA targeting
activities on mRNA (Figure 1C). Competing endogenous RNAs
(ceRNAs) vie with mRNAs for miRNAs with shared MREs and
act as modulators of miRNA by influencing the available amount
of miRNA(Sen et al., 2014). Linc-MD1 is a cytoplasmic lncRNA
expressed during myoblast differentiation that acts as a ceRNA
for miR-133 and miR-135 to control MEF2C, MAML1 and
myoblast differentiation (Cesana et al., 2011).

FIGURE 1 | Models of lncRNA mediated chromatin remodeling,

transcriptional, and post-transcriptional regulation. (A) LncRNA can act

as scaffold to recruit chromatin remodeling components, such as histone

modifiers to specific genomic loci and reprogram the state of chromatin to

silence or activate transcription. The upper panel and lower panel represent

the active and inactive chromatin, respectively. (B) In the upper panel and

lower panel, lncRNA can act as decoy or as a guide to bind transcription

factors or ribonucleoproteins, altering recruitment to specific genomic loci in

cis or in trans, ultimately driving transcription of the localized gene. As shown

in the middle panel, lncRNA can also act as signal to regulate gene

expression. (C) LncRNAs act as miRNA “sponges” by sharing common MREs,

inhibiting normal miRNA targeting activity on mRNA. Green arrows, activate

transcription; Red arrows, inhibit transcription.
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LncRNA AND VIRUS INFECTION

Recently, lncRNAs have been shown to exert both positive and
negative effects on innate immunity and virus replication (Ding
et al., 2016; Fortes and Morris, 2016). Next, we will discuss the
cellular lncRNAs in virus-infected cells, virus-encoded lncRNAs
and chimeric lncRNAs formed by viral and cellular sequences,
respectively (Table 1).

Cellular LncRNAs in Virus-infected Cells
Using Next Generation Sequencing (NGS), differential
expression of approximately 500 annotated lncRNAs and
1,000 non-annotated genomic regions after SARS coronavirus
infection were identified in mice (Peng et al., 2010). This research
represented the first discovery of the widespread differential
expression of lncRNAs in response to virus infection and
suggested that lncRNAs may be involved in regulating the anti-
viral host response. Recently, Qi Zhang et al found 646 lncRNAs
were upregulated and 424 lncRNAs were downregulated in
latent human cytomegalovirus (CMV) infection on THP-1
cells using RNA-seq analysis (Zhang et al., 2016). However, the
critical lncRNA in latent human CMV infection has not been
identified and its role has not been elucidated yet. Moreover,
additional lncRNAs associated with the virus infection in the
host have been identified. Significant differential expression of
lncRNAs is induced by virus and regulated by RNA virus or
DNA virus infection. In turn, these lncRNAs regulate the host
innate immune response including the pathogen recognition
receptor (PRR)-related signaling, the production of IFNs
and cytokines (Carpenter, 2016; Ouyang et al., 2016). For
example, in HCV infection, lncRNA-CMPK2 promotes HCV
replication and lncRNA-CMPK2 is significantly upregulated
in the primary human hepatocytes after treatment with IFN-
α and knockdown of lncRNA-CMPK2 exhibited a negative
regulatory role in the modulation of the IFN response with
the increase in the expression of several ISGs, such as Mx1,
ISG15 and CXCL10 (Kambara et al., 2014). Recently, Carnero
et al found HCV infection increased the expression of lncRNA
EGOT, an event that was induced by the NF-κB activated
retinoic acid-inducible gene 1(RIG-I) and the RNA-activated
kinase PKR. Moreover, EGOT expression was also increased
after infection with influenza or Semliki Forest virus (SFV)
(Carnero et al., 2016). Although, lncRNA EGOT was found to
involve in the NF-κB activated RIG-I and PKR pathway, the
specific mechanisms in this pathway and antiviral response
remain unclear. Additionally, lncRNA GAS5 was found to be
upregulated during HCV infection in Huh7 cells and lncRNA
GAS5 inhibited HCV replication by binding viral NS3 protein
but the innate immune response remains low (Qian et al.,
2016).

