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The Western honey bee (Apis mellifera) is widely used as commercial pollinator in

worldwide agriculture and, therefore, plays an important role in global food security.

Among the parasites and pathogens threatening health and survival of honey bees are

two species of microsporidia, Nosema apis and Nosema ceranae. Nosema ceranae is

considered an emerging pathogen of the Western honey bee. Reports on the spread of

N. ceranae suggested that this presumably highly virulent species is replacing its more

benign congener N. apis in the global A. mellifera population. We here present a 12

year longitudinal cohort study on the prevalence of N. apis and N. ceranae in Northeast

Germany. Between 2005 and 2016, a cohort of about 230 honey bee colonies originating

from 23 apiaries was sampled twice a year (spring and autumn) resulting in a total of

5,600 bee samples which were subjected to microscopic and molecular analysis for

determining the presence of infections with N. apis or/and N. ceranae. Throughout the

entire study period, both N. apis- and N. ceranae-infections could be diagnosed within

the cohort. Logistic regression analysis of the prevalence data demonstrated a significant

increase of N. ceranae-infections over the last 12 years, both in autumn (reflecting the

development during the summer) and in spring (reflecting the development over winter)

samples. Cell culture experiments confirmed that N. ceranae has a higher proliferative

potential than N. apis at 27◦ and 33◦C potentially explaining the increase in N. ceranae

prevalence during summer. In autumn, characterized by generally low infection

prevalence, this increase was accompanied by a significant decrease in N. apis-infection

prevalence. In contrast, in spring, the season with a higher prevalence of infection, no
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significant decrease of N. apis infections despite a significant increase in N. ceranae

infections could be observed. Therefore, our data do not support a general advantage

of N. ceranae over N. apis and an overall replacement of N. apis by N. ceranae in the

studied honey bee population.

Keywords: honey bee, Apis mellifera, Nosema spp., epidemiology, replacement

INTRODUCTION

The Western honey bee Apis mellifera is a valuable generalist
pollinator for many flowering plants in both natural and
agricultural ecosystems. In agriculture, commercial pollination
of crop plants, that depend on insect pollination for fruit
set and seed production, is provided mostly by managed
A. mellifera colonies which can, therefore, be regarded as
productive livestock. The cultivation of pollinator-dependent
crops is expanding all over the world; hence, there is an increasing
demand for insect pollination in worldwide agriculture (Aizen
et al., 2008, 2009; Aizen and Harder, 2009). Although, this
demand is partially met by a globally increasing number of
managed honey bee colonies (Aizen et al., 2008, 2009; Moritz
and Erler, 2016), increasing problems with honey bee health
resulting in severe honey bee colony losses pose a serious threat
to human food security. Research of the last decade has identified
a multitude of factors like pathogens, pesticides, and abiotic
stressors being associated with unusually high and inexplicable
losses of honey bee colonies (Genersch, 2010; Ratnieks and
Carreck, 2010; Cornman et al., 2012; Pettis et al., 2013; Goulson
et al., 2015). Among the pathogens studied and discussed in this
context are two microsporidian parasites, Nosema apis (N. apis)
and N. ceranae, (Cox-Foster et al., 2007; Higes et al., 2008;
Genersch, 2010) which infect adult honey bees (Bailey, 1955).

Microsporidia are highly specialized, spore-forming fungi
which are optimally adapted to an obligate intracellular parasitic
life style (Keeling and Fast, 2002). Outside of host cells,
microsporidia exist as metabolically inactive, infective spores.
For N. apis and N. ceranae, the infection process starts with the
ingestion of infective spores by an adult honey bee. The spores
germinate in the midgut thereby extruding the polar tube. If
the polar tube pierces a host cell, the sporoplasm is injected
into the cell through the polar tube (Bigliardi and Sacchi, 2001;
Franzen, 2005). Following the injection of the sporoplasm, it
takes about 96 h until the first environmental spores are produced
by an infected cell (Gisder et al., 2011). The spores are released
into the gut lumen through cell lysis and leave the body of the
infected host by defecation (Bailey, 1955; Bailey and Ball, 1991).
Heavy Nosema spp.-infections of adult honey bees may result in
dysentery (Bailey, 1967). Adult bees suffering from diarrhea will
show abnormal defecation behavior, i.e., will defecate inside the
hive, resulting in fecal spots on combs and frames. Nest mates
cleaning these spots will ingest Nosema spp. spores and become
infected (Bailey and Ball, 1991). Infections with Nosema spp.
are widespread in honey bee populations. Most infected honey
bees do not develop nosemosis and do not show any obvious
symptoms like dysentery but may have an increased foraging or
flight activity (Woyciechowski and Kozlowski, 1998; Dussaubat
et al., 2013) despite impaired orientation and homing skills (Kralj

and Fuchs, 2010; Wolf et al., 2014) and may have a suppressed
immune system (Antunez et al., 2009; Chaimanee et al., 2012), as
well as a reduced life span (Wang and Moeller, 1970; Malone and
Giacon, 1996; Fries, 2010).

Nosema apis-infections in honey bees have been studied
intensively over the last 100 years and there is little debate on the
rather low impact of this parasite on A. mellifera colonies (Bailey
and Ball, 1991). However, the impact of N. ceranae-infections on
colony health and survival is still controversially discussed (Higes
et al., 2008; Genersch et al., 2010; Gisder et al., 2010; Guzman-
Novoa et al., 2011; Stevanovic et al., 2011; Fernández et al., 2012).
The emerging picture is thatN. ceranaemight cause colony death
in warmer climates like Southern Europe (Higes et al., 2007,
2008, 2009; Martin-Hernandez et al., 2007; Botías et al., 2013;
Cepero et al., 2014) whereas colony losses in Northern Europe
or the Americas could not be associated with N. ceranae so far
(Invernizzi et al., 2009; Genersch et al., 2010; Gisder et al., 2010;
Williams et al., 2010; Guzman-Novoa et al., 2011) suggesting a
climatic influence on N. ceranae virulence (Gisder et al., 2010)
or differences in N. ceranae susceptibility between regionally
predominating A. mellifera subspecies (Fontbonne et al., 2013;
Huang et al., 2015).

