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The blood feeding requirements of insects are often exploited by pathogens for their

transmission. This is also the case of the protozoan parasites of genus Plasmodium,

the causative agents of malaria. Every year malaria claims the lives of a half million

people, making its vector, the Anopheles mosquito, the deadliest animal in the world.

However, mosquitoes mount powerful immune responses that efficiently limit parasite

proliferation. Among the immune signaling pathways identified in the main malaria

vector Anopheles gambiae, the NF-κB-like signaling cascades REL2 and REL1 are

essential for eliciting proper immune reactions, but only REL2 has been implicated in

the responses against the human malaria parasite Plasmodium falciparum. Instead,

constitutive activation of REL1 causes massive killing of rodent malaria parasites. In

this review, we summarize our present knowledge on the REL2 pathway in Anopheles

mosquitoes and its role in mosquito immune responses to diverse pathogens, with a

focus on Plasmodium. Mosquito-parasite interactions are crucial for malaria transmission

and, therefore, represent a potential target for malaria control strategies.

Keywords: Anopheles gambiae, Plasmodium, NF-κB signaling, IMD, REL2 pathway, malaria, vector biology, innate

immunity

INTRODUCTION

Mosquitoes are vectors of human infectious diseases with immense importance for public health.
Malaria, caused by the Plasmodium protozoa, is the deadliest disease transmitted by Anopheles
mosquitoes. Plasmodium development in the mosquito takes about 3 weeks. A series of mosquito
factors affect malaria transmission, among them female longevity, nutritional fitness and efficient
immune responses. The ookinete is by far the most fragile parasite stage, attracting the majority of
immune responses. It swiftly develops from the sexually created zygote, and its task is to escape the
dangerous gut environment by traversing the unicellular epithelium and to hide beneath the basal
lamina that lines themosquitomidgut. If successful, ookinetes transformwithin the second day into
vegetative protective oocysts that in a fortnight give rise to thousands of sporozoites that migrate
and invade the salivary glands to be ready for a new transmission. Vector-parasite molecular
interactions have been studied mostly in the laboratory model of infections of A. gambiae, the
major malaria vector in the sub-Saharan Africa, with the rodent malaria parasite P. berghei.
Although rodent and human parasites have similar invasion strategies in the insect vector, their
elimination is mediated by two distinct nuclear factor-κB (NF-κB) immune pathways, REL2/Imd
and REL1/Toll. NF-κB, initially discovered for its DNA-binding activity to an immunoglobulin-κ
light chain enhancer in B lymphocytes, emerged as the central regulator of immune responses in
animal kingdom (Sen and Baltimore, 1986). In Anopheles, experimental activation of REL2 aborts
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development of P. falciparum ookinetes, while constitutive
induction of REL1 kills rodent parasites (Frolet et al., 2006;
Garver et al., 2009). However, in both cases the molecular
mechanisms of parasite recognition and killing remain unknown.
In this review, we discuss immune responses ofA. gambiae,with a
focus on the REL2 signaling pathway, which is believed to be the
major regulator of mosquito immune responses against human
malaria parasites.

IMMUNE SIGNALING AND PATHOGEN
RECOGNITION

The Toll and Imd pathways in Drosophila regulate expression of
hundreds of infection-inducible genes. While the Toll pathway,
initially described in Drosophila embryonic development, is
essential for defenses against Gram-positive bacteria and fungi
(Lemaitre et al., 1996; Rutschmann et al., 2002), the Imd
pathway orchestrates responses against Gram-negative bacteria
and viruses (Kaneko et al., 2004; Costa et al., 2009).

