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Necrotising enterocolitis (NEC) and sepsis are serious diseases of preterm infants that

can result in feeding intolerance, the need for bowel resection, impaired physiological and

neurological development, and high mortality rates. Neonatal healthcare improvements

have allowed greater survival rates in preterm infants leading to increased numbers

at risk of developing NEC and sepsis. Gut bacteria play a role in protection from

or propensity to these conditions and have therefore, been studied extensively using

targeted 16S rRNA gene sequencing methods. However, exact epidemiology of these

conditions remain unknown and the role of the gut microbiota in NEC remains enigmatic.

Many studies have confounding variables such as differing clinical intervention strategies

or major methodological issues such as the inability of 16S rRNA gene sequencing

methods to determine viable from non-viable taxa. Identification of viable community

members is important to identify links between the microbiota and disease in the

highly unstable preterm infant gut. This is especially important as remnant DNA is

robust and persists in the sampling environment following cell death. Chelation of such

DNA prevents downstream amplification and inclusion in microbiota characterisation.

This study validates use of propidium monoazide (PMA), a DNA chelating agent that

is excluded by an undamaged bacterial membrane, to reduce bias associated with

16S rRNA gene analysis of clinical stool samples. We aim to improve identification

of the viable microbiota in order to increase the accuracy of clinical inferences made

regarding the impact of the preterm gut microbiota on health and disease. Gut microbiota

analysis was completed on stools from matched twins (n = 16) that received probiotics.

Samples were treated with PMA, prior to bacterial DNA extraction. Meta-analysis

highlighted a significant reduction in bacterial diversity in 68.8% of PMA treated

samples as well as significantly reduced overall rare taxa abundance. Importantly, overall

abundances of genera associated with protection from and propensity to NEC and

sepsis such as: Bifidobacterium; Clostridium, and Staphylococcus sp. were significantly

different following PMA-treatment. These results suggest non-viable cell exclusion by

PMA-treatment reduces bias in gut microbiota analysis from which clinical inferences

regarding patient susceptibility to NEC and sepsis are made.
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INTRODUCTION

Severely preterm infants (<32 weeks) have immature immune
systems (Levy, 2007; Strunk et al., 2011), improperly formed
intestinal lumen (Halpern and Denning, 2015), and often feeding
intolerance (Fanaro, 2013). All such characteristics increase the
risk of onset of nosocomial infection, necrotising enterocolitis
(NEC), and sepsis (Gregory et al., 2011). Outbreaks of NEC
within the neonatal intensive care unit (NICU) (Boccia et al.,
2001) and the absence of such diseases prior to bacterial
colonization at birth suggest a key role of gut bacterial dysbiosis
in these conditions. True causation is, however, very difficult
to identify and compacted by complex to understand, highly
turbulent community characteristics in the gut, probably in part
affected by “routine” interventions of neonatal intensive care
(antibiotic administration, feeding strategies, etc.) (Stoll et al.,
1996; Hoy et al., 2000).

Targeted 16S rRNA gene sequencing technologies are used
to produce microbial metadata for entire populations of a
biotope with superior depth, specificity and, most importantly,
in significantly less time than previous culture-based or
molecular methods (Weinstock, 2012). In addition, the price
of sequencing continues to decline (Caporaso et al., 2012),
providing further incentives for microbiologists to employ
this technique. However, 16S rRNA gene sequencing does
introduce inherent biases (von Wintzingerode et al., 1997),
including enrichment of particular bacterial groups before
storage (Rochelle et al., 1994), insufficient or preferential
disruption of certain bacterial cells (Leff et al., 1995; Schneegurt
et al., 2003), introduction of sequencing artefacts such as
chimeras (Wang and Wang, 1996) and inability to exclude
DNA from non-viable sources (Nocker et al., 2006; Nocker and
Camper, 2009; Rogers et al., 2013). Persistence of non-viable
DNA is due to the stability of the molecule, which enables DNA
to remain in an environment long after the originating organism
has died. DNA from non-viable bacterial cells (NVBCs) can
persist in the lumen of the GI tract, resulting in identification
during targeted 16S rRNA gene sequencing analyses. Such bias is
especially important whilst studying the highly unstable (Koenig
et al., 2011; Bergstrom et al., 2014), low diversity (Tuddenham
and Sears, 2015) gut bacterial communities of severely preterm
infants. A technique to enable non-viable cell exclusion (NVCE),
from such analyses is, therefore, an important and necessary
requirement in order to reduce bias and improve the current
understanding of bacterial taxa associated with NEC and sepsis.