Initially it was thought that N. apis is specific for the Western
honey bee A. mellifera (Zander, 1909), while its congener N.
ceranaewas described as a microsporidian parasite of the Eastern
honey bee A. cerana (Fries et al., 1996), a native of South- and
Southeast Asia. Although, experimental infection showed from
the very beginning that N. ceranae can also successfully infect
A. mellifera (Fries, 1997), it took nearly a decade until the first
natural infections of A. mellifera colonies with N. ceranae were
reported (Higes et al., 2006; Huang et al., 2007). It soon became
evident that N. ceranae was not only much more widespread
than expected in the global A. mellifera populations but that is
was even the predominant species in many regions (Klee et al.,
2007; Chen et al., 2008; Williams et al., 2008; Invernizzi et al.,
2009; Chen and Huang, 2010; Yoshiyama and Kimura, 2011;
Copley et al., 2012). Based on this epidemiological evidence it
was suggested that N. ceranae is replacing N. apis in the honey
bee populations worldwide. This process is thought to be driven
by an asymmetric within-host competition between N. apis and
N. ceranae favoring the spread of N. ceranae (Williams et al.,
2014; Natsopoulou et al., 2015) although not all studies observed
interspecific competition between N. apis and its congener N.
ceranae (Forsgren and Fries, 2010; Milbrath et al., 2015).

However, a pan-European study on the prevalence of N.
apis and N. ceranae reported that in South-European countries,
such as Italy and Greece, N. ceranae had indeed practically
replaced N. apis while this was not observed in Northern Europe
(Ireland, Sweden, Norway, and Germany) (Klee et al., 2007).
These data pointed to climatic factors differentially influencing
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assertiveness, establishment, spread, and, hence, prevalence of
N. apis and N. ceranae. Experimental evidence exists showing
that N. ceranae spores, but not N. apis spores, nearly lose
their ability to germinate and, hence, their infectivity when
exposed to temperatures close to or below freezing (Fenoy et al.,
2009; Fries, 2010; Gisder et al., 2010). In addition, experimental
infection of adult bees showed proliferation of N. ceranae—but
not of N. apis—to be unaffected by temperatures above 33◦C
(Martin-Hernandez et al., 2009). These data strongly argue for
an advantage of N. ceranae over N. apis in warmer climates.
In contrast, the cold-sensitivity of N. ceranae spores might
slow down the replacement process in colder climates (Gisder
et al., 2010), a hypothesis that could recently be substantiated
by mathematical modeling of the replacement process when
taking into account the parameters warmer and colder climate
(Natsopoulou et al., 2015). However, long term epidemiological
data on Nosema spp. prevalence allowing the observation of the
spread of the emerging pathogen N. ceranae and evaluating the
proposed process of replacement of N. apis by N. ceranae in a
given honey bee population have been lacking so far. To fill this
gap, we here present our results of a 12 year cohort study on
the prevalence of N. apis and N. ceranae in Northeast Germany
conducted on a cohort of about 230 honey bee colonies. The
duration of the study, and the size of the cohort enabled us to
statistically analyse the long term temporal trends in prevalence
of N. apis- and N. ceranae-infections in the study area. We
also show data from laboratory experiments substantiating our
epidemiological data. We provide evidence that the continuous
spread of N. ceranae and continuously increasing levels of N.
ceranae-infection prevalence at population level not necessarily
result in the replacement of N. apis.

MATERIAL AND METHODS

Bee Samples, Field Survey and Molecular
Differentiation of N. apis and N. ceranae
The data set on Nosema spp. prevalence comprises data from
spring 2005 to autumn 2016, which were collected in the
course of a 5 year longitudinal cohort-study on Nosema spp.
epidemiology (Gisder et al., 2010) and of the still ongoing
“German Bee Monitoring Project” (Genersch et al., 2010).
About 23 apiaries located in Northeast-Germany (Figure 1)
participated in the projects with 10 colonies (“monitoring
colonies”) each. Monitoring colonies that collapsed during the
study were replaced by colonies from the same apiary, if available
by a nucleus colony made from the collapsed colony in the
previous year. This procedure ensured that each apiary always
contributed 10 monitoring colonies throughout the study period.
Due to the long duration of the study, some fluctuation of
participating apiaries could not be avoided. However, nearly
half of the apiaries (11 of ∼23) participated for more than 9
years and six of them even for the entire duration of the study,
i.e., 12 years; at least 20 bee keepers provided samples over
a time period of consecutive 5–11 years (Figure 1). When an
apiary dropped out, a similar apiary in terms of size, bee race,
landscape, region, and history of losses and diseases was chosen

FIGURE 1 | Map of Northeast Germany showing the location of the apiaries

which participated in the study. The size and color of the circles represent the

number of years for which data are available for each apiary (yellow, 12 years;

green, 9–11 years; purple, 5–8 years; blue, 1–4 years).

as replacement and included in the study as soon as possible.
This resulted in an annual mean of 22.67 ± 1.72 (mean ±

SD) apiaries participating in spring and 24.0 ± 2.83 (mean ±

SD) apiaries participating in autumn. All monitoring colonies
were sampled twice a year, in spring and in autumn, resulting
in a total of 5,600 honeybee samples collected and analyzed
from the participating apiaries over the 12 year study period
(Table 1).

