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Exposure to pro-inflammatory cytokines, chemokines, mitochondrial contents, and

bacterial and viral products induces neutrophils to transition from a basal state into a

primed one, which is currently defined as an enhanced response to activating stimuli.

Although, typically associated with enhanced generation of reactive oxygen species

(ROS) by the NADPH oxidase, primed neutrophils show enhanced responsiveness

of exocytosis, NET formation, and chemotaxis. Phenotypic changes associated with

priming also include activation of a subset of functions, including adhesion, transcription,

metabolism, and rate of apoptosis. This review summarizes the breadth of phenotypic

changes associated with priming and reviews current knowledge of the molecular

mechanisms behind those changes. We conclude that the current definition of priming

is too restrictive. Priming represents a combination of enhanced responsiveness and

activated functions that regulate both adaptive and innate immune responses.
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INTRODUCTION

Polymorphonuclear leukocytes, or neutrophils, account for 40–60% of peripheral blood leukocytes
in humans (Summers et al., 2010). They play an essential role in the innate immune response, as
demonstrated by the development of life-threatening infections or uncontrolled inflammation in
individuals with severe neutropenia or genetic disruption of neutrophil anti-microbial capabilities
(Kannengiesser et al., 2008; van de Vijver et al., 2012; Moutsopoulos et al., 2014; Nauseef
and Borregaard, 2014). Figure 1 shows the multistep process of neutrophil recruitment in
response to microbial invasion, including adhesion to vascular endothelium, transmigration
into the interstitial space, chemotaxis/chemokinesis toward the site of infection, phagocytosis of
pathogens, destruction of microbes within phagosomes by release of antimicrobial granule contents
following granule fusion and ROS generation at the phagosomal membrane, and amplification
and organization of the inflammatory response. Uncontrolled or prolonged neutrophil activation
uses antimicrobial responses to injure normal host cells, leading to pathologic changes to tissues
and organs in autoimmune and inflammatory diseases (Nathan, 2006). Consequently, neutrophil
activation is normally tightly regulated.

Circulating neutrophils exist in a basal state, characterized by non-adherence, a round
morphology, minimal transcriptional activity, and a limited capacity to respond to activating
stimuli. That limited response protects against unwarranted inflammatory responses and tissue
injury (Sheppard et al., 2005). To effectively clear invading organisms, neutrophils must be capable
of mounting rapid, vigorous responses to activating stimuli. The transition to a state of enhanced
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FIGURE 1 | Priming-associated phenotypic changes and their effect on neutrophil functional responses. Neutrophils in circulating blood are in a resting

state, characterized by a round morphology, non-adherence, minimal transcriptional activity, and a limited capacity to respond to activating stimuli. Microbial entry into

tissues or tissue injury induces local immune cells to release pro-inflammatory cytokines that modify endothelial cell adhesion molecule profile and enter the

bloodstream to begin priming neutrophils. Upon exposure to these priming agents, neutrophils undergo an increase in enzymatic and transcriptional activity that

results in activation and synthesis of inflammatory mediators and enzymes that mediate downstream phenotypic and functional changes. Immediately, neutrophils

begin to change their adhesion receptor pattern by shedding selectins, fusing secretory vesicles with the plasma membrane which leads to increased integrin

expression, and a rapid increase in the gene expression of several surface receptors that allows newly primed cells to more rapidly adhere to endothelial cells (A). This

phenotypic change coupled with the release of granules containing matrix metalloproteases, promotes neutrophil migration into inflamed tissues (B). The priming

process continues when neutrophils bind to extracellular matrix proteins (C). Binding of neutrophil extracellular matrix receptors leads to an increase in actin

polymerization, available receptors from secretory vesicle degranulation, and intracellular signaling that results in enhanced chemotaxis and chemokinesis (D). When

primed neutrophils encounter bacteria, their phagocytic capacity is increased due to the upregulation in the number and affinity of receptors on the plasma membrane