PMA is a DNA chelating compound that cannot translocate
across a viable cellular membrane (Nocker et al., 2007). Nocker
et al. (2006), developed the use of PropidiumMonoazide (PMA),
for differentiation between viable and non-viable bacterial cells
during targeted 16S rRNA gene sequencing microbiota analyses
(Nocker et al., 2006; Nocker and Camper, 2009; Rogers et al.,
2013). This process has been applied in microbial ecology studies
of other environments, including wastewater samples (Nocker
et al., 2007, 2010), human oral cavities (Sanchez et al., 2013),
human adult faeces (Bae and Wuertz, 2009; Fujimoto and
Watanabe, 2013), the cystic fibrosis lung (Rogers et al., 2010;
Nguyen et al., 2016), and other lower lung respiratory infections

(Rogers et al., 2013). The technique, however, has not yet been
validated for use in the unique biotope of preterm infant stool
despite vast quantities of research being published regarding this
microbiota (Mshvildadze et al., 2010; Mai et al., 2011; Torrazza
et al., 2013; McMurty et al., 2015). Furthermore, no studies so far
have validated combining PMA treatment of this sample type in
conjunction with the Schloss method for paired end targeted 16S
rRNA gene sequencing (Kozich et al., 2013).

This study aims to identify and alleviate the bias associated
with non-viable bacterial DNA inclusion in studies of the gut
microbiota of significantly preterm infants at risk of NEC and
sepsis. In doing so we hope to increase the accuracy of microbiota
characterization in patients at risk of NEC and sepsis, therefore
improving the quality of clinical inferences made in relation to
the conditions.

The effects of PMA treatment were assessed by comparing
bacterial richness, diversity, and community structure as well as
individual taxa abundances within PMA-treated and untreated
frozen stool samples (n= 16) when assessed using targeted paired
end sequencing of the 16S rRNA gene.

MATERIALS AND METHODS

Faecal samples were collected when available from day of life
43–81 from a set of significantly preterm twins born 25(+2)
weeks gestation and at ≤710 g, enrolled on the SERVIS
study at the Royal Victoria Infirmary NICU, Newcastle upon
Tyne, England, with ethical permission (NRES Committee
North East—Newcastle & North Tyneside 2). Both patients
were administered Infloran R© (Laboratorio Farmaceutico SIT,
Mede, PV, ITA) probiotic supplements throughout the course
of the sampling period (Bifidobacterium bifidum, Lactobacillus
acidophilus). Stool was collected in sterile glass pots with sealed
lids and frozen immediately on the ward. Batch collection and
transportation to freezers at Northumbria University followed.
Samples were stored at −80◦C until PMA treatment and DNA
extraction for analysis.

PMA Treatment and DNA Extraction
PMA was supplied by Biotium (Hayward, CA, USA), and
dissolved in dimethyl sulfoxide to a stock concentration of
20 mM. Faecal samples were homogenised in 2.5 ml PBS
per 0.1 g of stool (≤0.5 g), and centrifuged. The centrifuged
pellet was resusupended in 2 ml PBS and split evenly to
facilitate PMA-treated and untreated conditions per sample.
PMA stock solution was added to a final concentration of
50µM in treated samples and the equivalent volume of PBS was
added to untreated samples. PMA cross-linking was initiated
by 30 min incubation on ice, in the dark with occasional
mixing. Following this, samples were exposed to blue LED
light at 464 nm during 30-s intervals for a total of 2 min.
After light exposure, samples were centrifuged at 10,000 × g
for 5 min. The supernatant was discarded and DNA extracted
from the cellular pellet using MoBio PowerLyzer PowerSoil
DNA Isolation Kit (Carlsbad, CA, USA), as per manufacturer’s
instructions.
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Nested PCR Protocol and MiSeq Analysis
Prior to paired end targeted 16S rRNA gene analysis, extracted
viable DNA was amplified by PCR. Nested PCR was employed
in this scenario not to increase copy number prior to sequencing
but to increase impact of PMA-intercalation of DNA by blocking
amplification of the whole 16S rRNA gene sequence prior to
targeted sequencing of the shorter V4 region. Banihashemi et al.
(2012) showed that amplification of a 200 bp fragment failed to
omit dead cell signals fully fromDNA based community analyses.
Universal bacterial 16S rRNA gene specific primers 27f (Lane,
1991), and 1,492r (Turner et al., 1999) were used under the
following conditions: initial denaturation at 95◦C for 5 min then
25 cycles of 30 s denaturation at 95◦C; primer annealing at 44.5◦C
for 30 s; elongation at 72◦C for 30 s then a final elongation at 72◦C
for 10min.