In influenza virus infection, Ouyang et al found the expression
of the lncRNA NRAV was down regulated after infection with
a DNA virus (HSV) and with RNA viruses (SeV and MDRV)
(Ouyang et al., 2014). NRAV promotes influenza A virus (IAV)
replication and virulence and negatively regulates the expression
of several critical IFN-stimulated genes (ISGs), including IFIT2,
IFIT3, IFITM3, OASL, and MxA. Among these ISGs, the level of

MxA was most significantly affected by the expression of NRAV
and negatively correlated with NRAV expression. NRAV inhibits
the initial transcription of MxA and IFITM3 by regulating
histone modifications H3K4me3 and H3K27me3 of the ISG
genes. LncBST2/BISPR is expressed from the position in the
genome divergent from the well characterized BST2 (a key
host cell defense molecule), and lncBST2/BISPR is induced in
cells infected with mutants of influenza or VSV. Furthermore,
lncBST2/BISPR is upregulated in response to IFN stimulation
and was identified as a positive regulator of BST expression.
Meanwhile, lncBST2/BISPR is also induced in cells infected with
hepatitis C virus (HCV) and in the liver of patients with HCV
infections (Barriocanal et al., 2015). Although, lncRNAs, NRAV,
and lncBST2, were found in anti-viral response, the specific
mechanisms of how they regulate ISG expression have not been
elucidated.

LncRNA#32 is 2,946 nt in length and was identified after poly
I: C stimulation. The silencing of lncRNA#32 remarkably reduced
the level of ISG expression, such as IRF7 and OASL, resulting
in sensitivity to encephalomyocarditis virus (EMCV) infection.
In contrast, overexpression of lncRNA#32 significantly inhibited
EMCV replication. LncRNA#32 interacts with hnRNPU and
ATF2 to regulate ISG expression (Nishitsuji et al., 2016). These
results suggested that LncRNA#32 was involved in anti-viral
responses by controlling ISG expression.

In addition to the roles in the antiviral response, lncRNA
NEAT1 is necessary for the formation of the nuclear paraspeckles,
unique subnuclear structures for the nucleocytoplasmic transport
of mRNA in response to certain stimuli (Clemson et al.,
2009; Sasaki et al., 2009; Sunwoo et al., 2009; Naganuma and
Hirose, 2013). NEAT1, also known as virus-inducible ncRNA
(VINC), was first reported in Japanese encephalitis and rabies
virus infections of mice (Saha et al., 2006). The expression of
NEAT1 was changed by HIV-1 infection and knockdown of
NEAT1 enhanced virus production through increased nuclear
to cytoplasmic export of Rev-dependent INS-containing HIV-
1 mRNAs (Zhang et al., 2013). In addition, NEAT1 was
also induced by influenza virus and HSV infection, and the
expression of antiviral genes including cytokines such as IL-8 was
facilitated by cooperative action of NEAT1 and SFPQ (splicing
factor proline and glutamine rich, a NEAT1-binding paraspeckle
protein) (Imamura et al., 2014).

Theiler’s picornavirus is a natural pathogen of mice. A
mouse lncRNA, NeST (Nettoie Salmonella pas Theiler’s, cleanup
Salmonella not Therler’s), was identified in Tmevp3 locus on
mouse chromosome10 through gene mapping, which is next to
the IFN-γ coding gene Ifng (Gomez et al., 2013). The transgenic
mouse of T cell specific expression of NeST showed that Theiler’s
virus increased persistence but decreased Salmonella enterica
pathogenesis. These observations were likely due to induction
of IFN-γ transcription specifically in activated CD8+ T cells
by NeST. NeST regulates epigenetic marking of the Ifng locus
through interaction with a protein partner WDR5, a component
of the H3K4 methyltransferase complex. Whether and how
disease-associated SNPs alter human NeST expression and/or
function has not been elucidated and should be addressed in
future studies.
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LncRNA NRON (non-coding repressor of NFAT) was
initially identified as an inhibitor of transcription factor NFAT
(Willingham et al., 2005). NRON interacts with KPNB1, CSE1L,
and IQGAP1, which bind phosphorylated NFAT in cytoplasm
and represses NFAT nuclear trafficking. When T cells are
activated, dephosphorylated NFAT is released from the complex
and enters the nucleus (Sharma et al., 2011). This result suggests
that lncRNA exists as a scaffold for a latent transcription factor.
A recent study suggested that downregulation of NRON by
HIV infection enhanced NFAT nuclear translocation and activity
(Imam et al., 2015). HIV also utilizes NRON to control the
balance between viral reproduction and cell death through the
HIV early expressed protein Nef and the late expressed protein
Vpu to decrease and increase NRON expression at different
infection stages respectively (Imam et al., 2015).

