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More than two decades after cloning the cystic fibrosis transmembrane regulator (CFTR)

gene, the defective gene in cystic fibrosis (CF), we still do not understand how dysfunction

of this ion channel causes lung disease and the tremendous neutrophil burden which

persists within the airways; nor why chronic colonization by Pseudomonas aeruginosa

develops in CF patients who are thought to be immunocompetent. It appears that

the microenvironment within the lung of CF patients provides favorable conditions for

both P. aeruginosa colonization and neutrophil survival. In this context, the ability of

bacteria to induce hypoxia, which in turn affects neutrophil survival is an additional level

of complexity that needs to be accounted for when controlling neutrophil fate in CF.

Recent studies have underscored the importance of neutrophils in innate immunity and

their functions appear to extend far beyond their well-described role in antibacterial

defense. Perhaps a disturbance in neutrophil reprogramming during the course of an

infection severely modulates the inflammatory response in CF. Furthermore there is an

emerging concept that the CFTR itself may be an immune modulator and stimulating

CFTR function in CF patients could promote neutrophil and macrophages antimicrobial

function. Fostering the resolution of inflammation by favoring neutrophil apoptosis could

preserve their microbicidal activities but decrease their proinflammatory potential. In this

context, triggering neutrophil apoptosis with roscovitine may be a potential therapeutic

option and this is currently being evaluated in CF patients. In the present review we

discuss how neutrophils functions are disturbed in CF and how this may relate to

chronic infection with P. aeuginosa and we propose novel research directions aimed at

modulating neutrophil survival, dampening lung inflammation and ultimately leading to an

amelioration of the lung disease.
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CHRONIC INFECTION AND
INFLAMMATION IN CYSTIC FIBROSIS ARE
INDICATIVE OF A DEFECT IN THE IMMUNE
RESPONSE

Cystic fibrosis (CF) is the most frequent hereditary genetic
disease in the Caucasian population, originating from mutations
within the Cystic Fibrosis Transmembrane Conductance
Regulator (CFTR) gene. These mutations result in an often-lethal
respiratory disease affecting approximately 1 in 4,500 births
in Europe and North America. Median predicted survival at
birth ranges from 40 to 50 years in developed countries and
longevity continues to improve (MacKenzie et al., 2014), with
a predicted increase in the number of CF patients (Burgel
et al., 2015). Mutation of the CFTR leads to the secretion of
a viscous and abundant mucus in the lung that is conducive
to bacterial infections (Martin et al., 2014; Figure 1). In fact,
almost all patients suffer from pulmonary infections caused
by various pathogens, which can be isolated from sputum or
bronchoalveolar lavages. Infections are treated by administrating
antibiotics and in the long term this generates bacterial multi-
resistance. Pulmonary bacterial infections are the major cause of
death (Martin et al., 2016a).
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FIGURE 1 | Pathophysiological mechanisms involved in Pseudomonas aeruginosa chronic lung infection associated with neutrophil-dominated inflammation. The

original genetic defect in CF mutations within the CFTR gene leading to a defective chloride ions excretion and an increased sodium reabsorption, resulting in the

production of a thick mucus in the airways. Altered mucociliary clearance favors an increased susceptibility to infections, a chronic colonization of the lung by

P. aeruginosa, a massive neutrophil recruitment within the airways and a persistent airway inflammation. An alternative pathway to this classical view of the CF could

be a “constitutive defect in innate immunity” linking the genetic defect to the intense recruitment of neutrophils. This would result in an increased activation state

(release of oxidants and proteases) and a delayed apoptosis explaining their persistence at the site of inflammation. Yellow boxes indicate the different effects of

roscovitine (see main text for details) which is currently tested in a CF clinical trial.

Neutrophils are the first and the most abundant leukocyte

that migrate to the site of infection followed by monocytes,

which differentiate locally into macrophages. In the acute phase

of infections or inflammatory diseases, neutrophils can engulf

and kill invading microorganisms (Witko-Sarsat et al., 2000).

In CF, several studies have shown abnormalities in innate

immunity where neutrophils are major instigators (Bals et al.,

1999; Cohen and Prince, 2012; Bonfield, 2015). Neutrophils can

no longer migrate through viscous mucus, thereby reducing

the capture and destruction of bacteria (Matsui et al., 2005).

Chronic pulmonary neutrophil-dominated inflammation occurs

very early in CF patient and it represents a key element in
disease severity (Cantin, 1995; Khan et al., 1995). The underlying
mechanisms contributing to the disease remain largely unknown,
raising the question of a relationship between genetic deficit,
chronic pulmonary inflammation and specificity of the infection
by P. aeruginosa (Hayes et al., 2011; Figure 1).