Sampling of bees as well as diagnosis of N. apis and
N. ceranae were performed essentially as already described
(Gisder et al., 2010). Briefly, from each apiary, a group of
10 bee colonies [annual mean: 10 ± 0.31 (mean ± SD)
colonies in spring and 10.01 ± 0.14 (mean ± SD) colonies
in autumn] was randomly selected at the beginning of the
study or when the beekeeper entered the study and designated
“monitoring colonies.” From these colonies, bee samples were
collected in spring and autumn each year and were stored
at −20◦C until analysis. Spring samples collected end of
March/beginning of April consisted of dead bees fallen onto
the bottom board during the winter season (representing the
bees that died over winter) to enable sampling of colonies
that collapsed during the winter season (October to March) as
well as of surviving colonies. Autumn samples collected in late
September/beginning of October consisted of live in-hive bees
taken from a super above the queen excluder thus ensuring that
only the oldest bees (representing the most frequently infected
bees) were sampled (Fries et al., 2013). Diagnosis of Nosema
spp. infections was performed by microscopic examination of
20 homogenized bee abdomens according to the “Manual of
Standards for Diagnostics and Vaccines” published by the Office
International des Epizooties (OIE), the World Organization
for Animal Health (Anonymous, 2008). The moderate sample
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TABLE 1 | Prevalence of colonies infected with N. apis only (N. apis) or

N. ceranae only (N. ceranae) or with N. apis and N. ceranae (co-infection) from

spring 2005 to autumn 2016.

Total number

of analyzed

colonies

Infected Colonies [infection

categories]

N. apis N. ceranae co-infection

n % n % n %

Spring 2005 220 37 16.8 9 4.1 6 2.7

Autumn 2005 237 19 8.0 10 4.2 1 0.4

Spring 2006 238 43 18.1 10 4.2 14 5.9

Autumn 2006 226 15 6.6 3 1.3 2 0.9

Spring 2007 228 7 3.1 34 14.9 10 4.4

Autumn 2007 219 10 4.6 4 1.8 1 0.5

Spring 2008 209 35 16.8 18 8.6 21 10.1

Autumn 2008 210 6 2.9 5 2.4 0 0.0

Spring 2009 210 33 15.7 23 11.0 12 5.7

Autumn 2009 180 9 5.0 7 3.9 0 0.0

Spring 2010 247 27 10.9 25 10.1 4 1.6

Autumn 2010 250 10 4.0 16 6.4 0 0.0

Spring 2011 230 42 18.3 25 10.9 16 7.0

Autumn 2011 255 7 2.8 7 2.8 5 2.0

Spring 2012 252 24 9.5 33 13.1 23 9.1

Autumn 2012 278 6 2.2 19 6.8 0 0.0

Spring 2013 233 15 6.4 30 12.9 12 5.2

Autumn 2013 257 17 6.6 21 8.2 4 1.6

Spring 2014 224 41 18.3 33 14.7 7 3.1

Autumn 2014 261 4 1.5 8 3.1 0 0.0

Spring 2015 198 25 12.6 15 7.6 7 3.5

Autumn 2015 250 5 2.0 3 1.2 0 0.0

Spring 2016 230 43 18.7 21 9.1 4 1.7

Autumn 2016 258 8 3.1 27 10.5 0 0.0

Given are the total number of analyzed colonies per year and season as well as the

numbers (n) and proportions (%) of colonies within each infection category.

size is adequate because the experimental unit is the colony
(Doull and Cellier, 1961; Doull, 1965). Infection status of the
colonies represents detectable levels of infection above 15%
with 96% probability of detection (Fries et al., 1984, 2013;
Pirk et al., 2013) which can be considered biologically relevant
(Higes et al., 2008). For molecular species differentiation,
Nosema spp.-positive homogenates were processed and analyzed
via PCR-RFLP (restriction fragment length polymorphism)
as previously described (Gisder et al., 2010). Results were
further verified by re-analyzing randomly selected samples
via a recently developed differentiation protocol (Gisder and
Genersch, 2013) which is based on the detection of species-
specific sequence differences in the highly conserved gene coding
for the DNA-dependent RNA polymerase II largest subunit.
Based on the diagnostic results, four infection categories were
defined: Microscopic analysis resulted in the category “Nosema
spp.” while molecular differentiation allowed for the categories
“N. apis” (single infection), “N. ceranae” (single infection), and
“co-infection” (infection with both N. ceranae and N. apis)
(Table 1).

Purification of Nosema spp. Spores for
In Vitro-Infection
Honey bee colonies of the apiary of the Institute for Bee Research
were screened for Nosema spp.-infections by microscopic
analysis of 20 randomly collected adult bees (see above
and Anonymous, 2008). Nosema spp.-positive samples were
molecularly differentiated as previously described (Gisder and
Genersch, 2013) to identify samples either containing only N.
ceranae or only N. apis spores. Purification of N. apis or N.
cerane spores was exclusively performed with freshly sampled
bees, because freezing or long-term storage affect spore viability
and infection rate (Fenoy et al., 2009; Fries, 2010; Gisder et al.,
2010). Midguts were carefully isolated from individual bees by
using fresh forceps for each bee. Twenty midguts were pooled in
1.5 ml reaction tubes and spore purification was performed as
already described (Gisder et al., 2010).

Viability of the purified spores was checked via in vitro-
germination. To this end, an aliquot of freshly isolated
spores was air-dried onto glass slides for 30 min at room
temperature. Germination was triggered by adding 20 µl of
0.1 M sucrose solution buffer directly to the dried spores.
Germination process was analyzed under an inverse microscope
(VWR, Darmstadt, Germany) at 400x magnification with phase
contrast. Nosema spp. spores were counted in a hemocytometer
(Neubauer-improved, VWR, Darmstadt, Germany) under an
inverse microscope (VWR, Darmstadt, Germany) at 100x
magnification. Only those spore preparations that were able to
germinate under in vitro conditions were used for cell culture
experiments.