(F). By then, ROS production, granule release (G), and NET formation (E) have been primed to augment microbicidal activities. Finally, priming prolongs neutrophil

lifespan by activating anti-apoptotic signal transduction pathways and transcription factors that decrease transcription of pro-apoptotic factors (H).

responsiveness has been termed priming (Condliffe et al.,
1998; El-Benna et al., 2008; Wright et al., 2013). It occurs
in vitro following neutrophil exposure to pro-inflammatory
lipids and cytokines, chemokines, mitochondrial contents, and
bacterial and viral products (El-Benna et al., 2008). Neutrophil
priming in vitro represents an in vivo phenomena, as primed
neutrophils have been identified in humans with infections,
rheumatoid arthritis, chronic kidney disease, traumatic injury,
and acute respiratory distress syndrome (Bass et al., 1986;
McLeish et al., 1996; Ogura et al., 1999; Naegele et al.,
2012). Although, substantial circumstantial evidence suggests
that primed neutrophils participate in a number of human
diseases, direct evidence is lacking. The relative contribution
of neutrophil priming to the severity of human inflammatory
diseases is an important gap in knowledge that needs to be
addressed.

Historically, the term “priming” was primarily used
to describe the augmented reactive oxygen species (ROS)
generation upon neutrophil stimulation because of the depth
of knowledge of molecular mechanisms of NADPH oxidase
complex assembly, the ease of measurement of ROS generation,
and the importance of ROS to anti-microbial activity. Figure 1

illustrates that primed neutrophils demonstrate a number of
phenotypic changes in addition to enhanced NADPH oxidase
activation, including granule release, cytokine and lipid synthesis,
adhesion and transmigration, enhanced chemotaxis, and delayed
apoptosis. Thus, neutrophil priming is not just a transition state
in which neutrophils become more responsive to activating
stimuli. We believe a new definition of priming is required
to include the activation of a subset of neutrophil functions
as opposed solely to a heightened state of responsiveness. In
this review of the recent advances in neutrophil priming, we
will highlight the functional evidence for the activation of a
subset of neutrophil functions during priming and review the
current state of knowledge of the molecular basis for those
phenotypic changes to illustrate this new definition. Our goal
is to encourage research that will provide a more complete
understanding of priming, leading to identification of new
targets for treatment of inflammatory and infectious diseases.
Much of our discussion focuses on the effects of TNFα, as studies
frequently use that cytokine as a model priming agent. The large
number of agents capable of initiating priming of neutrophil
respiratory burst activity was recently reviewed (El-Benna et al.,
2016). We compare current state of knowledge of the effects of
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those priming agents on the various phenotypic changes to those
induced by TNFα in Table 1.

PHENOTYPIC CHANGES DURING
PRIMING

Respiratory Burst Activity
For decades, enhanced respiratory burst activity has defined
a primed neutrophil. The respiratory burst generates ROS
through conversion of molecular oxygen to superoxide by
the multi-component NADPH oxidase complex. The oxidase
is comprised of three membrane subunits (gp91phox/NOX2,
p22phox, and Rap1A) and four cytosolic proteins (p47phox,
p67phox, p40phox, and Rac2). Spatial separation of the membrane
and cytosolic components maintains enzymatic inactivity in
resting neutrophils. Upon stimulation, the cytosolic components
translocate to the membrane to form the catalytically active
enzyme complex. Phosphorylation of cytosolic NADPH oxidase
components is necessary for translocation of those components
to the plasma membrane. One of the major targets of
phosphorylation is the p47phox subunit. Phosphorylation of
a number of serines (Ser303–Ser379) early in the activation
process facilitates p47phox docking to membrane and cytosolic
oxidase components, leading to assembly of the functional
oxidase (El-Benna et al., 1994, 1996; Groemping et al.,
2003).