CF airways contain an abundant amount of nuclear
material that is believed to originate from neutrophils. This
pathophysiological characteristic is linked to the ability of
neutrophils to release DNA through neutrophil extracellular
traps (NETs), something which has been described in CF
(Manzenreiter et al., 2012; Dwyer et al., 2014). Targeting nuclear
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material with DNase I improved lung function, putatively
through NETs degradation (Gray et al., 2015). NETs can kill
P. aeruginosa, although acquired resistances have been described
among clinical isolates (Young et al., 2011). Oxidative burst
and NADPH activity are essential to the process of NET
formation with myeloperoxidase (MPO) and neutrophil elastase
(NE), which stand as essential co-factors (Papayannopoulos
et al., 2010). The main issue in the characterization of NETs
in CF is to decipher the extent to which the abundant
nuclear material accumulation in CF airways originate from
dead cells or if, as proposed, it is the result of an active
and coordinated process of release through NETs. Further
investigations will be required to address this controversial
question.

PSEUDOMONAS AERUGINOSA: A
WELL-ADAPTED BACTERIA TO THE CF
LUNG

While there is not usually any pathogenic microbe in respiratory
secretion in CF patients at birth, systematic bronchoalveolar
lavage of young children with CF reveals that bacterial infection
usually occurs within the first months of life and is associated
with lung function impairment and airway structural damage
(Ramsey et al., 2014). The nature of the microbes infecting CF
lungs depend on the patient and varies with age: the predominant
bacteria during childhood are usually Staphylococcus aureus and
Haemophilus influenzae, whereas P. aeruginosa is the major
pathogen cultured from CF airways in adolescents and adults
(Vaincre la Mucoviscidose et Ined)1. One of the first microbes
identified in the CF airways is S. aureus, a gram positive
bacterium. It has been suggested that early S. aureus infection,
which contributes to structural damage of the airways, as well as
antibiotic treatments, promote the implantation of P. aeruginosa
(Govan and Nelson, 1993; Ratjen et al., 2001). The first positive
culture containing P. aeruginosa can occur either within the
first few months of life or are delayed by several decades
(Pernet et al., 2014). For example, P. aeruginosa infection is
less prevalent in patients with CFTR mutations associated with
residual CFTR function (Burgel et al., 2010) and variants in
dynactin 4 have been associated with late occurrence of the first P.
aeruginosa culture in CF patients (Emond et al., 2012; Viel et al.,
2016).

Chronic P. aeruginosa infection is responsible for increased
morbidity and mortality (Emerson et al., 2002). Recent studies
have shown that the predominance of P. aeruginosa in older
CF patients was not due solely to a resistance to antibiotics.
Indeed, the bacterium itself may manipulate host immune
responses by stimulating airway epithelium cells to produce
phospholipase A2 type-IIA (sPLA2-IIA) which is capable of
killing Gram positive bacteria such as S. aureus (Pernet et al.,
2014).

1Vaincre laMucoviscidose et Ined Registre Français de laMucoviscidose–Bilan des

données 2015 [Online]. Paris. Available: (Accessed January 28th 2017).

HYPOXIC CONDITIONS IN CF AND THE
IMPACT ON P. AERUGINOSA VIRULENCE
AND IMMUNE RESPONSE EFFICIENCY

Lungs, along with the skin, are the human organs exposed to
the highest oxygen levels, due to the direct contact between the
epithelium and atmospheric air. The alveolar partial pressure of
oxygen (pO2) is 100–110mmHg (vs. 160mmHg in atmospheric
air; Pittman, 2013). Oxygen diffuses through a thin mucus
layer (2–10µm in trachea), mainly composed of Muc5ac and
Muc5b gel-forming mucins (Burgel et al., 2007). It has been
reported that hypoxia is induced in the airways of CF patients
(Worlitzsch et al., 2002). Similar observations were made during
other pathogen infections including Shigella flexneri (Arena
et al., 2017) or Mycobacterium tuberculosis (Tsai et al., 2006;
Rustad et al., 2009) and in sterile inflammations (Karhausen
et al., 2004; Campbell et al., 2014). More specifically, it has
been shown that induction of hypoxia is associated with the
establishment of an oxygen gradient within a thicker mucus
layer in CF patients where P. aeruginosa was preferentially found
within the hypoxic niches (Worlitzsch et al., 2002). Although
reactive oxygen species (ROS) production has been shown in
vitro to increase mucin expression (Muc5ac; Yan et al., 2008),
no clear link has been defined between the induction of hypoxia
and mucin production in CF patients. However, the increased
production of mucins in CF lung disease is anticipated to
exacerbate hypoxia.