In vitro-Infection of Cultured IPL-LD-65Y
Cells
The insect cell line IPL-LD-65Y derived from the gypsy moth
Lymantria dispar was obtained from the Deutsche Sammlung
von Mikroorganismen und Zellkulturen (DSMZ, Braunschweig,
Germany) and maintained for routine culture as given in the
accompanying data sheet. For in vitro-infection of cultured IPL-
LD-65Y-cells, aliquots of about 5 × 107 spores, purified as
described above, were dried in 1.5ml reaction tubes (Eppendorf,
Hamburg, Germany) in a vacuum concentrator (Eppendorf,
Hamburg, Germany) for 30 min at 30◦C. Subsequently, infection
of IPL-LD-65Y cells with germinating spores was performed as
previously described (Gisder et al., 2011). Briefly, IPL-LD-65Y
cells were infected with freshly isolated N. apis or N. ceranae
spores with a multiplicity of infection (MOI) of 20. Infected cells
(100 µl with 2.5 × 105 cells/ml) were seeded in the cavities of
six 96-well microtiter plates. N. apis- and N. ceranae-infected
cells were incubated at 21◦, 27◦, or 33◦C. Infected cells were
centrifuged on glass slides at the time points 24, 32, 48, 72, and 96
h post initial infection and were subsequently Giemsa-stained as
described (Gisder et al., 2011). The number of meronts, sporonts,
and mature spores of N. apis or N. ceranae was counted under an
inverse microscope Eclipse Ti-E (Nikon Instruments, Düsseldorf,
Germany) at 600x magnification in 10 individual cells for each
time point as well as for each temperature and expressed as
mean± SD.
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Statistical Analysis
For statistically analyzing the seasonality of Nosema infections,
spring vs. autumn, the Wilcoxon signed rank test was used
because the proportions of infected colonies (Table 1) were not
normally distributed. In addition, the Spearman rank correlation
was determined with R (version 3.2.5, R Development Core
Team, 2016) to analyse the relationship between infection
categories. The Spearman correlation coefficient determined the
strength of the monotonic relationship between season and
infection prevalence with effect sizes between 0.10 and 0.29
representing weak correlations, coefficients between 0.30 and
0.49 representing medium correlations, and coefficients of 0.50
or above representing strong correlations.

For each time point, the expected rate of co-infections
(Eco−inf) was calculated as the product of the observed rates
of single infections with either N. apis (Rapis) or N. ceranae
(Rceranae): Eco−inf = Rapis ∗ Rceranae. Subsequently, the differences
between the observed and expected rates of co-infections were
calculated for each time point. Because those differences were
normally distributed, a one sample t-test was used to check if
these differences were significantly different to zero.

The statistical analysis of temporal trends was performed
using RStudio (version 0.99.489) based on R using version 3.2.5.
For visualizing infection prevalence data, dotplots were plotted
with R, separately for spring and autumn. Generalized linear
models (GLM) were fitted with lme4 (Linear Mixed-Effects
Models, version 1.1-12) (Bates et al., 2015) for exploring the
data set and visualizing the relationship between the dependent
variables (Nosema spp.) and the independent variables (year). For
statistical analysis ofN. apis andN. ceranae prevalence over the 12
year study period we usedmixed-effect binary logistic regressions
analysis defining year as fixed factor and apiary as random factor
to take into account the lack of independence of data within
each apiary. Even after 12 years of sampling, the amount of data
is still not sufficient to define colony as random factor to fully
acknowledge relative data dependence. The sampling consisted
of about 230 individual colonies per season, stratified within
apiaries, and the prevalence of N. apis-, N. ceranae-, or co-
infections at the individual level were analyzed with defining “0”
if absent or “1” if present in each colony. Odds ratios (ORs) and
95% confidence intervals [CIs] were used to assess the strength of
the associations.

For statistical analysis of the counted number of different
developmental stages of Nosema spp. in infected IPL-LD-
65Y cells, individual student’s t-tests for each time point
were performed followed by Benjamini-Hochberg correction
(Benjamini and Hochberg, 1995). A p < 0.05 was considered
significant for the statistical tests.

RESULTS

Prevalence and Seasonality of Nosema

spp.-Infections
The huge data set on Nosema spp.-infection prevalence in
Northeast Germany, which was generated during the 12 year
longitudinal cohort study, provided a unique opportunity for a

comprehensive analysis of the spread and success ofNosema spp.,
and especially ofN. ceranae, in a restricted honey bee population.
We first analyzed the seasonality ofNosema spp.-infections based
on classical microscopic diagnosis without molecular species
differentiation. The data revealed a clear and expected (Bailey and
Ball, 1991) seasonality of Nosema spp.-infections for the whole
duration of the study period with spring values being always
higher than the autumn values of the same year and autumn
values being always lower than the spring values of the following
year (Figure 2A).

Molecular species differentiation of all Nosema spp.-positive
samples enabled analysing the seasonality ofN. apis-,N. ceranae-,
and co-infections (Table 1). The same seasonality as already
observed forNosema spp.-infections was also evident forN. apis-
infections over the entire study duration despite for the time
point “spring 2007” when less colonies where found infected with
N. apis than in the preceding autumn 2006 and the following
autumn 2007 (Figure 2B). With this exception for “spring 2007,”
when only 3.1% of the colonies carried detectable N. apis-
infections, the proportion of N. apis-infected colonies varied
between 6.4% (spring 2013), and 18.7% (spring 2016). In autumn,
the prevalence of N. apis-infected colonies ranged between 1.5%
(autumn 2014) and 8.0% (autumn 2005).

For N. ceranae-infections, the described seasonality with
higher prevalence in spring than in the following autumn and
lower prevalence in autumn than in spring next year could be
observed from autumn 2006 onward until spring 2016, whereas
between spring and autumn 2016 the prevalence of N. ceranae-
infections did not decrease as expected but instead further
increased (from 9.1 to 10.5%; Figure 2B). Spring prevalence
from 2007 to 2016 varied for N. ceranae-infections between 7.6%
(spring 2015) and 14.9% (spring 2007), while autumn prevalence
ranged between 1.2% (autumn 2015) and 8.2% (autumn 2013).