Non-receptor tyrosine kinases and p38 mitogen-activated
protein kinase (MAPK) are signaling molecules that participate
in priming respiratory burst activity by TNFα (El-Benna et al.,
1996; McLeish et al., 1998; Forsberg et al., 2001; Dewas et al.,
2003; Boussetta et al., 2010). Inhibition of tyrosine kinase
activity blocks the activation of p38 MAPK by TNFα (McLeish
et al., 1998), indicating that tyrosine kinases participate in
priming by activating p38 MAPK. TNFα-mediated activation of
the p38 MAPK pathway contributes to priming by enhancing
plasma membrane translocation of the cytosolic components
of the NADPH oxidase and by increasing expression of the
plasma membrane oxidase components. Enhanced translocation
of cytosolic components results from p38 MAPK-dependent
phosphorylation of Ser345 on p47phox. Phosphorylation of Ser345

initiates a series of conformational changes in p47phox that result
in hyperactivation of the NADPH oxidase. The initial event is
binding of the prolyl isomerase Pin1 to the phospho-Ser345 site
(Boussetta et al., 2010). This produces a conformational change in
p47phox that exposes additional amino acids for phosphorylation
by protein kinase C (PKC). Phosphorylation by PCK produces
a second conformational change that promotes p47phox binding
to p22phox. That interaction leads to translocation and assembly
of all the cytosolic oxidase components with the membrane
NADPH oxidase components. Pin1 is also involved in priming
by GM-CSF and CL097, a TLR8 agonist (Makni-Maalej et al.,
2012, 2015). Unlike TNFα, GM-CSF induces phosphorylation
of Ser345 on p47phox through activation of ERK1/2, not p38
MAPK (Boussetta et al., 2010; Makni-Maalej et al., 2015). This
observation indicates that multiple signal transduction pathways
induce the same molecular events required for priming. Those

redundant signal transduction pathways are unlikely to serve as
effective therapeutic targets.

Over a decade ago, it was suggested that TNFα and LPS play
a role in respiratory burst priming by influencing membrane
trafficking (DeLeo et al., 1998; Ward et al., 2000). Direct
confirmation was provided recently by selectively blocking
exocytosis prior to priming through the use of cell-permeable,
peptide inhibitors of SNARE protein interactions (Uriarte
et al., 2011; McLeish et al., 2013). Those studies determined
that exocytosis of secretory vesicles and gelatinase granules is
required for priming by TNFα and platelet activating factor.
Exocytosis could be contributing to priming by increasing plasma
membrane expression of receptors, signaling molecules, and/or
NADPH oxidase membrane components. The role of receptor
and signaling molecule expression in priming was examined
by measuring the activation of p38 MAPK and ERK1/2 in
neutrophils primed during inhibition of exocytosis (Uriarte et al.,
2011). The absence of granule exocytosis had no effect on
activation of either MAPK, indicating that increased expression
of receptors and signaling molecules does not contribute to
priming (Uriarte et al., 2011). Inhibition of Pin1 activity had no
effect on neutrophil granule exocytosis (McLeish et al., 2013). We
interpret those studies to indicate that enhanced translocation
of cytosolic oxidase components and increased expression of
membrane oxidase components are independent events, both of
which are required for priming.

A second membrane trafficking event that participates
in priming respiratory burst activity is clathrin-mediated
endocytosis. Moreland and colleagues reported that the NADPH
oxidase assembles on endosomes, and the subsequent H2O2

production was required for neutrophil priming by endotoxin
(Moreland et al., 2007; Volk et al., 2011; Lamb et al.,
2012). We have confirmed those observations and determined
that endocytosis is an upstream event in neutrophil granule
exocytosis.

Neutrophil Granule Release
Neutrophil granules are divided into four classes based on
granule density and contents (Borregaard and Cowland, 1997;
Lominadze et al., 2005; Rørvig et al., 2013). Secretory vesicles
are created by endocytosis, while gelatinase (tertiary), specific
(secondary), and azurophilic (primary) granules are formed
from the trans-Golgi network during neutrophil maturation
(Borregaard, 2010). Granule subsets undergo an ordered release
based on stimulus intensity, termed graded exocytosis (Sengelov
et al., 1993, 1995). Secretory vesicles undergo exocytosis
more easily and completely than gelatinase granules. Specific
and azurophilic granules, which contain toxic anti-microbial
components, undergo the most limited exocytosis. An in vivo
study showed that neutrophils migrating into a skin blister
created in normal human subjects release nearly 100% of their
secretory vesicles, 40% of gelatinase granules, 20% of specific
granules, and <10% of azurophilic granules (Sengelov et al.,
1995).