Virus-encoded lncRNA
During virus infection, the host cell generates various lncRNAs
to counteract infection. Similarly, viruses themselves also express
many lncRNAs to resist cellular antiviral activity. Here, we
describe some virus-encoded lncRNAs that have been identified
thus far.

Polyadenylated nuclear RNA (PAN) is encoded by Kaposi
sarcoma-associated herpes virus (KSHV) and was first identified
as a novel abundant 1.2-kb RNA that is transcribed by RNA
Polymerase II (Sun et al., 1996). PAN binds host poly (A)-
binding protein C1 (PABPC1) after PABPC1 is translocated
to the nucleus during the lytic phase of infection and is
required for the late KSHV gene expression, such as vIL-6
and k8.1 (Borah et al., 2011). PAN also interacts with the
ORF50 promoter and can either repress gene expression by
interacting with protein components of polycomb repression
complex 2 (PRC2) to mediate the trimethylation of H3K27 or
activate gene expression by interacting with UTX, JMJD3 and
the histone methyltransferase MLL2 to mediate the removal of
the H3K27me3 mark and simultaneously mark it for activation
(Rossetto and Pari, 2012; Rossetto et al., 2013, 2016).

In addition, several virus- and host cell-encoded factors,
including histones (H1 and H2A), mitochondrial and cellular
single-stranded binding proteins (SSBPs) and interferon
regulatory factor 4 (IRF4), interact with PAN (Rossetto and
Pari, 2011). LANA is essential for maintaining the episomal
form of the viral genome during latency (Ballestas et al., 1999;
Uppal et al., 2014). PAN promotes LANA-episome disassociation
through an interaction with LANA which facilitates LANA
sequestration away from KSHV episomes during reactivation
(Campbell et al., 2014). Overall, these studies have revealed
that PAN as a major global regulator plays an important role in
regulation of viral and host gene expression (Rossetto and Pari,
2014).

Recently, transcriptome analysis lncRNA ALT identified
lncRNA ALT as an early lytic transcript and a splice isoform
of LANA transcript in KSHV infection (Chandriani et al.,
2010; Schifano et al., 2017). The size of lncRNA ALT is
large (approximately a ∼10,000-nucleotide transcript) and its
abundance is very low. However, the specific role of lncRNA ALT
remains unclear.

β2.7 RNA, the most abundantly transcribed early gene from
the HCMV genome in permissive cells, is a 2.7-kb unspliced
polyadenylated lncRNA (Greenaway andWilkinson, 1987;White
and Spector, 2007). Although, it also has some coding potential,
β2.7 binds directly to the GRIM19 (genes associated with
retinoid/IFN-induced mortality 19), a subunit of mitochondrial
enzyme complex I, to protect virus-infected cells from apoptosis
and results in continued ATP production, which is critical for
the successful completion of the viral life cycle (Bergamini
et al., 1998; Reeves et al., 2007). Interaction of the β2.7 RNA
with complex I inhibits rotenone stress-induced apoptosis in
neuronal cells and this suggests that β2.7 RNA can be exploited
in the development of a novel therapeutic for the treatment
of Parkinson’s disease (Kuan et al., 2012; Poole et al., 2016).
Moreover, β2.7 RNA can protect rat aortic endothelial cells from
ischemia/reperfusion injury-induced apoptosis by reduction of
reactive oxygen species (Zhao et al., 2010).