Immune activation is mediated by recognition of pathogen
derived molecules, such as metabolites, nucleic acids, or cell
wall components that are released during pathogen growth and
division (Vance et al., 2009). Among microbial and host factors
that induce Imd signaling, the best characterized is the DAP-
type peptidoglycan (DAP-PGN), a cell wall component of Gram-
negative bacteria. DAP-PGN recognition at the cell surface is
mediated by transmembrane peptidoglycan recognition proteins
(PGRPs) (Choe et al., 2002; Gottar et al., 2002; Figure 1). In
contrast, activation of the Toll pathway is initiated by binding
of circulating recognition complexes to the lysine-type PGNs
or glucans (Gobert et al., 2003; Leulier et al., 2003). This
binding triggers downstream serine protease cascades, leading
to processing and binding of the endogenous factor Spaetzle
to the transmembrane receptor Toll (Morisato and Anderson,
1994; Schneider et al., 1994). Activation of both pathways
culminates in the phosphorylation and release of the NF-κB-like
transcription factors Dif, Dorsal and Relish from the inhibitors,
and their translocation into the nucleus. The release of the Imd
transcription factor Relish involves Caspar, which in its inactive
state prevents cleavage of the Relish inhibitory domain (Kim
et al., 2006; Figure 1). Phosphorylation of Cactus, the negative
regulator of the Toll pathway, leads to its degradation and release
of the transactivators Dif and Dorsal (Wu and Anderson, 1998).

The Imd role in Drosophila immunity has been recently
extended to antiviral responses. Surprisingly, instead of
protection, constitutive activation of the Imd pathway by
depletion of a secreted cytokine-like molecule Diedel, enhances
viral pathogenesis (Lamiable et al., 2016). Although the
underlying mechanism is not entirely clear, in the absence
of Diedel, viral infection triggers the pathway through an
alternative, non-canonical cytoplasmic route by bypassing
the function of the PGRP receptors (Lamiable et al., 2016).
Similarly, non-canonical activation of this pathway was also
reported in ticks that lack transmembrane PGRP-LC and death
domain proteins, Imd and FADD, but feature a conserved
ubiquitination module, Relish and Caspar (Figure 1). The tick

pathway is induced by lipid components of membranes specific
to PGN-deficient bacteria (Shaw et al., 2017). Importantly,
the same lipids also induce the Imd pathway in Drosophila
cell lines, suggesting that non-canonical activation of the
Imd pathway may be evolutionarily conserved (Shaw et al.,
2017).

REL2 PATHWAY IN A. GAMBIAE

The vast knowledge that accumulated on the immune
signaling in Drosophila has served as a blueprint for studying
Anopheles mosquitoes. Sequencing of the A. gambiae genome
benefited identification of the conserved components of
the pathway (Christophides et al., 2002; Holt et al., 2002).
However, in spite of considerable interest and potential
importance in antiparasitic responses, surprisingly little
is known about the targets of the Imd/REL2 pathway in
Anopheles.

Genomic searches in A. gambiae identified three potential
receptors: PGRP-SD, PGRP-LB and PGRP-LC. PGRP-SD has
not been characterized, whereas functional analysis of PGRP-
LB did not reveal its role in mosquito survival upon bacterial
infections (Meister et al., 2009). Instead, the structure and
function of PGRP-LC were characterized in a great detail
(Meister et al., 2009). PGRP-LC encodes three splice variants
(LC1-3) that differ in the organization of their extracellular
PGN-binding domains. Structural modeling uncovered the
potential of all three isoforms to bind both types of PGNs,
highlighting a striking difference between the mosquito PGRP-
LC with broad sensing capacities and the Drosophila PGRP-
LC, which binds exclusively DAP-PGNs. The broad specificity
of PGN binding of the Anopheles PGRP-LC was further
substantiated by functional analyses that demonstrated equally
critical role of the receptor in mosquito survival to Gram-
negative and Gram-positive bacteria (Meister et al., 2009).
Although infections with both bacteria induced expression
of genes encoding antimicrobial peptides (AMPs) Cecropin1
and Defensin1, their transcriptional induction was PGRP-LC
independent (Meister et al., 2009), therefore, the mechanisms
underlying the PGRP-LC-mediated resistance to bacteria remain
to be elucidated.