PCR products were serially diluted 1:10 and paired end
targeted analysis of V4 regions of the 16S rRNA gene was
performed as described by Kozich et al. (2013), on the Illumina
MiSeq using primers described by Caporaso et al. (2011). MiSeq
250 × 2 chemistry was used to perform the targeted 16S rRNA
sequencing.

Analysis
Sequence reads with phred-score ≥Q30 were trimmed, merged
and processed in Mothur (Schloss et al., 2009), following the
MiSeq SOP. Number of sequences passing Q30 in each sample
are illustrated in Figure S1. Reads with phred-score <Q30 were
not included in analysis. Uncorrected pairwise distances were
calculated before clustering sequences in to OTUs using average
neighbor joining, as recommended by Schloss and Westcott
(2011). The same sequence reads were also submitted to the
EBI ENA database for analysis (study accession PRJEB10326;
http://www.ebi.ac.uk/ena/data/view/PRJEB10326).

Singletons were not removed from analysis to allow
identification of PMA-treatment on all rare taxa identified
by targeted sequencing. Normalization was not performed by
rarefaction or subsampling due to the nature of the investigation.
Instead relative abundances of individual taxa per sample were
calculated. This is because the impact of PMA NVCE was
assessed by omission of sequence reads from the community,
therefore the absence of any sequence read was as informative
as the presence of the same.

Per sample richness and beta-diversity was calculated using
R statistical software (R_Core_Team., 2014) and the vegan
package for community ecology (Oksanen et al., 2015). Meta-
analysis (Borenstein et al., 2009) was used to compare results by
treatment condition. Meta-analysis has previously been used to
quantify the effect of PMA-treatment on bacterial communities
of expectorated CF sputum samples (Rogers et al., 2013), allowing
direct comparison of the effect of PMA-treatment between paired
and unpaired samples by comparing effect size, rather than
comparing means of highly variable individual samples by t-test.
Each microbiota was randomly sub-sampled with bootstrapping
n= 1,000 times. Standard error was reported.

SIMPER comparison of individual taxa relative abundance per
treatment condition was performed using PAST (Hammer et al.,
2001). Significance of results was calculated and plotted using R
statistical software.

Comparison of non-frozen and frozen stool microbiotas was
performed using ANOSIM and unconstrained Morisita–Horn
cluster analysis.

RESULTS

Stool samples from a set of significantly preterm twins (25+2
weeks gestation) (n = 16) receiving Infloran R© probiotic
supplements were subjected to PMA-treatment for comparison
to an untreated control of each sample. 16S rRNA gene
sequencing identified a total of 161 individual taxa producing
4.72× 106 total reads from 16× 2 samples.

Identification of Common and Rare Taxa
To identify differences between common and rare taxa in
PMA-treated and untreated conditions distribution abundance
relationship plots were produced (Figure 1).

Significant positive distribution abundance relationships were
observed between taxa abundance and persistence of taxa across
samples in both treatment conditions (untreated: r2 = 0.58, n =

120, P = <0.001; PMA-treated: r2 = 0.72, n = 97, P = <0.001).
Using this relationship, taxa in the upper quartile of occupancy
(≥75% samples), in each treatment condition were classified as
common, the remaining taxa were classified as rare.

Distribution of taxa appeared more even in the PMA-treated
condition: fewer ubiquitous taxa dominate the communities in
the PMA-treated condition (2 taxa); compared to the untreated
condition (6 taxa).

In untreated sample conditions 6 taxa were identified
as common, all of which were observed in every sample.
Bifidobacterium, Enterococcus, 2 Clostridia spp., a Veillonella
and an unclassified Enterobacteriaceae accounted for 77.9%
of the total community member sequences. In PMA-treated
samples, 8 common taxa were identified, comprising 82.2% of
total community member sequences however of these, only 2
(Bifidobacterium and Enterococcus) were found in all samples.
Anaerococcus and Finegoldia sp. were identified as common in
PMA-treated samples but not in untreated samples.