The subgenomic flavivirus RNA (sfRNA) is 300–500 nt in
length and is derived from the 3′ UTR of the RNA genome
of flaviviruses, a large group of single-stranded, positive-sense
RNA viruses including several human pathogenic viruses, such
as yellow fever virus, JEV, dengue viruses, and West Nile virus
(Calisher and Gould, 2003; Knipe and Howley, 2007). SfRNA
is a product of an incomplete degradation of genomic RNA by
the host 5′–3′ exoribonuclease XRN1 and sfRNA is involved in
viral infection and host cell response modulation (Roby et al.,
2014; Clarke et al., 2015; Bavia et al., 2016; Charley and Wilusz,
2016). The rigid secondary structure stem-loop II located at
the beginning of the 3′UTR of the viral genome is resistant
to nuclease XRN1 degradation and results in the production
of sfRNA (Funk et al., 2010). The sfRNA structure, a ring-
like conformation, with the 5′ end of the resistant structure
passing through the ring from one side of the fold to the other,
is required for the formation sfRNA during flaviviral infection
(Chapman et al., 2014). SfRNA generated by the Dengue virus
II infection can bind the host proteins G3BP1, G3BP2, and
CAPRIN1 and inhibit ISG mRNA translation (Bidet et al., 2014).
SfRNA prevents tripartite motif 25 (TRIM25) deubiquitylation,
which is critical for sustained and amplified RIG-I-induced
type I IFN expression (Manokaran et al., 2015). Production
of sfRNA increases the replication efficiency of WNVs and is
essential for virus-induced cytotoxicity in cell culture and for
viral pathogenicity in mice (Pijlman et al., 2008). However, the
mechanisms underlying how sfRNA leads to increased virus
replication and cell death remain unknown. SfRNA was also
identified in JEV infection and in an RNA pseudoknot that is also
necessary for production of yellow fever sfRNA (Lin et al., 2004;
Silva et al., 2010).

CMV is a ubiquitous herpes virus that persistently replicates
in epithelial cells. A 5-kb immediate-early RNA is a stable intron
expressed by human CMV, which is highly AT rich in sequence
and lacks open reading frames likely to be translated into protein,
and thus is not necessary for efficient replication of the virus in
cultured cells after human HCMV infection (Kulesza and Shenk,
2004). A murine CMV 7.2-kb ortholog of the human CMV 5-
kb RNA was also identified as a stable intron that facilitates
progression from the acute to persistent phase of infection
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(Kulesza and Shenk, 2006). This CMV lncRNA accumulates in
the nucleus of infected cells during infection and whose stability
is a result of sustained lariat conformation (Schwarz et al., 2013;
Schwarz and Kulesza, 2014).

An HIV-encoded antisense lncRNA without a poly (A) tail
was recently discovered. This lncRNA guides a chromatin-
remodeling complex consisting of proteins such as DNMT3a,
EZH2, and HDAC-1 to the viral promoter driving transcriptional
regulation (Saayman et al., 2014).

Although, several ncRNAs are <200 nt in size, Epstein-Barr
virus-encoded RNAs (EBERs), herpes virus saimiri U-rich RNAs
(HSURs) and virus-associated RNA I and II (VA I and II) encoded
by adenovirus are sometimes also referred to as viral lncRNAs.

