
PERSPECTIVE
published: 06 July 2017

doi: 10.3389/fcimb.2017.00292

Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 1 July 2017 | Volume 7 | Article 292

Edited by:

Miguel Prudêncio,

Instituto de Medicina Molecular (IMM),

Portugal

Reviewed by:

César López-Camarillo,

Universidad Autónoma de la Ciudad

de México, Mexico

Teresa Carvalho,

La Trobe University, Australia

*Correspondence:

Nishith Gupta

Gupta.Nishith@hu-berlin.de

Received: 26 April 2017

Accepted: 14 June 2017

Published: 06 July 2017

Citation:

Ren B and Gupta N (2017) Taming

Parasites by Tailoring Them.

Front. Cell. Infect. Microbiol. 7:292.

doi: 10.3389/fcimb.2017.00292

Taming Parasites by Tailoring Them
Bingjian Ren and Nishith Gupta*

Faculty of Life Sciences, Institute of Biology, Humboldt University, Berlin, Germany

The next-generation gene editing based on CRISPR (clustered regularly interspaced

short palindromic repeats) has been successfully implemented in a wide range of

organisms including some protozoan parasites. However, application of such a versatile

game-changing technology in molecular parasitology remains fairly underexplored. Here,

we briefly introduce state-of-the-art in human and mouse research and usher new

directions to drive the parasitology research in the years to come. In precise, we outline

contemporary ways to embolden existing apicomplexan and kinetoplastid parasite

models by commissioning front-line gene-tailoring methods, and illustrate how we can

break the enduring gridlock of gene manipulation in non-model parasitic protists to tackle

intriguing questions that remain long unresolved otherwise. We show how a judicious

solicitation of the CRISPR technology can eventually balance out the two facets of

pathogen-host interplay.
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LIVING OFF THE HOST FOR THEIR ENTIRE LIFE—THE
PARASITIC PROTISTS

Our acquaintance with parasitic infections and primary culprits dates back to ancient time
(1500 BC), as evident in the Egyptian and Greek literature and through discoveries of parasites
in archeological expeditions (Cox, 2002). The first major technological revolution spurring the
study of protozoan parasites, the focus of this article, was the invention of microscope and
its prudent deployment by Antonie van Leeuwenhoek in seventeenth century (Lane, 2015). A
systematic learning of the discipline however did not commence until confirmation of the germ
theory two centuries later following the pioneering work of Pasteur and his colleagues and sharp
dismissal of the long-overdue notion of spontaneous generation (Smith, 2012). Afterwards, basic
research on the parasitic protists has ensued along two reciprocal lines: finding a parasite and
recognizing its subsequent relationship to the disease, or conversely by distinguishing a disease
and then discovering the causative offender. The second methodical innovation was our ability
to culture parasites, albeit only few thus far, which steered the field for follow-up breakthroughs,
namely genetic engineering and omics. In this perspective review, we will discuss how the latest
technological expansion, the CRISPR system, is poised to transform the discipline of molecular
parasitology in a way that was just not feasible earlier.

The kingdom protozoa comprise more than 40,000 known single-cell extant species, of which
about 25,000 occur as free-living, while the remaining have adapted to a parasitic lifestyle
(Adl et al., 2007). The latter group includes at least 6,000 apicomplexan, 2,500 ciliate, 1,800
flagellate, and 250 amoebae species. These eukaryotic pathogens have acquired countless niches
dispersed across the tree of life. Just humans and livestock alone serve as hosts to a startling
number of parasites with many protists among them. Parasites belonging to two phyla, namely
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apicomplexa and kinetoplastida, account for a majority of
infections (Figure 1). Plasmodium, Toxoplasma, Eimeria,
Sarcocystis, Cryptosporidium, Theileria, Babesia, Trypanosoma,
Leishmania and Cryptobia are some of the notorious genera to
name but a few. Then there are many other rather unappreciated
genera, whose recognition is limited merely to the taxonomy
books (Levine, 1961). Collectively, all these parasites impose
a significant burden on human and animal healthcare as well
as on food industry. Not only do they affect the infected hosts
by altering growth, behavior, nutritional status, reproductive
abilities and mortality, but also shape our ecosystem by swaying
trophic interactions, food webs and biodiversity (Torgerson
et al., 2015; Cable et al., 2017).