Effect of PMA Treatment on Bacterial
Richness and Diversity
Due to the large coverage variability between the stool sample
communities (m = 1.47 × 105, SD = 1.26 × 105), meta-
analysis was used to identify the effect size of PMA-treatment
on microbiota composition by bacterial OTU richness (O∗);
Shannon diversity index (H′); and Inverse Simpson’s diversity
index (1/D).

Bacterial OTU richness was variable between stool samples of
the same treatment condition (untreated m = 9.1 ± 2.7, PMA-
treated m = 8.8 ± 1.9). The effect of PMA-treatment on O∗
was only once greater than the significance threshold (0.2), and
showed no directional consistency (Figure 2).

Like richness, bacterial diversity also varied between
individual stool samples in the same treatment condition
(Table 1).

Meta-analysis showed negative effect sizes of PMA-treatment
on bacterial diversity in 71.9% of samples, of which 73.9% were
highly significant (>0.8) (Figures 3, 4). Significant negativemean
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FIGURE 1 | The number of samples in which taxa were observed plotted against mean taxa abundance (log10 scale) in untreated sample (A), and PMA-treated

sample (B), conditions [(A: r2 = 0.58; P = <0.001), (B: r2 = 0.72; P = < 0.001)]. Common taxa (>75% sample occupancy) are plotted square, rare samples (<75%

sample occupancy) are plotted circle.

FIGURE 2 | (A) Bootstrapped (n = 1,000) O* values for untreated (hollow points), and PMA-treated (solid points) conditions of all samples (1–16). Error bars are

included. (B) Hedges’ d effect size of PMA-treatment on O* of all samples (1–16). Positive effect was observed in 50% of samples. Sample 6 was the only observed

effect size >0.2 (small effect).

TABLE 1 | Mean and standard deviation for Shannon and inverse Simpson

diversity indices for PMA-treated and untreated conditions.

Diversity index

Shannon (H’) Inverse Simpson (1/D)

Mean SD Mean SD

PMA-treated 1.13 0.32 2.64 0.95

Non-PMA-treated 1.30 0.16 2.99 0.50

P-value <0.05 >0.05

overall effect sizes on both measures of diversity were observed
following PMA-treatment (m: H′ =−0.95; 1/D=−1.23).

Effect of PMA-Treatment on Individual
Bacterial Taxa Abundance
To investigate the effect of PMA-treatment on observable
abundance values of individual taxa relative sequence abundance
was calculated. Initial analysis of the PMA-treatment effect on

individual taxa abundance within the bacterial communities of
stools was performed by SIMPER (Table 2). SIMPER provides
an insight in to the variance, expressed as a percentage, between
abundance of taxa from the untreated group and the PMA-
treated group.

Table 2 illustrates which taxa contributed greatest to
dissimilarity of common and rare community structures
between untreated and PMA-treated conditions.

Greater average dissimilarity is observed in rare
(83.21%), than common (42.87), taxa. The taxon labelled
Escherichia_shigella by the SILVA database (Quast et al., 2013)
appears to contribute to the average dissimilarity between
non-PMA and PMA treated conditions most (63.45%), in spite
of a mean abundance difference of only 1.3%. This contrasts with
other taxa such as Bifidobacterium and Enterococcus, for which
lower average dissimilarities of 15.20 and 12.25 are observed,
however much greater mean abundance differences of 14.6
and 14.8 are found, respectively. This incongruence could be
explained by variation in abundance of individual taxa between
samples within the same condition. The SD of Escherichia
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FIGURE 3 | (A) Bootstrapped (n = 1,000) Shannon diversity index values for untreated (hollow points), and PMA-treated (solid points), conditions for all samples

(1–16). Standard error bars are included. (B) Hedges’ d effect size of PMA-treatment on Shannon diversity index values of all samples (1–16). Seventy-five percentage

of samples exhibit significant (>0.8) effect size, 75% of which are negative.