P. aeruginosa is a Gram-negative, rod-shaped facultative
anaerobe, which has the ability to colonize a wide range of
microenvironments. P. aeruginosa aerobic respiration relies on
the reduction of O2 which is mediated by Cytochrome cbb3
oxidase, Cytochrome aa3 oxidase and Cytochrome bo3 oxidase.
Alternatively, in the absence of available oxygen, P. aeruginosa
energy production is mediated by the anaerobic respiratory chain
allowing for the reduction of nitrate (nitrate reductase) or nitrite
(nitrite reductase) (Cook et al., 2014). This dual respiratory
capacity appears to be essential to allow P. aeruginosa to colonize
lung mucus and to persist within the hypoxic environment.
The metabolic shift associated to P. aeruginosa adaptation under
hypoxic conditions was recently studied: a set of genes specifically
expressed under hypoxic conditions were identified (azu, cbb3-
1, cbb3-2, ccpR, icd, idh, oprF, himD, and nuoA) and these genes
were proposed to stand as markers for hypoxic adaptation of P.
aeruginosawithin the CF lung environment (Eichner et al., 2014).

Two hypotheses have been proposed to explain
hypoxia induction within CF mucus layer. Either P.
aeruginosa is responsible for oxygen depletion or activated
neutrophils consume dioxygen for reactive oxygen species
production catalyzed by NADPH oxidase, as reported
during sterile inflammation (Campbell et al., 2014).
Neutrophil NADPH oxidase function has been shown to
play an essential role in P. aeruginosa killing (Mizgerd and
Brain, 1995). The impact of hypoxia on the propagation
of infection is currently unclear: does it promote P.
aeruginosa colonization capacity or does it foster the
immune response efficiency? To date this question remains
unanswered.
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The impact of hypoxia on CF is not yet fully understood
and has been controversial to some extent. It has been
shown that hypoxia protects epithelial cells from P. aeruginosa
internalization in vitro, suggesting that mimicking hypoxia
responses in vivo with hydroxylase inhibitor dimethyloxallyl
glycine (DMOG) could represent a potential therapeutic
approach (Schaible et al., 2012, 2013). Conversely, it has been
reported that oxygen-limiting conditions increase antibiotic
tolerance, biofilm formation, and alginate synthesis, promoting
P. aeruginosa persistence (Schobert and Tielen, 2010). Induction
of hypoxia would promote neutrophils survival, as these cells are
mostly glycolytic, producing ATP mainly through glycolysis not
respiration (Maianski et al., 2004). Neutrophils are well adapted
to hypoxia and this is mostly attributed to the transcriptional
regulator HIFs (1 and 2; Walmsley et al., 2005; Monceaux et al.,
2016).

NETs have been observed in CF airways and characterized as
the most efficient neutrophil antimicrobial function. However,
their antimicrobial function together with the associated cell-
death process (named NETosis) have been challenged by several
authors (Simon et al., 2013; Malachowa et al., 2016; Nauseef
and Kubes, 2016). Here, we focus on the relevance of NETs
formation and antimicrobial function in the context of hypoxic
microenvironments. Dioxygen is a unique substrate of the
NADPH oxidase, which catalyze singlet oxygen production
(O2•−). In hypoxic environments, NADPH oxidase activity and
O•−

2 production are likely limited. NADPH oxidase activity has
been shown to be essential for NETs formation (Kirchner et al.,
2012; Palmer et al., 2012), similarly to ROS, including hydrogen
peroxide (H2O2) (Fuchs et al., 2007) or singlet oxygen (Nishinaka
et al., 2011). Under hypoxic conditions, NETs production may
be decreased, promoting P. aeruginosa persistence in these
microenvironments. Further investigations will be required to
address this important question, as most studies were performed
in vitro under atmospheric conditions, which do not reflect
pathophysiological conditions.

Hypoxia induction should be seriously considered to fully
comprehend CF causes and clinical outcomes and also in
the development of novel antimicrobial molecules targeting P.
aeruginosa. It was recently reported that hypoxia promoted P.
aeruginosa antibiotic resistance by modulating multidrug efflux
pumps composition and subunits stoichiometry (Eichner et al.,
2014). Deciphering the extent to which hypoxia modulates P.
aeruginosa virulence mechanisms and impacts on its adaptation
within infection foci requires further investigations in CF animal
models.