Besides clinical, socioeconomic, and ecological relevance, the
unicellular eukaryotic pathogens bestow a matchless opportunity
to resolve appealing biological paradigms that have fascinated
microbiologists since their discoveries. The natural lifecycle of
parasites often gyrates between the primary and secondary hosts

FIGURE 1 | Abridged phylogenetic tree depicting main super-phyla of the kingdom protozoa, namely Alveolata and Excavata. Two of the all shown phyla,

Apicomplexa, and Kinetoplastida, comprise a vast majority of human and animal pathogens. Only the selected genera representing each class are displayed. While

most apicomplexans (except for gregarines) favor an intracellular lifestyle, kinetoplastids prefer an extracellular life (barring certain stages of T. cruzi and Leishmania).

Besides, apicomplexan parasites exhibit well-defined asexual as well as sexual reproduction, whereas the latter phase is not yet known in most kinetoplastids.

Individual genera or even species have evolved a notably distinct lifecycle in specific host organisms, which often involves a perpetual inter-host transmission in nature.

fostering asexual and sometimes sexual development, which is
somewhat similar to multicellular counterparts but intriguingly
genetically wired in a single cell. Moreover, because parasites
depend on hosts, they offer a unique possibility to learn how two
non-mutual symbiotic entities interact with each other. Many
of them develop within a target host cell (i.e., a eukaryotic
cell within a eukaryotic cell), a process that abstractly parallels
intracellular bacterial pathogens, but mechanistically differs in
host-pathogen Armageddon. Not least, it is even more thought
provoking to envision the singularity of interactions required
by each parasite to co-opt a specific host. Thus, research on
as many representative parasites as plausible is crucial to gain
a holistic insight into the concept of living together. Ironically
however, only a handful of them have attracted the attention,
mainly because most others are not amenable to in vitro culture
or genetic manipulation. While the former issue can be partially
circumvented by in vivo infection, gene tractability is still in
its infancy for most parasites, when comparing to what has
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been achieved in mammalian models (Figures 2, 3). Given
the progress made in recent years, specifically the CRISPR
technology, we believe that it is now the time to upgrade and
empower parasites to level the field with their mammalian hosts.

AN ULTIMATE SCISSOR TO TAILOR ANY
GENOME—THE CRISPR SYSTEM

CRISPR-based genomemanipulation has originated from certain
bacteria, which deploy it as a defense strategy to fend off
viral infections (Koonin and Makarova, 2013). The system in
its simplest form consists of two components, a short guide
RNA (gRNA) and an endonuclease of the Cas family with
a high affinity to the guide sequence. The simplicity of the
tool has enabled CRISPR/Cas9 as one of the most powerful
gene-editing tools ever. Its easy-to-design feature along with
high specificity, efficiency, and low-cost have obsoleted other
hitherto-popular genetic engineering methods, e.g., Zinc-finger
and TALEN, which deploy custom-made peptides targeting the
desired gene sequence (Gaj et al., 2013). The CRISPR system
employs expression of small gRNA recognizing the gene of
interest. Further, the use of gRNA enables large-scale gene editing
by transfecting simply one or two plasmids, whereas Zing-finger
and TALEN-based techniques are difficult to upscale due to
challenging ectopic expression of multiple customized proteins
in a single cell.