FIGURE 4 | (A) Bootstrapped (n = 1,000), inverse Simpson diversity index values for untreated (hollow points), and PMA-treated (solid points), conditions for all

samples (1–16). Standard error bars are included but error is too insignificant to be visible. (B) Hedges’ d effect size of PMA-treatment on inverse Simpson diversity

index values of all samples (1–16). 68.8% samples exhibit significant (>0.8) effect size. 72.3% of which are negative rare (B) taxa.

abundance is much greater (untreated: m = 16.2, SD = 18.2;
PMA-treated:m= 14.9, SD= 24.3), than that of Bifidobacterium
(untreated: m = 41.1, SD = 15.2; PMA-treated: m = 26.5, SD
= 19.5), or Enterococcus (untreated: m = 25.0, SD = 10.2;
PMA-treated:m= 39.8, SD= 14.0).

To normalise for this variance Wilcoxon rank sum tests were
performed to assess the similarities of mean abundance for
each taxon in both conditions as identified by SIMPER analysis.
The same means were used to calculate a fold change in taxa
abundance between the two conditions and both parameters were
plotted on a volcano plot (Figure 5).

The majority of taxa showed substantial fold changes in
abundance following PMA-treatment; however only 6 of these
fold changes pass the significance threshold (P < 0.05):
Bifidobacterium; Enterobacteriaceae; Enterococcus; Clostridium;
Actinomyces; and Peptoniphilus sp.

In untreated conditions Bifidobacterium and
Enterobacteriaceae sp. abundances are significantly greater
while Enterococcus, Clostridium, Peptoniphilus, and Actinomyces

sp. abundances are significantly lower. This suggests that
the presence of non-viable DNA originating from highly
abundant species such as Bifidobacteria and Enterobacteriaceae
could potentially mask that of less abundant species such as
Enterococcus, Clostridium, Peptoniphilus, and Actinomyces sp.

As volcano plots (Figure 5) only represent fold change
in abundance for taxa present in both sample conditions,
rank abundance plots (Figure 6) were generated to illustrate
abundance of taxa identifiable in only one treatment condition.

Fewer taxa were observed PMA-treated than untreated sample
conditions. Of 111 total taxa present in only one condition 68
(61.3%), were present in untreated samples while only 43 (38.7%),
were present in PMA-treated samples, representing a 22.6%
reduction in presence of taxa measurable in only one condition.
Levels of 2 rare taxa (Staphylococcus and Phenylobacterium),
were observable at levels > 0.09% sequence abundance (almost
10 fold more than all other taxa observable in only one
treatment condition), following PMA-treatment. These taxa
were completely masked in the untreated condition. All other
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TABLE 2 | SIMPER analysis of common (A) and rare (B) taxa.

Average dissimilarity between conditions = 42.87 Non-PMA-treated PMA-treated

Taxon Av. dissim Contrib. % Cumulative % Mean abund. 1 Mean abund. 2

(A)

Bifidobacterium 15.20 35.44 35.44 41.1 26.5

Enterococcus 12.23 28.52 63.96 25.0 39.8

Clostridium 1 4.60 10.74 74.70 4.0 6.6

Enterobacteriaceae; unclassified 4.03 9.41 84.11 6.6 0.6

Anaerococcus* 3.25 7.58 91.68 2.2 4.2

Finegoldia* 1.75 4.08 95.76 1.3 2.3

Clostridium 2 1.08 2.51 98.27 0.2 1.9

Veillonella 0.74 1.73 100.00 1.1 0.2

Average dissimilarity between conditions = 83.21 Non-PMA-treated PMA-treated

(B)

Escherichia_Shigella 52.81 63.46 63.46 16.2 14.9

Peptoniphilus 11.07 13.3 76.76 0.576 1.41

Actinomyces 6.88 8.267 85.03 0.389 0.75

Streptococcus 4.087 4.911 89.94 0.986 0.0157

Staphylococcus 1.378 1.656 91.59 0 0.15

Phenylobacterium 1.333 1.602 93.2 0 0.0939

Cut-off value set at taxa contributing <1% to dissimilarity between treatment conditions.

*Denotes taxa only attributed common status in PMA-treated condition.

Cut-off set at taxa contributing <1% to dissimilarity between treatment conditions.