We recently reported that TNFα directly stimulated exocytosis
of secretory vesicles and gelatinase granules (McLeish et al.,
2017). Those results support previous studies showing that
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exocytosis of secretory vesicles and gelatinase granule is required
for TNFα-induced priming (McLeish et al., 2013). Neither
TNFα nor fMLF, alone, stimulated exocytosis of specific and
azurophilic granules. However, TNFα primed the release of
both granule subsets upon subsequent stimulation by fMLF
(McLeish et al., 2017). The ability of TNFα to prime exocytosis
of azurophilic granules was also reported by Potera et al.
(2016). Thus, differential regulation of exocytosis of the four
granule subsets by TNFα primes the two major neutrophil anti-
microbial defense mechanisms for enhanced release of ROS
and toxic granule contents, while protecting against cell injury
from inappropriate release of those toxic products. On the other
hand, Ramadass et al. showed that GM-CSF both stimulated
and primed exocytosis of gelatinase, specific, and azurophilic
granules in mouse neutrophils (Ramadass et al., 2017). The basis
for differences between TNFα and GM-CSF could be due to
disparate capabilities of priming agents or to species differences.

Proteins that control priming by regulating exocytosis have
only recently been identified. As pharmacologic inhibition of
p38 MAPK prevents TNF-α stimulated exocytosis (Mocsai et al.,
1999; Uriarte et al., 2011; McLeish et al., 2013), we employed
a phosphoproteomic analysis by mass spectrometry to identify
proteins phosphorylated by the p38 MAPK pathway during
TNFα stimulation (McLeish et al., 2017). Four of the proteins
identified, Raf1,MARCKS, ABI1, andmyosin VI, were previously
shown to be involved in exocytosis in various cells. We confirmed
that Raf1 participates in TNFα-stimulated exocytosis. Catz and
colleagues used neutrophils from transgenic mice to identify
Rab27a and its target, Munc13-4, as mediators of neutrophil
exocytosis stimulated by GM-CSF (Ramadass et al., 2017). They
showed that Rab27a, but not Munc13-4, was required for GM-
CSF priming of exocytosis to subsequent stimulation by TLR
agonists or formyl peptides. Thus, the mechanisms that control
neutrophil exocytosis during priming offer potential targets for
intervention in inflammatory processes in which neutrophil
priming is involved.

Adhesion, Chemotaxis, and Phagocytosis
As shown in Figure 1, microbial invasion or tissue injury releases
pathogen-associated molecular pattern (PAMPs) or damage-
associated molecular pattern (DAMPs) molecules that induce
sentinel immune cells to release pro-inflammatory cytokines.
Those cytokines modify both endothelial cell and neutrophil
adhesion molecule expression to facilitate the capture of
circulating neutrophils and to mediate their migration into
tissues. As shown in Table 1, all priming agents for which
there are data directly activate neutrophil adhesion. However,
differential regulation of adhesion molecule expression and
activation by different priming agentsmay produce different rates
of neutrophil adhesion and migration efficiency. For example,
neutrophil exposure to TNFα increases plasma membrane
expression of the β2 integrin receptor, CD11b/CD18, through
exocytosis of secretory vesicles; decreases expression of the
selectin receptor CD62-L through receptor shedding; and
induces sustained activation of CD11b/CD18 through inside-out
signaling (Condliffe et al., 1996; Swain et al., 2002). On the other
hand, PAF increases surface expression of the CD11b/CD18,

has no effect on selectin expression, and induces only transient
activation of CD11b/CD18 (Berends et al., 1997; Khreiss et al.,
2004). The in vivo significance of those differences in adhesion
molecule expression and activation remains to be determined.