A comprehensive mechanistic insight into CRISPR-mediated
genetic manipulation can be found in an excellent review by
Sander and Joung (2014). In brief, the elementary application
of CRISPR/Cas9 involves non-homologous end joining (NHEJ)
and homology-directed repair (HDR). For NHEJ, a plasmid-
construct expressing the Cas9 and gRNA is required, which
create a nick at the intended locus followed by mutation-prone
self-repair of the genomic DNA. A main issue encountered
with the NHEJ-CRISPR/Cas9 gene editing is the lack of
a selection marker, thus making it impractical to isolate
mutants. This can however be avoided by HDR-CRISPR/Cas9
approach that requires transfection of an apposite CRISPR/Cas9
plasmid together with a donor construct comprising homologous
fragments and drug selection cassette. Upon CRISPR/Cas9-
mediated cut, the donor DNA recombines with the target locus
leading to a precise editing and insertion of the selection marker.
When compared to classical approaches, a gRNA-guided Cas9
cleavage in the genome improves the efficiency of transgenic
work in an exponential manner. Not surprisingly, the system
has been applied to a repertory of organisms (Sander and Joung,
2014), including selected parasites, as described below. Indeed,
its unrivaled success has also made the high-throughput editing a
reality in less than a decade.

ENRICH THE RICH BUT DON’T DAMN THE
POOR—MODEL VS. NON-MODEL

From a technological perspective, parasites can be categorized as
either model or non-model parasites. Toxoplasma, Plasmodium,
Trypanosoma, and Leishmania are the most well-studied genera,

FIGURE 2 | Current implementation of CRISPR or CRISPR-like tools in

prototypical parasitic protists and their mammalian hosts. As noted,

CRISPR/Cas9 and ensuing methods (dCas9, Cpf1, and NgAgo) have been

successfully established in the mammalian cells, but remain widely

marginalized in parasitology. Only the original CRISPR/Cas9 in designated

parasites has been used so far.

which have witnessed a progressive advancement in genome
engineering, particularly in the last two decades (Teixeira and
daRocha, 2003; de Koning-Ward et al., 2015; Reinke and
Troemel, 2015; Wang et al., 2016). However, a considerable gap
still exists between what we have achieved vs. where we want
to be. The current transgenic approaches in model parasites
are limited to ectopic expression, genetic knockout, genomic
tagging, and conditional mutagenesis (Figure 3). Even execution
of these strategies often relies on conventional tools, which
makes the gene editing a daunting, time consuming, and pricy
task. In certain fastidious species like Plasmodium, which are
demanding to culture, the entire approach is further complicated
(de Koning-Ward et al., 2015). It may take weeks to months
to establish a transgenic line for downstream analysis, and
failure in construction of mutants are mostly detected very
late. Nonetheless, these parasite models have taught us (and
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FIGURE 3 | Traffic light gradient depiction of genome engineering applications

in parasites and mammalian cells. A comparative color-coding indicates the

current progress in different organisms. The green and red colors display a

“comprehensive” or “not-at-all” scenario, respectively. The yellow light reflects

an incremental success achieved through customary methods. While the

green and yellow colors in model parasites encourage for more innovative

applications (inducible gene silencing, epigenetic/epigenomic studies,

multi-site editing), the widespread red color, mostly in non-model pathogens,

advocates for a systematic application of the CRISPR technology.

continue to do so) a great deal about parasitism as a common
mode of life. In particular, they have proven indispensable to
appreciate the asexual reproduction and underlying interactions
with hosts, which is crucial in our fight to eliminate the disease
they cause.

A yet another grand challenge to overcome is to perform
any sort of tangible manipulation to study gene functions in
non-model organisms. Some of them have been minimally
engineered and the road to their wide-ranging manipulation
is long and treacherous (Clark et al., 2008; Suarez and
McElwain, 2010; Dangoudoubiyam et al., 2014; De Goeyse
et al., 2015; Vinayak et al., 2015; Figure 3). In this regard,
Cryptosporidium, Eimeria, Sarcocystis, Babesia, Theileria,
and Cryptobia species are fascinating because they are set
to provide complementary biological insights. For instance,
Cryptosporidium with <4000 genes has a highly abbreviated
genome, and inhabits an extra-cytosolic (epicellular) vacuole as

opposed to intracellular residence of mainstream apicomplexans
(Lendner and Daugschies, 2014). Eimeria species completing
their lifecycle in one host can illuminate the sexual development
of coccidians (Walker et al., 2013), which remains heavily
understudied (Smith et al., 2002). Equally, Sarcocystis resides
freely in the host cytosol (Fayer, 2004), Babesia mimics many
features of cerebral malaria in humans (Krause et al., 2007) and
Theileria exerts a cancer-like phenotype to infected lymphocytes
(Tretina et al., 2015); these apicomplexans have therefore
potential to reveal exclusive developmental aspects (Striepen
et al., 2007; Plattner and Soldati-Favre, 2008). Along the line,
Cryptobia species exhibit an ectoparasitic phase in the lifecycle