FIGURE 5 | Illustrates the effect of PMA-treatment on individual taxa

abundances. Fold change in abundance is plotted (x) against the P-value of

that same fold change (y) for each taxon. The solid vertical line represents no

fold-change. Travelling in either direction from this line the fold change

increases. The dotted horizontal line represents significance cut-off (.05). Core

taxa are blue and labelled. Rare taxa are red.

taxa abundances were reduced to <0.009% following PMA-
treatment. A significant difference between mean abundances of
rare taxa presence between untreated (m = 0.0052), and PMA-
treated (m = 0.0012), sample conditions (P = <0.001), was
observed. This suggests that performing gut microbiota analysis
of frozen stool by paired end targeted 16S rRNA gene sequencing
without PMA-treatment could fail to identify presence of rare

community members due to significant background sequence
noise origniating from non-living taxa. This could explain
the significant overall reduction in mean bacterial diversity
following PMA-treatment observed in meta-analysis (Figures 3,
4). Principle coordinate analysis of sample communities was also
performed based on Bray-Curtis dissimilarity of taxa abundances
(Figure S2).

To confirm the differences observed were due to genuine
viable differences in the sample microbiota rather than bacterial
cell death during freezing (−80◦C) one further stool sample was
split (n = 10). The microbiota of frozen and non-frozen samples
in untreated and PMA-treated conditions were compared.
Overall 4.04 × 106 reads were recorded from 10 × 2 samples
(m = 2.02 × 105). Sample storage had an insignificant effect on
observed Bray–Curtis community similarity between treatment
conditions (Table 3), and no separation by PMA-treatment
within storage groups was observed (Figure S3). This data further
supports Shaw et al. (2016), findings suggesting freeze storage of
severely preterm stool samples does not significantly impact the
gut microbiota observed with or without PMA-treatment.

DISCUSSION

The gut microbiota of significantly preterm infants held within
the neonatal intensive care unit has been previously identified
to be extremely changeable (Koenig et al., 2011; Bergstrom
et al., 2014). Microbial communities colonising this biotope are
challenged by frequent antibiotic intervention (Craft et al., 2000),
administration of probiotics (AlFaleh and Anabrees, 2014),
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FIGURE 6 | Rank abundance plots of taxa for which abundance was only measurable in either the untreated (A), or PMA-treated (B), sample condition. Ranked

abundance of the untreated condition including Staphylococcus and Phenylobacterium is inset at top right corner of PMA-treated condition plot (B).

TABLE 3 | P-values associated with ANOSIM analysis comparing Bray Curtis

dissimilarity between frozen and non-frozen samples in control and PMA-treated

sample conditions.

ANOSIM × groups (Bray-Curtis)

Frozen

CTRL

Frozen PMA Non-frozen

CTRL

Non-frozen

PMA

Frozen CTRL >0.1 <0.01 <0.01

Frozen PMA >0.1 <0.01 <0.01

Non-frozen CTRL <0.01 <0.01 >0.5

Non-frozen PMA <0.01 <0.01 >0.5

fluctuating pH due to the use of proton pump inhibitors (Omari
et al., 2007, 2009), and gut lumen and immune systemmaturation
(Israel, 1994; Levy, 2007; Strunk et al., 2011). All of these factors
complex the first months of a newborn infant’s life, thereby
it is considered the most unstable with respect to microbiota
composition. In order for clinicians to accurately assess the
requirement for, and effect of, intervention strategies on infant
microbial populations the analysis techniques used must be able
to reliably quantify unbiased and viable microbiotas.

Currently techniques either cannot provide results within a
short turnaround time at a sufficient phylogenetic resolution
to assess the diversity in the gut (bacterial culture), or fail to
differentiate viable from non-viable community members (Q-
PCR). While RNA sequencing enables exclusive identification of
genes actively transcribed by viable cells there are downstream
issues regarding storage and contaminating RNAses (Zheng et al.,
1996) RNA samples require collection in an RNA preservative
(Mutter et al., 2004) which is not always possible in the clinic.

Furthermore, use of DNA in combination with PMA eliminates
the need for reverse transcription of sequences prior to analysis.