With the exception of IFNγ, neutrophil chemotaxis is
enhanced by all priming agents for which there are data (Table 1).
In addition to increased expression of adhesion molecules and
receptors resulting from exocytosis, priming agents increase
actin reorganization (Borgquist et al., 2002), and enhances
chemokinesis and chemotaxis (Montecucco et al., 2008; Yao
et al., 2015). For example, treatment of neutrophils with PAF,
IL-8, or TNFα, alone, induces chemokinesis, while subsequent
exposure to an fMLF gradient leads to enhanced neutrophil
chemotaxis (Drost and MacNee, 2002). Additionally, TNFα-
primed neutrophils gain the ability to migrate toward the
chemokine CCL3, which is found in inflammatory sites, but is
normally not a neutrophil chemo attractant (Montecucco et al.,
2008).

Neutrophil adhesion through both the engagement of
neutrophil β2 integrin receptors with endothelial cell adhesion
molecules and the binding of neutrophil receptors with
extracellular matrix proteins primes respiratory burst activity
(Stanislawski et al., 1990; Dapino et al., 1993; Liles et al.,
1995). Neutrophil adhesion induces other priming phenotypes,
including exocytosis of secretory vesicles and gelatinase granules
and a reduced rate of apoptosis (Hu et al., 2004; McGettrick et al.,
2006; Paulsson et al., 2010). Thus, transmigration of neutrophils
into the extravascular space can be expected to directly induce
some of the features of priming.

When neutrophils arrive at the site of infection, they
demonstrate increased phagocytosis due to upregulation in the
number and affinity of phagocytic receptors (Condliffe et al.,
1998; Rainard et al., 2000; Le et al., 2012). Table 1 lists the
effects of specific priming agents on phagocytosis. Exposure of
bovine neutrophils to the combination of two priming agents,
TNFα and C5a each at suboptimal concentrations, enhanced
both the rate of phagocytosis and the killing capacity toward
serum opsonized Staphylococcus aureus (Rainard et al., 2000);
and incubation of human neutrophils with insulin-like growth
factor I (IGF-I) results in a significant increase in phagocytosis
of both IgG-opsonized S. aureus and serum-opsonized Candida
albicans (Bjerknes and Aarskog, 1995). Increased neutrophil
phagocytosis is dependent on the concentration and incubation
time with IGF-1, and is due to increased complement receptor
(CR) 1 and CR3 expression. IGF-1 enhances Fcγ receptor-
dependent phagocytosis through increased receptor function and
activation, while Fcγ receptor expression is unchanged (Bjerknes
and Aarskog, 1995). Thus, neutrophil exposure to the complex
milieu of priming agents in vivo is likely to produce additive or
synergistic changes in functional responses. Defining neutrophil
responses in that complex environment will require application
of systems biology methodologies.

Neutrophil Extracellular Trap (NET)
Formation
Since their first description in 2004, neutrophil extracellular
traps (NETs) have received intense investigation. Although, the
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majority of studies have measured NET formation by resting
neutrophils, neutrophils from normal subjects primed by TNFα
in vitro demonstrated robust NET formation following a 3 h
exposure to anti-neutrophil cytoplasmic antibodies (Kessenbrock
et al., 2009). Enhanced NET formation in primed neutrophils is
supported by other in vitro studies using GM-CSF and TNFα
(Yousefi et al., 2009; Hazeldine et al., 2014). The effect of priming
agents on NET formation is listed in Table 1.

Despite their original classification as the third bacterial
killing mechanism, current opinion leans toward NETs being
important contributors to autoimmunity and tissue injury, rather
than antibacterial activity (Sorensen and Borregaard, 2016). In
vivo, enhanced NET formation following a systemic change in
levels of inflammatory cytokines has been described in cancers,
multiple sclerosis, and diabetes (Chechlinska et al., 2010; Naegele
et al., 2012; Fadini et al., 2016). Using a chronic myelogenous
leukemia mouse model, Demers and colleagues reported that
non-malignant neutrophils showed enhanced NET formation,
leading to increased coagulation and thrombosis (Demers
et al., 2012). Priming of NET formation was reproduced in
control mice by sequential administration of granulocyte colony-
stimulating factor (G-CSF) and LPS. The authors suggested that
priming NET formation by systemic cytokines plays a role in
cancer progression. While the current literature indicates that
enhanced NET formation is a component of neutrophil priming,
the functional consequences of that response remain to be
determined.