NEUTROPHIL FUNCTIONS IN CF: STILL
UNDER INVESTIGATION

Dissecting effector functions in CF neutrophils, already detailed
in extensive reviews (Downey et al., 2009; Hayes et al., 2011; Laval
et al., 2016), has not revealed a major deficiency in neutrophil
functions. However, it has been described that airway neutrophils
exhibit profound functional (Laval et al., 2013) and signaling
changes mediated by the cytoskeleton-associated kinase that

regulate granule exocytosis (Tirouvanziam et al., 2008). Likewise,
microarray analysis was used to compare the expression of
more than 1,000 genes in neutrophils isolated from blood of CF
patients and healthy donors and it revealed the upregulation of 62
genes including those encoding chemokines, and downregulation
of 27 genes suggesting a specific disturbance in the mechanisms
regulating inflammation (Adib-Conquy et al., 2008).

Although the presence of CFTR in neutrophils was
controversial for years, it has been detected in membranes
(Pohl et al., 2014) and its localization in both secretory vesicles
and phagolysosomes has been reported (Painter et al., 2006).
Upon neutrophil activation, NADPH assembly combined with
myeloperoxidase chlorinating activity leads to the generation
of oxidants essential for bacterial killing (Nauseef, 2007). CF
neutrophils exhibit a defective intraphagolysosomal HOCl
production, although a normal extracellular production of
MPO-derived HOCl is observed (Painter et al., 2006). Chloride is
essential for P. aeruginosa killing by neutrophils. CF neutrophils
have a reduced bactericidal capacity compared non-CF
neutrophils in the presence of chloride, strongly suggesting that a
defective CFTR might compromise the ability of CF neutrophils
to clear P. aeruginosa (Painter et al., 2008). These results are
consistent with previous reports regarding the role of CFTR
in the acidification of macrophages’ phagolysosome (Di et al.,
2006). Accordingly, CFTR activation represents an appealing
therapeutic strategy and this is currently in development (Son
et al., 2017).

DEFECT IN NEUTROPHIL APOPTOSIS IN
CF LEADING TO FAILURE IN THE
RESOLUTION OF INFLAMMATION

Neutrophil apoptosis, a process of programmed cell death
that prevents the release of neutrophil histotoxic contents
including oxidants and proteinases, is tightly regulated and
limits the destruction of surrounding tissue (Geering and Simon,
2011; Witko-Sarsat et al., 2011). The subsequent recognition
and phagocytosis of apoptotic neutrophils by macrophages is
central to the successful resolution of an inflammatory response
(Kennedy and DeLeo, 2009) and to avoid autoimmunity
(Thieblemont et al., 2016). Dying neutrophils exert an anti-
inflammatory effect through modulation of macrophage
inflammatory cytokine release (Bratton and Henson, 2011).
Neutrophil apoptosis may be delayed, induced or enhanced by
micro-organisms depending on their immune evasion strategies
and the health of the host they encounter (McCracken and Allen,
2014).

Several abnormalities have been described in macrophages
from CF patients but so far no defect in the phagocytosis
of apoptotic cells has been reported (Bruscia and Bonfield,
2016). This was illustrated in macrophages from CFTR−/−
mice infected with P. aeruginosa showing an enhanced cytokine
production and secretion suggesting that the macrophage
response may be an important therapeutic target for decreasing
the morbidity of CF lung disease (Bruscia et al., 2009). At the
site of infection, neutrophils represent more than 95% of the
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cells from the bronchoalveolar lavage and increased neutrophil
lifespan is critical for effective host defense but delays in apoptosis
can lead to persistent tissue damage. In neutrophils, analysis
of genes expression during inflammation clearly showed a
modulation of genes involved in apoptosis (Kobayashi et al.,
2003).

The short-lived pro-survival Bcl-2 family protein, Mcl-1
(myeloid cell leukemia-1), is instrumental in controlling
apoptosis in response to inflammatory stimuli (Moulding et al.,
2001; Milot and Filep, 2011). Notably, neutrophils from CF
patients chronically infected with P. aeruginosa have a prolonged
survival (Dibbert et al., 1999; McKeon et al., 2008). An increased
survival was also found in neutrophils isolated from the parents
of CF patients, suggesting that at least in part, the defect in
neutrophils may be genetically determined (Moriceau et al.,
2010). In the latter study, the delayed apoptosis observed in
CF patients was not reversed by inhibition of CFTR functions
strongly suggesting that some CFTR functions in neutrophils
may be independent of its chloride channel and rather due to its
ability to associate with other proteins regulating cell functions.