PGRP-LC plays an important role in regulating proliferation
of the mosquito microbiota after blood feeding (Meister et al.,
2009) and may, in big part, explain the role of the pathway
in modulating development of Plasmodium parasites. Indeed,
similar to the phenotype of PGRP-LC silencing, clearing
mosquito microbiota by antibiotics prior to infections increases
Plasmodium loads, whereas feeding mosquitoes with bacteria
boosts their resistance to Plasmodium in a PGRP-LC-dependent
manner (Meister et al., 2009). Therefore, it is possible that
the REL2 pathway is activated after blood feeding by massive
bacterial proliferation, whereas Plasmodium parasites are simple
bystanders in this process and do not directly induce mosquito
immune responses. Further transcriptomics studies examined
mosquito responses to infections with P. falciparum and P.
berghei and identified species-specific patterns of gene expression
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FIGURE 1 | Schematic overview of Imd pathway in Drosophila melanogaster. DAP-type PGNs trigger the activation of Imd signaling by direct interaction with the

immune cell. Of Peptido-Glycan Recognition Proteins (PGRPs) that bind these pathogen-derived molecules, transmembrane PGRP-LC is the main receptor linked to

activation of Imd pathway (Choe et al., 2002; Gottar et al., 2002). Its activity is enhanced in circulation by secreted PGRP-SD and intracellularly by the cytosolic

PGRP-LE (Takehana et al., 2002; Iatsenko et al., 2016). Both proteins can directly bind DAP-PGNs and promote PGRP-LC activity. Another extracellular PGN-binding

protein PGRP-LB antagonizes PGRP-LC activity by scavenging PGNs in circulation (Zaidman-Rémy et al., 2006). PGN binding induces conformational changes in

PGRP-LC that promotes recruitment of the death domain-containing proteins Imd, FADD and DREDD caspase from the nucleus to the plasma membrane, and it is

followed by subsequent polyubiquitination of DREDD by ubiquitin E3 ligase IAP2, cleavage of Imd by DREDD and exposure of K63 site for polyubiquitination by IAP2

and E2 conjugating enzymes Bendless, Effete and Uev1a (Paquette et al., 2010; Meinander et al., 2012). The K63-polyubiquitin chains, most likely, serve as activators

of TAK1 kinase via the ubiquitin-binding domain of its regulatory protein TAB2 (Paquette et al., 2010). TAK1/TAB2 complex phosphorylates IKK complex, which

consists of β and γ subunits. IKKβ further phosphorylates the NF-κB-like transcription factor Relish, while a regulatory IKKγ subunit regulates DREDD-mediated

cleavage of Relish (Ertürk-Hasdemir et al., 2009). Relish consists of the Rel Homology Domain (RHD) and the inhibitory ankyrin-repeat rich domain (ANK) (Dushay et al.,

1996). DREDD caspase cleaves the ANK domain from RHD. RHD translocates to the nucleus and initiates transcription of target genes. Caspar acts as a negative

regulator of the pathway by inhibiting DREDD-dependent cleavage of Relish (Kim et al., 2006). Immunomodulatory cytokine Diedel restrains deleterious non-canonical

activation of Imd in presence and absence of viral infection (Lamiable et al., 2016). Receptor that activates the pathway to viruses is not yet known However, epistasis

analyses placed Diedel function between Imd and IKKγ, as mutants for both Diedel and Imd were more prone to spontaneous pathogenesis than Diedel/IKKγ double

mutants (Lamiable et al., 2016). Additionally, activation of the pathway is held in check by other factors, including CYLD, Dnr1, and Pirk. Finally, transcriptional activity

of Relish is regulated at the chromatin level through interactions with a nuclear co-factor Akirin and BAP60 component of Brahma chromatin remodeling complex.

Akirin recruits BAP60 complex to promoters of a subset of Relish effector genes and hence regulates their transcription (Goto et al., 2008; Bonnay et al., 2014).

Positive and inhibitory interactions are depicted with → and |–, respectfully; black—well established, and red—yet unknown interactions. Color coding highlights our

current knowledge on the pathway in Anopheles gambiae. Confirmed pathway components are indicated in color. Components depicted in gray represent orthologs

identified by genomic searches, but whose function was not experimentally validated. Components in gray with dashed lines are absent in A. gambiae.

(Dimopoulos et al., 2002; Dong et al., 2006). Nevertheless,
a significant overlap observed in the responses to bacterial
and Plasmodium infections provides further support to the
hypothesis that REL2 modulation of Plasmodium development

may be triggered by the PGRP-LC-mediated recognition of
bacteria.