Secretion of Lipid and Cytokine Mediators
As summarized in Table 1, primed neutrophils demonstrate
increased metabolic and transcriptional activity that leads
to synthesis of a number of pro- and anti-inflammatory
chemokines, cytokines, and lipids. Although, the ability of
neutrophils to synthesize those products is less than that of
macrophages, the large number of neutrophils present at sites of
inflammation is postulated to influence both innate and adaptive
immune responses through release of those inflammatory
mediators.

Pro-inflammatory lipid mediators like leukotriene B4 (LTB4)
can be produced de novo by the arachidonate 5-lipoxygenase
(5-LO) pathway in neutrophils and play important roles in
aggregation, degranulation, and chemotaxis (O’Flaherty et al.,
1979; Flamand et al., 2000). The production of these lipid
mediators occurs through a series of biochemical events that
primarily take place in the perinuclear region where membrane
phospholipids are first converted to arachidonic acid (AA) by
the calcium–dependent enzyme phospholipase A2 (PLA2) (Luo
et al., 2003; Leslie, 2004). The newly synthesized AA is then
converted by 5-LO into leukotriene A4(LTA4), which is the
immediate precursor of LTB4. Neutrophil production of LTB4 is
responsible for a second wave of neutrophil recruitment during
inflammation, a process termed “swarming” (Lammermann
et al., 2013). This is one of many examples of amplification loops
initiated by neutrophils (Nemeth and Mocsai, 2016).

Direct activation of neutrophils by fMLF does not lead to
the detectable release of leukotrienes, but priming with GM-
CSF, LPS, or TNFα followed by fMLF stimulation significantly

increases LTB4 release (see Table 1; DiPersio et al., 1988a;
Schatz-Munding and Ullrich, 1992; Palmantier et al., 1994; Seeds
et al., 1998; Zarini et al., 2006). All three of these priming
agents activate PLA2 and increase AA release without increasing
intracellular Ca2+ (DiPersio et al., 1988b; Schatz-Munding and
Ullrich, 1992; Zarini et al., 2006). The elevation in available AA
substrate leads to prolonged activation of 5-LO and enhanced
production of downstream lipid mediators (Surette et al., 1993,
1998; Doerfler et al., 1994). Once produced, LTB4 can exert
autocrine effects. It primes neutrophil responses to toll-like-
receptor (TLR) agonists, resulting in enhanced cytokine (IL-8,
TNFα) secretion (Gaudreault et al., 2012). TLR9 mRNA levels
are upregulated upon priming with LTB4, but there is no increase
in surface expression of TLR2, TLR4, or the co-receptors TLR1
and TLR6 following LTB4 exposure (Gaudreault and Gosselin,
2009; Gaudreault et al., 2012). Instead, neutrophil LTB4-
induced hyper-responsiveness is mediated by the potentiation
of TLR-induced intracellular signaling. TAK1 and p38 MAPK,
which are essential in TLR-activated cytokine release, are
phosphorylated and activated following LTB4 interaction with its
seven transmembrane-spanning receptor.

PAF is another lipid inflammatory mediator whose
production is primed in neutrophils. Both LPS and GM-
CSF enhance PAF synthesis in response to activating stimuli
(Aglietta et al., 1990; Surette et al., 1998). After priming with GM-
CSF, there is increased enzymatic activity of acetyl transferase,
the enzyme responsible for the synthesis of PAF (Aglietta et al.,
1990). However, the pattern of PAF synthesis after LPS priming
is attributed to a biphasic, autocrine response. The early peak in
production is due to the direct effect of LPS, while the delayed
peak is a result of LPS-induced IL-8 and TNF-α release (Bussolati
et al., 1997).