PROMOTING RESOLUTION OF
INFLAMMATION BY TARGETING
NEUTROPHILS: THE CASE OF
ROSCOVITINE

Today, treatment of inflammatory diseases with non-steroidal
anti-inflammatories is based on inhibiting the synthesis or action
of inflammatory mediators that drive the host response to
injury (Perretti et al., 2015). An alternative approach for the
development of novel therapeutics is now based on endogenous
mechanisms that switch off acute inflammation and bring about
its resolution (Serhan et al., 2007). To date, conventional anti-
inflammatory therapies in CF, using glucocorticoids or non-
steroid anti-inflammatory drugs, such as ibuprofen, have shown
beneficial, albeit marginal, effects by slowing down CF disease
progression (Eigen et al., 1995). These modest results may be
attributed to the fact that none of these treatments specifically
targeted neutrophils, which represent the main cellular actors in
inflammation associated with lung disease in CF. In addition,
serious side effect of prednisone on growth in children have
precluded their therapeutic use in CF (Lai et al., 2000). Inhibition
of neutrophil elastase has been tested in order to decrease lung
inflammation and is still under investigation (Kelly et al., 2008).
A strategy based on interfering with neutrophil recruitment
using BIIL 284, an LTB4 receptor (Konstan et al., 2014) or
SB 656933, a CXCR2 (Moss et al., 2013) antagonist have been
investigated in CF. Unfortunately, these compounds appear to
enhance inflammation and have proven to be detrimental to the
clinical status of the CF patients. Consequently, novel approaches
need to regulate rather than inhibit neutrophils in CF.

In line with this, neutrophil apoptosis represents an important
mechanism in the resolution of inflammation and could be
considered as a good target to dampen inflammation in CF
(Jones et al., 2016). Roscovitine is a low molecular weight
pharmacological inhibitor of cyclin-dependent kinases (CDKs)

discovered over 20 years ago during studies on the regulation
of cell division in starfish oocytes (Meijer et al., 1997; Meijer
and Raymond, 2003). This molecule has been used as a
pharmacological tool to investigate cell cycle control, apoptosis,
neuronal functions, etc. Furthermore roscovitine has been
evaluated as a drug candidate in numerous diseases ranging
from cancers, especially neuroblastoma (Bettayeb et al., 2010;
Delehouze et al., 2014), viral infections, neurodegeneration,
rheumatoid arthritis, glaucoma to polycystic kidney disease.
Roscovitine has already been administrated to over 500 patients.
While roscovitine was originally believed to exert its effects
mainly on proliferating cells, it was reported that roscovitine
also affected neutrophils which are deficient in proliferative
capacities (Savio et al., 2006; Leitch et al., 2009). In neutrophils,
roscovitine triggers apoptosis thereby favoring their phagocytosis
by macrophages to promote the resolution of inflammation
(Rossi et al., 2006). Notably, this activity was due to the
inhibition of CDK7 and CDK9 involved in the regulation of
RNA transcription (Leitch et al., 2012). Roscovitine has proven
beneficial in enhancing neutrophil apoptosis in a model of
meningitis (Koedel et al., 2009). However, the modulation of
innate and adaptive immunity of roscovitine extends beyond
its effect on neutrophils (Meijer et al., 2016). Roscovitine can
act on CF alveolar macrophages to rescue acidification in
phagolysosomes, which show abnormally high pH (Di et al.,
2006). As a result, roscovitine restores their bactericidal activity
(Riazanski et al., 2015). Whether roscovitine can modulate the
microbicidal activities of neutrophils from healthy subjects or
from CF patients is yet to be tested and should be addressed. In
addition, roscovitine can correct the CFTR defect, as it partially
protects F508del-CFTR from proteolytic degradation and favors
its trafficking to the plasma membrane (Norez et al., 2014).
Altogether, roscovitine hasmultiple activities resulting in a strong
therapeutic potential in CF and this is currently being evaluated
in a first clinical trial with P. aeruginosa infected CF patients
(Meijer et al., 2016; Figure 1).

However, the question remains whether enhancing neutrophil
clearance could represent a potential danger of decreasing the
antibacterial defense provided by neutrophils. Importantly, CF
patients are not prone to neutropenia (the definition of which
is an absolute blood count of 500/mm3 in non-CF individuals,
Bodey et al., 1966) and the only cases reported in CF so far were
drug-induced.