Regardless of the trigger, it is expected from the Drosophila
model that conformational changes of PGRP-LC will recruit
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the death-domain containing receptor-adaptor complex
(Imd, FADD and DREDD), which will, via the TAK1/TAB2
complex, activate the IKK signalosome and inhibit the negative
regulator Caspar (Figure 1). Relish activation is achieved by
phosphorylation by the IKK signalosome and by cleavage of the
inhibitory ankirin domain by the DREDD caspase (Figure 1).
Transcriptional activity of Relish at the promoters of some genes
is further regulated by its nuclear co-factor Akirin. Using RNAi
silencing and its effects on P. falciparum infections, most of the
pathway components were functionally confirmed inA. gambiae,
except for TAK1, whose depletion did not impact Plasmodium
development (Meister et al., 2005; Garver et al., 2012; Ramphul
et al., 2015).

Further studies of the REL2 pathway identified some
mosquito-specific particularities. In contrast toDrosophila, REL2
in mosquitoes encodes three alternatively-spliced isoforms that
were first identified in another mosquito species, Aedes aegypti
(Shin et al., 2002; Antonova et al., 2009). In A. gambiae, Meister
et al. (2005) described two REL2 forms: a long transcript (REL2-
F) coding for the full-length protein consisting of Rel-homology
domain (RHD) and ankyrin-rich repeat (ANK), and a short form
(REL2-S) encoding only RHD. Although authors proposed that
the isoforms regulate expression of distinct sets of genes, both
isoforms regulate Plasmodium development (Garver et al., 2012).
Currently, the molecular mechanisms underlying activation of
REL2 in Anopheles remain unresolved. It is unknown whether
REL2 requires proteolytic activation by CaspL1 (Anopheles
ortholog of DREDD) and how Caspar inhibits its activation.
Surprisingly, functional analyses by gene silencing suggested
a genetic interaction between Caspar and REL2-S, whereas
regulation of REL2-F was not investigated (Garver et al., 2012).
These results are inconsistent with the proposed mechanism
of Relish inhibition by Caspar in Drosophila, where Caspar
binding to the inhibitory ankirin domain prevents its cleavage
by DREDD. However, as REL2-S lacks the ANK domain, the
inhibitory mechanism of Caspar in Anopheles remains unclear.
Co-silencing of Caspar with Imd, FADD, CaspL1 or IKK2,
rescued the negative effect of the single Caspar knockdown on
parasite development, confirming the role of these components
in activation of REL2. Of particular interest is the role of
Akirin, the nuclear co-factor of REL2, which regulates chromatin
conformation and provides access to the promoter regions of a
set of effector genes inDrosophila (Goto et al., 2008; Bonnay et al.,
2014). As Akirin contributes to antiparasitic responses (Da Costa
et al., 2014), better understanding of its function and of its target
genes should shed light on regulation of Plasmodium killing.

So far, abortion of Plasmodium development was observed
only upon experimentally-induced activation of the NF-κB
pathways. Therefore, species-specific elimination of Plasmodium
parasites by REL2 and REL1 seems to be independent of
parasite recognition and may be explained by the activation of
distinct sets of effectors. It is also plausible, that Plasmodium
species differ in their susceptibility to the immune defenses
triggered by these pathways. Therefore, understanding the
molecular mechanisms underlying the pathway-specific parasite
elimination may provide interesting insights into biology of
Plasmodium species.

EFFECTORS

Antimicrobial peptides are powerful effectors of innate immunity
(Jenssen et al., 2006). They bind and directly kill a broad spectrum
of pathogens by disrupting cell membrane integrity (Yeaman
and Yount, 2003). Insect AMPs are synthesized by the fat body
with some contribution of hemocytes, and are secreted into
the hemolymph shortly after infection. In addition, some AMPs
are also produced by epithelial cells in a tissue-specific manner
(Tzou et al., 2000). Expression of the AMP genes Drosomycin
and Diptericins in the fat body is regulated by Toll and Imd,
respectively, whereas both pathways contribute to expression
of other AMP genes (e.g. Defensin, Drosocin, Metchnikowin,
Attacins, and Cecropins) (Ferrandon et al., 2007).