The prevalence of colonies co-infected with N. apis and N.
ceranae showed the same seasonal pattern fluctuating between
spring (higher prevalence) and autumn (lower to no prevalence).
Values for co-infection prevalence ranged between 1.6% (spring
2010) and 10.0% (spring 2008) in spring and between 0.0%
(autumn 2008, 2009, 2010, 2012, 2014, 2015) and 2.0% (autumn
2011) in autumn (Figure 2B).

Statistical analysis of the seasonality of Nosema spp.-, N. apis-,
N. ceranae-, and co-infections using a Mann-Whitney test
confirmed the above given, rather descriptive evaluation (for all
infection categories, p < 0.01). Spearman correlation analysis
further substantiated this finding (Figure 3). A strong negative
correlation (coefficient values between −0.69 and −0.87) was
found between season and all infection categories indicating that
in each year and for all four infection categories (Nosema spp.-,
N. apis-, N. ceranae-, co-infection) the infection prevalence
decreased significantly from spring to autumn (for all infection
categories: p < 0.01). Medium to strong positive correlations
(coefficient values between 0.44 and 0.85) were found between
the infection categories implying that all infection categories
followed the same prevalence trend. For example, high infection
prevalence for N. apis correlated with high infection prevalence
for N. ceranae- or co-infections. This correlation was significant
for all infection categories (p < 0.05).
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FIGURE 2 | Prevalence in spring and autumn (seasonality) of Nosema spp.-infections over the study period from spring 2005 to autumn 2016. (A) Proportion of

Nosema spp.-infections in the study cohort according to microscopic analysis. (B) Proportion of N. apis- (single infection, green columns), N. ceranae- (single

infection, red columns), and N.apis/N. ceranae co-infections (blue columns) as revealed by molecular species differentiation.

An interesting question in regard to co-infections was,
whether or not the observed prevalence of co-infections in spring
was congruent with the expected prevalence. To answer this
question, we first calculated the rate of expected co-infections
for each year from the rate of observed N. apis- and N. ceranae-
infections in this season. Comparing these values with the
observed frequency of co-infections revealed that over the entire
study period, the observed prevalence of co-infections was always
significantly {one sample t-test;M = 0.037, [0.0195, 0.0546], t(23)
= 4.6389, p< 0.01} higher than expected when assuming that the
occurrence of co-infections was only influenced by the prevalence
of single infections (Figure 4).

Temporal pattern of Nosema spp.
Prevalence
For evaluating spread and assertiveness of the emerging honey
bee pathogen N. ceranae, we analyzed the temporal patterns
of N. ceranae-, N. apis-, and co-infections by plotting and
statistically analysing the respective values separately for the
spring (Figure 5) and autumn (Figure 6) seasons between
2005 and 2016. While the patterns for N. apis- and co-
infections in spring did not show a consistent trend, the pattern

for N. ceranae-infection prevalence suggested a continuously
increasing trend over the years (Figure 5A). Generalized
linear models (GLM) of the prevalence data confirmed
this interpretation (Figures 5B–D). Logistic regression analysis
(Table 2) demonstrated that the continuous increase in spring
prevalence of N. ceranae-infections observed over the entire
12 year study period, i.e., between 2005 and 2016, was on
average about 5% per year (Odd Ratio: 1.05 [1.01, 1.1]) and
was significant (GLM, Likelihood Ratio test of the model, p =

0.02) (Figure 5B). This increase, however, was not accompanied
by any significant (GLM, Likelihood Ratio test of the model, p
= 0.95) change in the spring prevalence of N. apis-infections
(Odd Ratio: 1.0 [0.96, 1.04]) (Figure 5C). Likewise, no significant
trends (GLM, Likelihood Ratio test of the model, p = 0.17) were
observed for co-infections in spring (Odd Ratio: 0.96 [0.9, 1.02])
(Figure 5D).

The dotplot of autumn prevalence of N. ceranae-, N. apis-,
and co-infections (Figure 6A) showed a different pattern with
an increasing trend for N. ceranae- being accompanied by a
decreasing trend for N. apis-infections. This finding could be
substantiated by GLM-analysis and Likelihood Ratio tests of the
models (Table 2, Figures 6B–D). In autumn, the prevalence of
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FIGURE 3 | Spearman correlation matrix values showing the pairwise

correlation coefficients for the parameters season and the four infection

categories (Nosema spp.-, N. apis-, N. ceranae-, and co-infections). Shape

and orientation of the ellipses represent the data clouds of the respective

correlation coefficients. Positive correlations are illustrated in blue and negative

correlations in red. Coefficients (white digits) between |0.10| and |0.29|

represent weak associations, coefficients between |0.30| and |0.49| represent

medium associations and coefficients of |0.50| or above (beyond) represent

strong associations.

FIGURE 4 | Predicted and observed frequencies of prevalence of colonies

being co-infected in spring with N. apis and N. ceranae. Predicted values for

co-infections (violet bars) were calculated from the observed frequencies of

N. apis- and N. ceranae-infected colonies and compared to the observed

values for co-infection prevalence (blue bars) for each spring between 2005

and 2016.