(Woo, 1987; a rarity among endoparasites), which may shed

light onto evolution of distinct lifestyles. Not least, there are
countless other parasites that may or may not be relevant

from a clinical or veterinary stance but exhibit idiosyncratic

lifestyles, which makes the biology of parasitism an attractive

discipline for many of us. In the ensuing text, we outline

numerous ways how we can exploit the power of CRISPR-based

methods to further advance the current models, and more
importantly, to break the genetic bottleneck in non-model
parasites.

CRUNCHING HARD WITH
CRISPR—TAILORING THE PARASITE
GENOMES

Initial application of CRISPR/Cas9 has already been achieved
in Toxoplasma, Plasmodium, Trypanosoma, and Leishmania
species (Ghorbal et al., 2014; Lee and Fidock, 2014; Peng
et al., 2014; Shen et al., 2014; Sidik et al., 2014; Wagner et al.,
2014; Sollelis et al., 2015; Zhang and Matlashewski, 2015). A
combination of CRISPR/Cas9 with customary tools has resulted
in a significantly efficient production of transgenic strains, as
reviewed by Cui and Yu (2016) (Figure 4A). Further innovation
in these organisms merits the application of even more powerful
state-of-the-art tools and methods that have become available
meanwhile. The debut of dCas9 is one such breakthrough, which
has expanded the use of original CRISPR/Cas9 (Qi et al., 2013).
Based on an inactive form of Cas9, it can be used to block
transcription, resulting in a silencing or knockdown of the target
gene (Figure 4B). It may be especially suitable for Plasmodium
species, currently facing a dearth of efficient tools for conditional
mutagenesis. Although inducible gene silencing in Plasmodium
has been achieved, a simplified method for common application
is still lacking (de Koning-Ward et al., 2015). A chemically-
induced expression of dCas9 in conjunction with appropriate
gRNA may provide an effective tool to this end. A bit more
elegantly regulated dCas9 activation can also be accomplished by
tethering it to a heat- or light-sensing motif (Richter et al., 2016).
While Toxoplasma and Trypanosoma may not urgently need the
dCas9-based inducible silencing, it may nonetheless be more
effective, when the customarymethods fail to deliver unequivocal
results (Limenitakis and Soldati-Favre, 2011; Burle-Caldas Gde
et al., 2015).
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FIGURE 4 | Major applications of Cas9, dCas9, and Cpf1 in genome editing. The three widely accepted CRISPR-dependent systems (A–C) broadly complement

each other, even though the specified usage are not always restricted to individual proteins, i.e., Cas9 (A) and Cpf1 (C) can substitute each other to perform at least

some of the mentioned tasks. Both enzymes require unique protospacer adjacent motif (PAM) to locate the gene of interest, making them complementary when no

proper PAM is available for any of them. RNA-guided double-strand break is vital to their functioning. Whereas, Cas9 incision generates blunt ends, Cpf1 produces

cohesive ends. The dCas9 (B) method can recompense for Cas9, when the target genomic loci happen to be essential. The inactivated isoform of Cas9 serves as a

blocker, enabling a silencing of gene transcription instead of disrupting the gene locus. Its low toxicity also allows the assembly of stable progenitor lines for

successive transgenic research. Not least, the feature that dCas9 can bind harmlessly to a locus of interest permits a fusion of dCas9 with reporter or effector

proteins, further expanding its utility to epigenetic and epigenomic studies. Cas9, CRISPR associated protein 9; Cpf1, Centromere and Promoter Factor 1; dCas9,

catalytically dead Cas9; cr-RNA, CRISPR-RNA; Indel, insert or deletion (of bases in the genome).