Neutrophils modulate inflammation through the release of
stored or newly produced cytokines and chemokines (Cassatella,
1999). Exposure of neutrophils to priming agents leads to an
increase in synthesis and release of IL-1α, IL-1β, IL-6, IL-
8, TNFα, CXCL1, CXCL2, CCL3 (MIP-1α), CCL4 (MIP-1β)
(Roberge et al., 1998; Zallen et al., 1999; Jablonska et al., 2002b;
Choi et al., 2008; Wright et al., 2013). The inducible synthesis of
the majority of cytokines and chemokines results from increased
gene transcription (Marucha et al., 1991; Cassatella et al., 1995;
Cassatella, 1996, 1999; Fernandez et al., 1996). TNFα, LPS, and
GM-CSF increase intra-nuclear translocation of NF-κB, C/EBP,
or CREB transcription factors (Cloutier et al., 2007, 2009; Mayer
et al., 2013). LPS induces a biphasic production of IL-8. For the
first few hours (2–6 h) of exposure, LPS directly stimulates IL-8
synthesis, but the second wave of sustained IL-8 release (up to 18
h) is due to the endogenous release of TNFα and IL-1β (Cassatella
et al., 1993).

Release of Neutrophil Extracellular
Vesicles
Cell-derived vesicles represent a mechanism for cell-cell
communication. Exosomes are 50–100 nm vesicles released from
multivesicular bodies that are involved in antigen presentation
and cell-to-cell transfer of receptors or RNA (Gyorgy et al.,
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2011). Larger vesicles, called microvesicles or microparticles
express tissue factors on their surface that are capable of
initiating coagulation. Neutrophils undergoing apoptosis or
stimulated by chemotactic agents, opsonic receptors, or TNFα
release microparticles. However, the microparticles have varying
compositions and functional capabilities, depending on the
stimulus (Dalli et al., 2013; Johnson et al., 2014; Lorincz et al.,
2015). Microparticles obtained from neutrophils stimulated by
chemotactic agents or phorbol esters activate cytokine (IL-
6) secretion from endothelial cells and platelets (Mesri and
Altieri, 1998; Pluskota et al., 2008). Chemotactic peptide-induced
microparticles increase secretion of the anti-inflammatory
cytokine transforming growth factor-β and interfere with the
maturation of monocyte-derived dendritic cells (Gasser and
Schifferli, 2004; Eken et al., 2010). Auto-antibody-stimulated
release of neutrophil microparticles was suggested to be
involved in the pathogenesis of vasculitis (Hong et al.,
2012). Additional activities ascribed to neutrophil microparticles
include suppression of bacterial growth, activation of endothelial
cell cytokine production, altered cytokine profile of natural
killer cells and monocytes, and increased coagulation (Mesri
and Altieri, 1998; Timar et al., 2013a,b; Pliyev et al., 2014). An
understanding of the stimuli and signal transduction pathways
leading to formation and release of neutrophil extracellular
vesicles and their roles in inflammation remains to be developed.

Rate of Apoptosis
Table 1 indicates that neutrophil apoptosis is variably affected in
response to priming agents. While LPS, GM-CSF, IL-8, and LTB4
have been found to extend neutrophil lifespan in vitro, PAF, fMLF,
and IL-6 show no effect, and TNFα shows a biphasic response
where it promotes apoptosis during the first 8 h of exposure,
followed by a delayed rate of apoptosis at later times (Klein
et al., 2000, 2001; Cowburn et al., 2002; Liu et al., 2005; Wright
et al., 2014). Primed neutrophils from patients with multiple
sclerosis, ANCA-associated vasculitis, and liver cirrhosis show
increased apoptosis (Harper et al., 2001; Klimchenko et al., 2011;
Naegele et al., 2012), while neutrophils from patients at risk
of multiple-organ failure and individuals presenting with septic
peritonitis, severe trauma, or septic trauma show a decrease in
apoptosis (Ertel et al., 1998; Biffl et al., 1999, 2001; Nolan et al.,
2000; Feterowski et al., 2001). Those conflicting reports of the
effect of inflammation on apoptosis in vivo are likely due to
different priming agents involved in different diseases, different
responses during the time course of disease, and differences in
the neutrophil micro-environment, such as cell density (Hannah
et al., 1998).