N. ceranae-infections was significantly (GLM, Likelihood Ratio
test of the model, p = 0.0003) increasing by an average of
about 15 % per year (Odd Ratio: 1.15 [1.07, 1.25]) over the
study period (Figure 6B) while at the same time the prevalence
of N. apis-infections was significantly decreasing by an average
of about 11% per year (Odd Ratio: 0.89 [0.84, 0.95]) (GLM,
Likelihood Ratio test of the model, p = 0.0003) (Figure 6C). For
co-infections, however, no significant (GLM, Likelihood Ratio

FIGURE 5 | Temporal patterns of prevalence of single infections with N.

ceranae or N. apis and of co-infections detected in spring samples between

2005 and 2016. (A) Prevalence data for N. ceranae-, N. apis-, and

co-infections in spring are plotted against year. (B) Data sets for prevalence of

N. ceranae-, N. apis-, and co-infections in spring were fitted by Linear

Mixed-Effects Models to visualize the relationship between the independent

variables (year) and the dependent variables N. ceranae- (B), N. apis- (C), and

co-infections (D). Regression lines visualizing trends for N. ceranae- (B; solid

red line), N. apis- (C; solid green line), and co-infection (D; solid blue line)

prevalence are shown; ribbons represent the 2nd and 3rd quartile (25–75%) of

the predicted data of the model.
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FIGURE 6 | Temporal patterns of prevalence of single infections with

N. ceranae or N. apis and of co-infections detected in autumn samples

between 2005 and 2016. (A) Prevalence data for N. ceranae-, N. apis-, and

co-infections in autumn are plotted against year. In autumn 2011, highlighted

by an asterisk, the proportions of N. apis- and N. ceranae-infections were

identical, hence, only a red dot is visible. (B) Data sets for prevalence of

N. ceranae-, N. apis-, and co-infections in autumn were fitted by Linear

Mixed-Effects Models to visualize the relationship between the independent

variables (year) and the dependent variables N. ceranae- (B), N. apis- (C), and

(Continued)

FIGURE 6 | Continued

co-infections (D). Regression lines visualizing trends for N. ceranae- (B, solid

red line), N. apis- (C; solid green line), and co-infection (D; solid blue line)

prevalence are shown; ribbons represent the 2nd and 3rd quartile (25–75%) of

the predicted data of the model.

TABLE 2 | Results of the binary logistic regression analysis of prevalence of

N. apis-, N. ceranae- and co-infections over the 12 year study period (see also

Figures 5, 6).

Infection categories Odd Ratios (CI)* p-value

spring N. apis-infections 0.00 (0.96, 1.04) 0.95

N. ceranae-infections 1.05 (1.01, 1.10) 0.02

co-infections 0.96 (0.90, 1.02) 0.17

autumn N. apis-infections 0.89 (0.84, 0.95) 0.0003

N. ceranae-infections 1.15 (1.07, 1.25) 0.0003

co-infections 0.95 (0.81, 1.10) 0.49

*, 95% confidence interval.

test of the model, p = 0.5) change in prevalence could be
demonstrated between 2005 and 2016 (Odd Ratio: 0.95 [0.81,
1.11]) (Figure 6D).

In vitro-Infection of IPL-LD-65Y Cells
To explain the obvious success of N. ceranae over N. apis in
the studied honey bee population in summer, we experimentally
analyzed the proliferative capacity of bothmicrosporidian species
in infected cells at temperatures between 21◦ and 33◦C. To this
end, we used an established cell culture model for N. apis and
N. ceranae based on experimentally infecting cultured IPL-LD-
65Y-cells. This insect cell line derived from Lymantria dispar had
been shown to support replication of bothmicrosporidian species
(Gisder et al., 2011).

Intracellular proliferation of N. apis and N. ceranae at three
different temperatures (21◦, 27◦, and 33◦C) was evaluated
by determining the number of the developmental stages per
cell produced during merogony (meronts) and sporogony
(sporonts/spores) of Nosema spp. (Figure 7A). The number of
both meronts and sporonts/spores increased for N. apis as well
as for N. ceranae over the observation time period of 96 h at all
three tested temperatures. However, the number of the different
developmental stages varied between N. apis and N. ceranae
infected cells depending on incubation time and incubation
temperature. At 21◦C, there was no significant difference in
the proliferative capacity of N. ceranae and N. apis in infected
cells for both meronts and sporonts/spores at all tested time
points (24, 32, 48, 72, and 96 h post-infection) (all p > 0.05)
(Figure 7B). However, at 27◦C and even more so at 33◦C, a
higher proliferation rate and a faster proliferation of N. ceranae
compared to N. apis could be observed. In infected cells which
were incubated at 27◦C (Figure 7C), the number of meronts was
not significantly different between N. apis and N. ceranae after 32
and 72 h post-infection (p > 0.05) but was significantly different
at time points 24, 48, and 96 h post-infection (p > 0.05). More
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FIGURE 7 | In vitro-infection of IPL-LD-65Y cells with N. apis- and N. ceranae-spores. Nosema spp. proliferation was determined by counting the number of

developmental stages of merogony (A; meronts, dark gray arrow heads) and sporogony (A; sporonts and intracellular spores, light gray arrow heads) in infected cells

(scale bars = 25 µm) incubated at 21◦C (B), 27◦C (C), and 33◦C (D). Dark gray bars represent the number of meronts per cell (mean of 10 cells ± SD), light gray

bars represent the number of sporonts/spores per cell (mean of 10 cells ± SD). Statistical analysis of the number of developmental stages was performed with

student’s t-tests for each time point and temperature. Statistical results given above the bars refer to the comparison of sporonts/spores produced by N. apis and N.

ceranae (not significantly different: n.s., p ≥ 0.05; significantly different: *, 0.05 < p < 0.01; **, 0.01 < p < 0.001; ***, 0.001 > p ≥ 0.0001; **** p < 0.0001).

importantly, the number of counted sporonts/spores at 32, 48, 72,
and 96 h post-infection was significantly higher (p < 0.05) in N.
ceranae- than inN. apis-infected cells (Figure 7C).When the host
cells were incubated at 33◦C, the number of N. apismeronts was
significantly (all p < 0.01) higher than the number of N. ceranae
meronts at 32, 48, 72, and 96 h post-infection (Figure 7D) and the
numbers of sporonts/spores were significantly higher at 32, 48,
72, and 96 h post-infection (all p < 0.01) in N. ceranae-infected
host cells than in cells infected with N. apis.