The feature that dCas9 can bind to a region without
altering the genome has also inspired a series of other usage
involving expression of dCas9 fused to a reporter/effector protein
(Figure 4B). A dCas9-GFP fusion, for example, can be used
for highlighting the genomic loci of interest, or if dCas9 is
conjugated to an effector protein that can modify the genome,
one can achieve meditated effects at the intended locus (Ma
et al., 2016). We can easily envision a utility of such a system
to exert specific epigenetic alterations in the parasite genomes
to study remarkable phenomena of stage switching. Recently,
the group of Feng Zhang has described a novel member of the
Cas9 family, Cpf1 from Francisella tularensis (Zetsche et al.,
2015). CRISPR/Cpf1 requires a shorter cr-RNA backbone with
different structure for binding the gene of interest, adding further

value to the system (Figure 4C). It also creates a cohesive nick
after incising the distal end of the target locus, which allows
multiple rounds of cleavage until desired recombination has
occurred, elevating the efficiency of mutagenesis. Using cr-RNA
with specific designs, researchers were able to edit a batch of genes
at a time in plant andmammalian cells (Wang et al., 2017; Zetsche
et al., 2017). CRISPR/Cpf1 is expected to be useful for studying
proteins with redundant functions or offsetting pathways. It may
also be desired for large-scale editing in parasites, as reported in
Toxoplasma gondii using CRISPR/Cas9 (Sidik et al., 2016).

Another exciting application employs a dual-CRISPRmethod,
which has been successfully applied in Caenorhabditis elegans
(Chen et al., 2014). The dual-CRISPR procedure requires
two gRNA binding the initial and terminal regions of the
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gene of interest, leading to a deletion of the entire locus
(Figure 4A). It will be more suitable for the mutagenesis of
long genomic fragments because the efficiency of homologous
crossover can be much lower at such loci. A wider utility of
the dual- CRISPR method could also resolve the limitation of
transgenic selection markers in parasites. Combining it with
a ± marker (hypoxanthine-xanthine-guanine phosphoribosyl
transferase), an in-and-out strategy can be implemented,
which will allow recycling of the selection cassette for
the next round of gene editing. At the end, it is worth
noting a recent study reporting an Argonaute endonuclease
from Natronobacterium gregoryi (NgAgo), whose function is
mediated by a guide-DNA instead of a guide-RNA (Gao
et al., 2016); its proficiency is currently under debate however
(Blow, 2016). Pending wider endorsement, it may offer a
simple and economical alternative to the CRISPR system,
primarily in organisms where expression of gRNA is not easily
attainable.

As for those neglected parasites, commissioning of CRISPR
technology is anticipated to break the deadlock, as shown
by ingenious application of CRISPR/Cas9 in Cryptosporidium
parvum (Vinayak et al., 2015). In essence, the machinery is wide
open to all parasites, and every tool discussed here is equally
applicable to them. It will however be more sensible to begin
with simple gene modifications in atypical organisms before
advancing further. The non-model parasites, whose genomes
are not well-sequenced or annotated, NgAgo might be preferred
since it does not require making of a vector for expressing gRNA
under the control of the U6 elements. Ectopic expression of

NgAgo along with synthetic oligonucleotides shall be sufficient
to perform gene manipulation.

CONCLUDING REMARKS

Comparative genomics andmolecular manipulation have proven
imperative to illuminate the parasite survival, persistence,
divergent lifecycle strategies, and lineage-specific adaptations.
The prime challenge lying ahead now is how best to capitalize
on triumphs thus far. The CRISPR-directed genome engineering
has already touched on the realm of molecular parasitology, and
the field is ready to receive some major upgrades. Application of
customized CRISPR or CRISPR-like systems is poised to expand
the efficacy of our gene-editing arsenals more than ever. It is clear
that CRISPR may not offer an ultimate panacea to all problems
impeding the parasite research, but it is for sure going to change
the way, we will design our favorite parasites in imminent future.
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