Several AMP genes have been identified in A. gambiae:
Defensins (Def1-5), Cecropins (Cec1-4), Gambicin (Gamb), and
Attacin (Holt et al., 2002; Mongin et al., 2004). Antimicrobial
and antifungal activities of the recombinant Cec1, Gamb, and
Def1 peptides were demonstrated in vitro against filamentous
fungi (Cec1, Gamb, Def1), Gram-negative (Cec1, Gamb)
and Gram-positive bacteria (Def,1 Cec1, Gamb) (Vizioli
et al., 2000, 2001a,b). In vivo silencing of Def1 increases
mosquito susceptibility to Gram-positive bacteria but does
not affect development of P. berghei (Blandin et al., 2002).
At the transcriptional level, however, expression of Def1 was
upregulated by infections with human and rodent parasites
(Tahar et al., 2002). Gambicin, the only mosquito-specific
AMP, exhibited some activity against P. berghei ookinetes in
vitro, whereas depletion of Gamb in vivo increased mosquito
susceptibility to Gram-positive bacteria, P. berghei and, to a lower
extent, to P. falciparum (Vizioli et al., 2001a; Dong et al., 2006).
Interestingly, transgenic over-expression of Cec1 fused to the
Shiva toxin inhibited development of P. berghei oocysts in A.
gambiae (Kim et al., 2004). In spite of these results, the exact
role of antimicrobial peptides in the mosquito defenses against
Plasmodium is still incompletely understood.

Identification of the effectors of REL2 and REL1 is crucial for
understanding the specificity of malaria killing in the mosquito.
However, only a handful of immune genes in Anopheles have
been assigned to either pathway. Frolet et al. (2006) did not
observe any changes in the expression of AMP genes upon
constitutive activation of REL1, leaving an open possibility of
their regulation by REL2. In vitro studies provided some support
of Cec1 and Gamb regulation by REL2 (Meister et al., 2005), but
a more recent study in vivo suggested a dual regulation of AMP
genes by both pathways (Garver et al., 2009).

The complement-like system emerged as a powerful arm
of the mosquito immune responses to a broad spectrum of
pathogens. The central component of this system, the thioester-
containing protein 1 (TEP1), is a major determinant of malaria
killing (Blandin et al., 2004; Garver et al., 2009; Molina-
Cruz et al., 2012; Nsango et al., 2012). TEP1 binds to the
surface of invading Plasmodium ookinetes and bacteria, and
promotes their killing by lysis and phagocytosis, respectively
(Blandin et al., 2004). TEP1 is a highly reactive protein
and requires a complex of two leucine-rich repeat proteins
[leucine-rich repeat immune protein 1 (LRIM1) and Anopheles
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Plasmodium-responsive leucine-rich repeat 1C (APL1C)] to
prevent its precocious activation and precipitation (Frolet et al.,
2006; Fraiture et al., 2009). TEP1 or LRIM1 co-silencing with
Cactus completely reverts the refractory phenotype of Cactus
knockdown in A. gambiae infections with P. berghei (Frolet et al.,
2006). Silencing of TEP1 also results in higher intensities of P.
falciparum infections (Garver et al., 2009), however, levels of
TEP1 protection against P. falciparum vary with the genotype
and genetic complexity of Plasmodium infections (Molina-Cruz
et al., 2012; Nsango et al., 2012). Similar to AMPs, expression of
the complement-like genes is regulated by both pathways (Frolet
et al., 2006).

Another interesting multi-member protein family with
potential roles in mosquito immune responses is the family
of fibrinogen related proteins (FBNs or FREPs). It comprises
59 members in A. gambiae, 37 in A. aegypti and 14 in D.
melanogaster (Christophides et al., 2002; Dong and Dimopoulos,
2009). Only few FBNs have been functionally characterized.
Silencing of FBN9, FBN22 and FBN39 impairs mosquito survival
upon bacterial infections; depletion of FBN8, FBN9, FBN30,
and FBN39 increases mosquito susceptibility to Plasmodium
parasites, while silencing of FBN1 decreases parasite loads (Dong
and Dimopoulos, 2009; Li et al., 2013; Simões et al., 2017). Little
is known about regulation of FBN expression, except for FBN9,
whose expression is regulated by REL2 (Garver et al., 2009).
FBN9 binds to malaria parasites and bacteria, thereby exposing
them for killing by an as yet unknown mechanism (Dong and
Dimopoulos, 2009). Surprisingly, transgenic expression of FBN9
in the fat body driven by a blood feeding-inducible promoter did
not enhance mosquito resistance to P. falciparum (Simões et al.,
2017). This unexpected result highlights the importance of tissue-
specific REL2 regulation, which has not been addressed yet.