Nocker and Camper (2009), have previously shown PMA-
treatment excludes DNA from non-viable cells. This study builds
on those results by illustrating PMA-treatment of frozen preterm
infant stool alters observable microbiota structure and diversity
following paired end targeted 16S rRNA gene sequencing. This
would suggest inclusion of non-viable community members
during preterm infant stool microbiota analysis introduces a bias.
Additionally, DNA from non-viable cells can have significant
impact on individual taxa quantification. We propose it may be
necessary to employ the use of PMA as a tool for NVCE in 16S
rRNA gene sequencing basedmicrobiota analysis. Effects of PMA
NVCE should not be attributed to cell death during storage as
no difference in PMA effect was observed between frozen and
fresh stool samples. It is probable that the changes in abundance
illustrated by PMA NVCE are caused by antibiotic, probiotic, or
other clinical interventions however further study is required to
confirm this.

Importantly, this study illustrates that the presence of

particular, clinically relevant taxa may be either over-represented

(Bifidobacterium), or under-represented (Clostridium,

Staphylococcus), in the absence of PMA-treatment. This is

most probably due to the suppression of DNA sequence

reads from rare taxa by dominant taxa as illustrated by the

reduced bacterial diversity and presence of rare taxa observed in
PMA-treated samples.

These findings are of particular relevance in the gut
microbiota of the preterm infants analysed in this study due to
administration of probiotic supplements. While Bifidobacterium
remained ubiquitous and abundant across samples in both
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treatment conditions it has been shown in several studies
(Alander et al., 2001; Charbonneau et al., 2013; Rattanaprasert
et al., 2014) that administered probiotic strains often fail to
engraft long-term. This would make PMA treatment extremely
important for analysis of future intervention trials of thismanner.
Maldonado-Gómez María et al. (2016), showed that presence
of phylogenetically or functionally similar keystone species can
prevent engraftment of probiotic strains. The results of this study
suggest Bifidobacteria within the probiotics may not maintain
viability throughout the entire GI tract; a further possible reason
for this failed engraftment. We demonstrate persistent DNA
from non-viable Bifidobacteria may conceal the presence of less
abundant, transient colonisers with the potential to confound
clinical inferences drawn from 16S rRNA gene sequencing data.
Further work should compare the functional profiles of the
probiotic Bifidobacterium strain in Infloran R© and the bacterial
metagenomes of patients administered the supplement as well
as investigating the community engraftment potential of the
specific probiotic strains administered to patients enrolled in this
study.

This study has deliberately selected a pair of twins with
good longitudinal sampling to evaluate the effect of PMA
treatment on observable microbiota members, however the
number of actual samples (n = 16), is relatively small
and recruitment purely convenience based. In lieu of the
individual taxa for which significant changes in abundance
are observed in this study may not be replicated in repeated
studies, dependant on viable and non-viable taxa abundances.
Specifically, Bifidobacterium may not necessarily be observed at
significantly altered abundances in microbiota of patients not
receiving probiotics or in patients with a greater engraftment
potential. Given the key role of Bifidobacteria in preterm gut
health, this requires further exploration. We stress that use of
PMA need not be limited to that of preterm infant stool but
could be applied to any unstable environment where clinical
microbiota intervention is employed or in which abundance
of community members may be regularly changeable. Further
studies may wish to explore the use of such techniques in these
environments.

Consideration should be granted that the use of a nested PCR
technique represents a potential source of amplification bias in
populations of low bacterial load (Yu et al., 2015). In contrast, Fan
et al. (2009), have demonstrated that use of a 25 cycle nested PCR
does not significantly affect observable bacterial communities.
Moreover, nested PCR was employed in this study to increase
the inhibitory capacity of PMA on chelated DNA, rather than
increase identifiable sequences.

One possible reason for the widespread disregard of PMA use
for NVCE could be the specification of non-viable cells solely
as membrane-compromised cells using this method. Contreras
et al. (2011), describe membrane integrity as a “conservative
parameter” for viability identification, explaining inability to
culture bacteria occurs sooner than membrane denaturation
in heat-killed cells. We propose conservative NVCE is more

appealing in this clinical context than nihil NVCE, in which non-
viable DNA persists and can bias results or exaggerated NVCE,
where community members may be excluded from analysis while
still viable.

This study represents the first time PMA-treatment has been
combined with paired end targeted 16S rRNA gene sequence
analysis of a gut microbiota using the methods described by
Kozich et al. (2013). Future research should focus on validation
of this method of analysis in a larger sample cohort to include
greater inter-sample microbiota variation. Analysis of probiotic
and commensal bacterial viability throughout the preterm infant
GI tract would be another logical progression from this work.
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