DISCUSSION

Prevalence of N. ceranae Infections
Follows the Same Seasonality as N. apis
Infections
Nosema ceranae is an emergent pathogen of the Western honey
bee A. mellifera. Its first detection in colonies of A. mellifera dates
back a decade (Higes et al., 2006; Huang et al., 2007), although, it
obviously switched host from A. cerana to A. mellifera about 40
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years ago (Teixeira et al., 2013) and is now endemic in the global
A. mellifera population. Several differences between N. ceranae
and its congenerN. apis have been reported, including differences
in virulence, in seasonality of infections, and in temperature
dependence of spore germination and biotic potential. Most of
these differences seem to work in favor for N. ceranae resulting
in its continous spread in the bee population and a supersession
of N. apis in many regions (Klee et al., 2007; Chen et al., 2008;
Williams et al., 2008; Invernizzi et al., 2009; Chen and Huang,
2010; Stevanovic et al., 2011; Yoshiyama and Kimura, 2011;
Copley et al., 2012). However, studies claiming lack of seasonality
of N. ceranae or replacement of N. apis in a given honey bee
population are rather short-termed studies rarely performed over
more than 2 years and most often involving only a limited set of
samples. Our epidemiology data based on observing a cohort 230
bee colonies sampled twice a year over 12 years now revealed a
different picture at least for the study area.

Nosema apis-infections are known to follow a seasonal pattern
with spring prevalence being higher than autumn prevalence.
This seasonality can be explained by the pathobiology of N. apis:
(i) Only the spores ofN. apis are infective; (ii) older bees are more
likely to be infected and carry more spores; and (iii) spores are
most efficiently transmitted through the fecal-oral route (Bailey,
1967; Bailey and Ball, 1991). Therefore, N. apis transmission
within the colony is favored by conditions with low or no brood
rearing and forcing adult bees to stay inside the hive for longer
periods and to have close in-hive contacts (Bailey, 1967; Bailey
and Ball, 1991). These conditions are regularly fulfilled during the
winter months in climatic zones with winter temperatures falling
below 10◦C not allowing bees to fly out (Winston, 1987). Instead,
in these regions honey bee colonies hibernate by longlived adult
winter bees forming a winter cluster around the queen bee and
not leaving the hive for weeks ormonths until weather conditions
allow cleansing and foraging flights and restarting brood rearing
to replace the old winter bees (Winston, 1987). This explains
why N. apis-infection levels increase over winter but normally
decrease over summer when the rather shortlived summer bees
are engaged in foraging, are able to defecate outside the hive,
and when newly raised bees regularly replace older more heavily
infected bees (Bailey, 1967; Bailey and Ball, 1991; Retschnig et al.,
2017).

In contrast, N. ceranae-infections were described to lack this
characteristic seasonality (Higes et al., 2006, 2010) suggesting
fundamental differences in pathobiology and preferred routes
of transmission which would be interesting to investigate. To
analyse this suggested lack of seasonality, we collected bee
samples in spring and autumn without gap over 12 years from
a cohort of around 230 honey bee colonies and analyzed all
samples for the presence of Nosema spp. spores and performed
molecular species differentiation in all Nosema spp.-positive
samples. Surprisingly, the data clearly disproved that N. ceranae-
infections differ from N. apis-infections in regard to seasonality.
Quite the contrary was true: All four infection categories,Nosema
spp.-, N. apis-, N. ceranae-, and co-infections, followed the same
seasonal pattern with spring prevalence of infection regularly
being higher than autumn prevalence suggesting that N. ceranae
and N. apis circulating in Northeast Germany are similar in

regard to pathobiology and preferred transmission routes. Since
reports on the lack of seasonality predominantly stem from South
Europe (Higes et al., 2006, 2010), further experimental studies
are necessary to analyse whether the differences in seasonality
between the Northern and Southern parts of Europe are due to
climatic factors or intraspecies differences in N. ceranae.

No Evidence for a General Advantage of
N. ceranae Over N. apis and for an Overall
Replacement of N. apis by N. Ceranae
In many regions of the world, prevalence data collected for N.
apis and N. ceranae indicated that N. ceranae has become the
dominant species in the worldwide honey bee populations and it
was suggested that N. ceranae has replaced or is about to replace
its congener globally (Chen et al., 2012; Martin-Hernandez et al.,
2012). However, in Europe, a South to North gradient was
observed with N. ceranae being dominant in Southern European
countries already 10 years ago while at that time N. apis was still
dominant in the Northern part of Europe (Klee et al., 2007) which
might reflect an already discussed climatic aspect in N. ceranae
spread and assertiveness (Fenoy et al., 2009; Martin-Hernandez
et al., 2009; Gisder et al., 2010; Chen et al., 2012; Natsopoulou
et al., 2015).

Congruent with this South to North gradient (Klee et al.,
2007), at the beginning of our epidemiology study we observed
very low levels of prevalence for N. ceranae-infections in
Northeast Germany compared toN. apis-infections. This starting
condition, the size of the cohort, and the design and duration of
the study provided a unique opportunity to follow the spread
of the emerging pathogen N. ceranae and analyse the impact
of this spread on its congener N. apis, well established in the
observed honey bee population. Our epidemiology data show
that starting from a very low level, the prevalence of N. ceranae-
infections significantly increased continuously in the observed
cohort of honey bee colonies during the last 12 years. This
increase was true for both time points of sampling, in spring
(showing the development over winter) and autumn (showing
the development over summer) clearly indicating that N. ceranae
became successfully established and expanded its presence in the
honey bee population of Northeast Germany.