CELLULAR IMMUNE RESPONSES

Several independent reports implicated REL2 pathway in the
immune responses of hemocytes, the mosquito blood cells.
Transcripts encoding the pathway components were identified
in the hemocyte-enriched transcriptome and their expression
levels were further upregulated by blood meal and by P.
berghei ookinetes (Baton et al., 2009). Furthermore, hemocytes
synthesize proteins whose expression is regulated by the REL2
pathway (e.g., AMPs, TEP1, LRIM1, and FBN9) (Levashina
et al., 2001; Baton et al., 2009). Some of these proteins (TEP1,
TEP3, PGRP-LC, and LRIM1) also contribute to the efficient
phagocytosis of Gram-positive and Gram-negative bacteria
(Moita et al., 2005). In Drosophila, hemocytes also serve as
messengers in inter-organ communication. For example, an
amplitude of systemic immune responses induced by localized
infections is diminished in hemocyte-depleted fruit fly mutants,
revealing hemocyte contribution to the amplification of the
fat-body mediated immune responses (Charroux and Royet,
2009; Wu et al., 2012). The reactive oxygen species that act
as local triggers of hemocyte activation, also efficiently activate
the Imd pathway (Foley and O’Farrell, 2003; Wu et al., 2012),
further supporting the potential role of this pathway in hemocyte
activation.

MELANIZATION

The Anopheles REL2 pathway negatively regulates melanization,
a process of melanin deposition in defense mechanisms (such
as wound healing or pathogen killing), metamorphosis and
tanning during development. Silencing of PGRP-LC and of both
REL2 isoforms not only renders mosquitoes more susceptible to
Plasmodium but also inducesmelanization of P. berghei ookinetes
(Meister et al., 2005, 2009; Frolet et al., 2006). The reverse is
observed in Drosophila, where the intracellular receptor PGRP-
LE is absolutely required for melanization (Takehana et al.,
2004). REL1 pathway, on the other hand, promotes melanization
in both insect species (Ligoxygakis et al., 2002; Frolet et al.,
2006). Surprisingly, simultaneous activation of the REL1 pathway
by Cactus knockdown and inhibition of the REL2 pathway by
REL2 silencing abolishes Plasmodium melanization, revealing
the complexity in the regulation of this immune reaction and
a potential cross-talk between the two pathways (Frolet et al.,
2006).

CONCLUSIONS

Although a significant progress has been achieved in identifying
the components of the REL2 pathway in mosquitoes, many
questions remain unanswered. Little is known about the role
of post-translational modifications, such as ubiquitination
and phosphorylation, which act as important pathway
regulators in Drosophila. Moreover, completely unexplored
areas are the contributions of the epigenetic modifications
acting at the promoter level to fine tune immune responses.
Understanding how chromatin conformations modulate
expression patterns of effector genes may offer new insights
into the complexity and specificity of REL2-mediated immune
responses to a broad range of pathogens. However, even before
considering the complexity of epigenetic modifications,
it is pivotal to characterize the REL2-specific effectors,
which are currently only vaguely known; and to address
the questions of Plasmodium recognition and pathway
activation upon infection in order to properly understand
the parasite-host interaction and Plasmodium killing in the
mosquito.

Recent studies in ticks and Drosophila discovered a non-
canonical cytoplasmic route of pathway activation that bypasses
the PGRP receptor-adaptor complex. These observations open
new research avenues regarding receptor(s) and molecular
mechanisms of pathway activation. The conservation of this non-
canonical route in the evolutionarily distant organisms, such
as ticks and Drosophila, may suggest that PGN recognition
by PGRPs and further signal transduction by the death-
domain module, appeared later in evolution, after separation
of arachnids from insects. Instead, the core pathway from
the ubiquitination module via Caspar to Relish seems to be
broadly conserved across arthropods. Better understanding of
the REL2 immune pathway in the malaria mosquitoes should
advance our knowledge of conserved mechanisms of innate
immunity and may identify new targets for vector-mediated
malaria control.
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