The mechanisms underlying the effects of priming on
neutrophil apoptosis have been partially characterized. As for
TNFα, increased rates of apoptosis during the first hours of
exposure are associated with activation of caspase cascades
(Murray et al., 1997). TNFα also induces an early, PI-3K-
mediated increase in mRNA levels for Bad, a member of
the BCL2 family that regulates apoptosis. On the other hand,
decreased neutrophil apoptosis observed at later time points
is associated with a reduction in Bad mRNA levels (Cowburn
et al., 2002). GM-CSF, IL-8, LPS, and LTB4 decrease the rate

of neutrophil apoptosis through activation of ERK1/2 and/or
PI-3K/Akt pathways (Klein et al., 2000, 2001). Incubation of
neutrophils with fMLF had no effect on the rate of apoptosis,
despite activation of both ERK1/2 and Akt (Klein et al., 2001).
GM-CSF was also shown to decrease mRNA levels of Bad, while
increasing its phosphorylation (Cowburn et al., 2002). A RNA seq
study comparing TNFα and GM-CSF priming pathways showed
that out of 580 genes differentially expressed between both agents,
58 were implicated in the delay of apoptosis. Thus, each priming
agent produced a distinct profile of pro- and anti-apoptotic
genes (Wright et al., 2013). The varying rates of neutrophil
apoptosis may serve different functions in the inflammatory
response. For example, a reduced rate of apoptosis early in the
recruitment of neutrophils results in a brisk accumulation of
primed neutrophils. On the other hand, an enhanced rate of
apoptosis at later time points promotes resolution through loss
of active neutrophils and a change in phenotype of monocytes
engulfing apoptotic neutrophils.

CONCLUSIONS

The altered neutrophil functions described in this review
indicate that priming is a complex phenomenon. Priming
involves enhanced respiratory burst, exocytosis, NET formation,
and chemotaxis in response to a second stimulus. Priming,
however, is not just preparation for an enhanced response
to a second stimulus. Priming involves activation of a subset
of neutrophil responses, including adhesion, transcription,
cytoskeletal reorganization, translocation and expression
of receptors, and other molecules, the rate of constitutive
apoptosis, metabolic activity, and phagocytosis. The altered
neutrophil responses associated with priming primarily result
in amplification of the inflammatory response. Although,
recruitment of primed neutrophils improves the clearance of
invading microbes, the risk of directly injuring surrounding
cells is increased. Moreover, the increased synthesis and release
of cytokines and lipids by primed neutrophils, combined
with increased neutrophil recruitment and life-span, result
in an increased local concentration of pro-inflammatory
agents. Those agents recruit and prime additional neutrophils,
leading to an enhanced innate immune response. Neutrophil-
dependent recruitment and activation of dendritic cells and
various lymphocyte subsets also enhances the adaptive immune
response.

We propose that the current definition of priming, which
focuses on a transition state to an enhanced responsiveness to
a second stimulus, is too restrictive. Neutrophil priming also
results in activation of a subset of neutrophil responses that
regulate innate and adaptive immunity. Additionally, neutrophil
responses to priming agents vary depending on concentration of
the priming agent, time of exposure, and the specific priming
agent (Potera et al., 2016; McLeish et al., 2017). It seems
likely that neutrophils are exposed to graded concentrations of
priming agents as they progress through the multistep process
of recruitment, as occurs with chemoattactants. This leads to the
hypothesis that, similar to graded granule exocytosis, priming
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occurs in a graded manner during a neutrophil’s journey to the
site of inflammation. This graded response allows neutrophils
to acquire functions in an ordered manner, as required during
recruitment. A fully primed neutrophil that releases a maximal
amount of toxic chemicals would occur when an optimal
concentration of a priming stimulus is encountered. Combining
knowledge of the molecular events with an understanding of
priming at a systems level will identify therapeutic targets
for neutrophil functions that exacerbate individual diseases,
while preserving the functions that participation in host
defense.
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