With regard to replacement of N. apis by N. ceranae, the
obtained epidemiology data showed a complex picture. For
assuming a replacement process at the population level, N. apis
infection prevalence should have concomitantly decreased
during the study period. However, a significant decrease in
N. apis-infection prevalence was only observed for autumn
indicating that during the bee season in summer N. ceranae
successfully competed with N. apis at the population level over
the course of the study. Surprisingly and in contrast to autumn,
no significant change in N. apis infection prevalence was evident
in spring despite a significant increase in N. ceranae prevalence.
Therefore, no replacement of N. apis by N. ceranae in the
honey bee population of Northeast Germany took place over
winter during the last 12 years. Instead, the increase in N.
ceranae prevalence in spring came on top of the unaltered N.
apis infection prevalence suggesting that the two microsporidian
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parasites did not compete with each other over winter at the
colony and population level. In addition, the long term stability
of N. apis-infection frequency in spring indicate, that whatever
mechanisms are acting on N. apis during summer and causing
its decrease in the population, they are compensated for and
reversed during winter preventing a supersession of N. apis
through N. ceranae in the observed honey bee population.

Replacement of N. apis by N. ceranae at the population
level during summer but not during winter points to different
mechanisms acting on or influencing the two microsporidian
parasites in summer and over winter. Although the exact
mechanism responsible for presence (summer) and absence
(winter) of replacement at the population level still remain
elusive, experimental data providing explanations at the
individual bee level for the increase in N. ceranae infection
prevalence over summer exists. In a recent study by Martin-
Hernandez et al. (2009), infection experiments with caged
bees were performed at different temperatures and the “biotic
index” was calculated for both microsporidia as the total N.
apis or N. ceranae spore count per day after infection. This
“biotic index” was higher for N. ceranae than for N. apis at
25◦C but no significant difference could be observed at 33◦C
(Martin-Hernandez et al., 2009). Although these results did
not provide convincing proof for an advantage of N. ceranae
over N. apis during summer, they pointed into an interesting
direction. Therefore, we extended the approach and performed
infection experiments in cell culture (Gisder et al., 2011), which
allowed a detailed analysis of the time course of proliferation
and of the proliferative potential of N. ceranae and N. apis at
different temperatures. Our in vitro results revealed a significant
advantage of N. ceranae over N. apis at 27◦ and 33◦C, the normal
range of daily maximum temperatures in summers in Northeast
Germany. At both temperatures, N. ceranae completed its
replicative cycle faster and replicated more efficiently than N.
apis. These results were in accordance with a recent study,
suggesting a generally higher proliferation rate for N. ceranae
compared to N. apis in experimentally infected, caged bees
incubated at 30◦C for 20 days (Huang and Solter, 2013). Earlier
and higher production of spores, which are transmitting the
disease within and between colonies, may translate into higher
infection prevalence at population level. These data explain an
increase of N. ceranae infection levels, however, they still do not
explain the observed replacement of N. apis by N. ceranae over
summer.

For replacement of N. apis by N. ceranae, a simple increase in
N. ceranae infection prevalence is not sufficient but a successful
interspecies competition, withN. ceranae at least more often than
N. apis winning the game, is necessary. Again, only experimental
data at the individual bee level are available. Co-infection
experiments with caged bees and simultaneous feeding of N.
apis and N. ceranae spores did not provide evidence for intra-
host competition between the two species (Forsgren and Fries,
2010; Milbrath et al., 2015). In contrast, sequential feeding of
spores of the two species resulted in within-host competition:
The first parasite significantly inhibited the growth of the second,
regardless of species (Natsopoulou et al., 2015). This would have
prevented the spread of N. ceranae because N. apis had been

present in the bee population before N. ceranae arrived and
would always have been first. However, this so-called “priority
effect” proved to be asymmetric and N. ceranae exhibited a
stronger inhibitory effect on N. apis than N. apis on N. ceranae
(Natsopoulou et al., 2015). Mathematical modeling proposed that
this priority effect will result in a successful replacement process
at population level even when taking into account that the cold
sensitivity of N. ceranae but not of N. apis spores (Fenoy et al.,
2009; Gisder et al., 2010) provides a disadvantage for N. ceranae
during cold winters (Natsopoulou et al., 2015).

However, for spring samples our epidemiology data clearly
showed that although N. ceranae-infection prevalence increased
over time, this increase did not result in a replacement of N. apis.
Remarkably, N. apis-infection prevalence in spring remained
rather stable over the 12 years study period although the autumn
infection prevalence and, hence, the infection prevalence at the
beginning of winter, has been declining during this period.
Therefore, the two Nosema species rather not competed during
winter and the mechanisms promoting the increase ofN. ceranae
in the studied honey bee population over winter did not influence
the prevalence of N. apis.

Furthermore, we observed higher than expected co-infection
rates in spring suggesting that there is no interspecies within-host
competition at colony or population level during overwintering.
The co-infection levels rather suggested that an infection with
any one of the two microsporidia pre-existing in a colony
favored an additional infection of the colony with the other
microsporidium. This is in contrast to the above mentioned
report (Natsopoulou et al., 2015) showing interspecies within-
host competition with a priority effect favoring the spread N.
ceranae overN. apis. However, this inter-species competition was
shown at the individual bee level whereas our epidemiology data
concern the colony and population levels. And indeed, at the
colony and population level it is hardly conceivable how an N.
ceranae infection of one bee or colony might inhibit a nestmate
or a neighboring colony, respectively, to become infected by
N. apis - and the other way round. Actually, the concept of
interspecies within-host competition of an obligate intracellular
parasite due to competition for the same limited cellular energy
resources cannot easily be translated to the colony or population
level where limitation or shortage of resources (in this case: new
hosts) is not yet the problem. However, if the prevalence of
N. ceranae-infections keeps increasing like it did over the last
12 years, within-colony and between-colony competition might
become an issue once all colonies are infected with either one
of the microsporidia. Therefore, a continuation of this study
will further our understanding of the long term epidemiology
and interspecies competition at population level of these two
important honey bee pathogens.
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