Two nuclear, highly structured and abundant viral transcripts
EBER1 (167 nt) and EBER2 (172 nt) in latently EBV-infected cells
are produced by EBV (Iwakiri, 2016). EBER are polyadenylated,
ncRNAs that are transcribed by RNA polymerase III (pol III)
(Iwakiri, 2016). EBERs play key roles in antiviral innate immunity
via interaction with cellular proteins (Iwakiri and Takada, 2010).
EBERs are recognized by RIG-I and activate its downstream
signaling to induce expression of type-I IFNs in EBV-infected
cells (Samanta et al., 2006). Furthermore, EBERs induce IL-
10 expression through IRF3, but not NF-κB activation, in
BL (Burkitt’s lymphoma) cells, suggesting that EBER acts as
an autocrine growth factor in BL cells(Kitagawa et al., 2000;
Samanta et al., 2008). In addition, EBER also contributes to
oncogenesis(Nanbo and Takada, 2002). For example, in BL,
EBERs counteract IFN-α-induced apoptosis via binding to PKR
and inhibition of its phosphorylation (Nanbo et al., 2002).

Herpesvirus saimiri, which causes aggressive T-cell leukemia
and lymphoma, encodes 7 HSURs (Herpesvirus saimiri (HVS)
U-rich RNAs) (Lee et al., 1988; Wassarman et al., 1989; Albrecht
and Fleckenstein, 1992). The expression of host genes linked to T
cell activation in virally transformed T cells was up regulated by
HSURs 1 and 2 (Cook et al., 2005). HSUR 1 directs degradation
of host mature miR-27 in a sequence-specific and binding-
dependent manner in virally transformed T cells (Cazalla and
Steitz, 2010; Cazalla et al., 2010), illustrating a ncRNA to
manipulate host-cell gene expression via the miRNA pathway
after viral infection.

Two highly structured cytoplasmic RNAs; named VA RNA
I and VA RNA II (∼160–170 nts) are produced from RNA
polymerase III (pol III) (Mathews and Shenk, 1991). The
VA RNAs bind Dicer and function as competitive substrates
suppressing Dicer to inhibit the RNAi (Andersson et al., 2005).
Notably, compared with VA RNAI, VA RNA II is incorporated
into the RNA-induced silencing complex (RISC) (Xu et al.,
2007). Adenovirus VA RNA binds PKR and blocks PKR activity,
avoiding phosphorylation of eIF-2a and inhibition of viral mRNA
translation (Clarke and Mathews, 1995).

In addition to the cellular lncRNAs and virus encoded
lncRNAs, HBx-LINE1 was identified as a chimeric lncRNA,
which is produced by viral integration into the host genome
leading to activation of a LINE-1 sequence such that a chimeric
lncRNA is produced (Lau et al., 2014; Moyo et al., 2016). HBx-
LINE functions as an lncRNA-like RNA in HBV-positive HCC
cell lines, which induces the Wnt pathway by increasing the
nuclear localization of β-catenin. So far, it remains unknown
whether other chimeric lncRNAs are identified and their roles in
the virus infection.

CONCLUSIONS AND PERSPECTIVE

Although, thousands of lncRNAs are expressed after viral
infection, the specific lncRNA with experimentally verified
functions is limited, thus the roles and functions of lncRNAs
in viral infection require further investigation. A deeper
understanding of how the lncRNA transcriptome is altered in
the infected cell and how these alterations affect the interaction
between the host and virus should also be explored. Such studies
may help in the identification novel cellular pathways involved in
the antivirus response.

In addition to the role of lncRNA associated with the antivirus
response, lncRNAs may be both unique diagnostic biomarkers
as well as novel targets against which new therapeutics can
be developed. Virus-related lncRNAs secreted into the serum
may serve as prognostic markers. For example, two serum
lncRNAs, uc001ncr and AX800134, have potential as novel
potential biomarkers to diagnose HBV-positive HCC, especially
in the early stage of disease (Wang et al., 2015). The expression
of lncRNA-UCA1 and lncRNA-WRAP53 were significantly
higher in sera of HCC than in chronic HCV infection or
healthy volunteers (Kamel et al., 2016). This result suggests
that lncRNA-UCA1 and lncRNA-WRAP53 upregulation may
serve as novel serum biomarkers for HCC diagnosis and
prognosis. In conclusion, lncRNAs are key regulators of
transcriptional and post-transcriptional processes; thus, their
roles in virus infection and therapy necessitate intensive study in
the future.
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