PCNA SCAFFOLD AS A NOVEL KEY TO
FAVOR NEUTROPHIL APOPTOSIS:
REGULATORY ROLE OF P21/WAF1 IN
LUNG INFLAMMATION DURING
PERSISTENT P. AERUGINOSA INFECTION

Neutrophils are terminally differentiated cells deprived of
proliferating capacities, and are committed to death. Despite
their lack of proliferation, we have discovered that mature
neutrophils express high levels of proliferating cell nuclear
antigen (PCNA), which was exclusively localized in the cytosol
(Witko-Sarsat et al., 2010). This was unexpected because PCNA
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was known a nuclear factor involved in DNA replication and
repair of proliferating cells (Moldovan et al., 2007), Notably,
in mature neutrophils PCNA plays a pivotal role in neutrophil
survival and changes in parallel with neutrophil apoptosis
(Witko-Sarsat and Ohayon, 2016). In the neutrophil cytosol,
PCNA was associated with procaspase-8 and procaspase-9 to
prevent their activation. In accordance with our hypothesis
that PCNA promotes neutrophil survival, we previously showed
by immunocytochemistry that PCNA is highly expressed in
inflammatory neutrophils within CF lung explants (Chiara
et al., 2012). In keeping with these latter results, PCNA is
more abundant in the cytosol of CF neutrophils (Western
blot analysis) compared to non-CF neutrophils (Martin et al.,
2016b). We have provided evidence that treatment with the
p21 peptide (Warbrick, 2000), capable of binding the PCNA
interdomain connecting loop, reversed the delay in apoptosis
observed in neutrophils from CF patients and restored apoptosis
levels to that of healthy controls (Martin et al., 2016b). Hence,
the pro-apoptotic effect of the p21 peptide is a proof-of-
concept that p21/waf1 interfers with cytoplasmic PCNA to
trigger neutrophil apoptosis (Chiara et al., 2012). However,
p21 protein is hardly expressed in neutrophils and it is
unlikely that endogenous p21 regulates neutrophil apoptosis
under basal state. In sharp contrast, p21/waf1 mRNA was
strongly induced in human neutrophils following LPS challenge
suggesting that p21/waf 1 was involved in the regulation of
neutrophil activation under inflammatory conditions (Martin
et al., 2016a).

To understand the potential role of p21/waf1 in P. aeruginosa
infection in the lung, we used a model of persistent lung
infection triggered by the instillation of agarose beads-coated P.
aeruginosa in mice which results in accumulation of neutrophils
in peribronchial area and in alveolar consolidation (Martin
et al., 2016b). After 7 days of lung infection with P. aeruginosa,
inflammation was more intense in p21−/− mice compared to
WT as evidenced by morphologic analysis of the lung. Since
no intrinsic defect in the phagocytosis of apoptotic neutrophils
by macrophages is found in p21−/− mice, the accumulation
of neutrophils at the site of inflammation in these mice could
be attributable to a defect in neutrophil apoptosis rather than
impaired clearance by macrophages. Accordingly, in vitro,
neutrophils isolated from p21−/− mice displayed enhanced
survival in response to TNF-α and G-CSF. In keeping with
these data obtained in vivo in murine models, an induction
of p21 mRNA was observed in responses to both cytokines in

human neutrophils (Martin et al., 2016b). Our study provides
clear evidence that p21/waf1 expression is a key regulator of

neutrophil fate in vivo, especially during P. aeruginosa infection.
In conclusion, similarly to roscovitine, targeting PCNA in
neutrophils using the p21 competing peptide could accelerate the
resolution of inflammation in an infectious context and could be
considered as a potential therapeutic strategy in CF.

REMAINING OPEN QUESTIONS: THE
DILEMMA OF TARGETING NEUTROPHIL
SURVIVAL IN CF

We urgently need to identify the molecular mechanisms
underlying neutrophil dysfunction in CF, how it relates to
CFTR and how it promotes infection with P. aeruginosa. Given
the importance and the renewed interest in neutrophils as
instrumental actors in immune deregulation associated with
lung disease in CF, promoting CFTR-dependent antimicrobial
function (Son et al., 2017) or targeting neutrophils to promote
their apoptosis (Martin et al., 2016b) is a timely issue that
should be addressed. The persistence of neutrophils in CF airways
relies on multiple parameters and this enigma will be solved
by taking into account the complexity of neutrophil plasticity
in response to the hypoxic inflammatory microenvironment
and the influence of P. aeruginosa on neutrophil survival
mechanisms.
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